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1 Introduction

The Hungarian mathematician Farkas Bolyai (1775-1856) published in his
principal work (‘Tentamen’, 1832-33 [Bol04]) a dense regular packing of equal
circles in an equilateral triangle (see Fig. 1). He defined an infinite packing
series and investigated the limit of vacuitas (in Latin, the gap in the triangle
outside the circles). It is interesting that these packings are not always opti-
mal in spite of the fact that they are based on hexagonal grid packings. Bolyai
probably was the first author in the mathematical literature who studied the
density of a series of packing circles in a bounded shape.

The problem of finding the densest packing of n equal and non-overlapping
circles has been studied for several shapes of the bounding region (e.g. in a
rectangle, triangle and circle [Mel97]). This chapter focuses only on the "Pack-
ing of Equal Circles in a Square’-problem (PECS problem), however, the de-
veloped stochastic optimization algorithm can be used for other shapes as well.

The Hungarian mathematicians Dezs6 Lazar and Laszlé Fejes Toth have
already investigated the PECS problem before 1940. This problem first ap-
peared in the literature in 1960, when Leo Moser [Mos60] guessed the optimal
arrangement of 8 circles. J. Schaer and A. Meir [SM65] proved this conjec-
ture and J. Schaer [Sch65] solved the n = 9 case, too. C. de Groot et al.
[GPW90] solved the n = 10 case after many authors published new and
improved packings. R. Peikert et al. [PWMG92] found and proved optimal
packings from n = 10 to n = 20 using a computer aided method. Based on
theoretical tools only, G. Wengerodt published proofs for n = 14,16, and
25 [Wen83, Wen87, Weng87|, and with K. Kirchner for n = 36 [KW87].
However, there are gaps in both of proofs for n = 25 and 36 according
to the review MR1453444 in Mathematical Reviews. In the last decades,
several deterministic [NO99, LR02, Mar03, Mar04, MCO05] and stochastic
[NO97, BDGL00, CGSCO01] methods were published for this problem.
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Fig. 1. The example of Bolyai for packing 19 equal circles in an equilateral triangle.

Proven optimal packings are known up to n = 30 [PWMG92, NO99,
Mar03, Mar04, MCO05]. Approximate packings (i.e. packings determined by
computer aided numerical computations without a rigorous proof) were re-
ported in the literature for up to n = 100 [NO97, BDGL00, CGSC01, LR02].
At the same time, some other related results (e.g. patterns, bounds and some
properties of the optimal solutions) were published as well [GL96, NOS99,
Sza00, SCCGO1]. A more detailed history of the PECS problem can be found
in [PWMG92, Mel97, SCCG01, SMCO05].

In this chapter we propose many new approximate packings. These pack-
ings are interesting for discrete geometric investigations, because they suggest
new possible structures. Note that similar structures occur in several cases,
so they define pattern classes [GL96, NO97, NOS99, Sza00]. The good ap-
proximate packings are important for the reliable computer aided methods
to speed up the localization of optimal packings and to prove the optimality
[Mar03, NO99, PWMG92].

The chapter is organized as follows: Section 2 presents definitions and
mathematical models of the PECS problem as a global optimization problem.
In Section 3, a theoretical lower bound is given for every n > 2. We summarize
some earlier deterministic and stochastic optimization approaches in Section
4. In the following Section 5, we propose a modified billiard simulation method
and in Section 6 numerical values, figures and density plots of all optimal and
approximate packings up to n = 200 are given. It has been verified by interval
arithmetic based computations that the numerical results represent in fact
existing packings.
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2 Definitions and Models

First of all, we give a formal definition of the PECS problem.

Definition 2.1 Let us denote the number of the circles by n > 2. A packing
of circles with radius ry, in the unit square is P = (p1,...,pn) € P, , where
Prn = {((xlayl)v B (xrnyn)) € [Ov 1]2n | (xi_xj)z'i_(yi _yj)2 > 47'721;1'1'7% S
[rn, 1 —ry] (1 <i<j<n)}. Pisan optimal packing of circles, if P € Pz,
where 7,, = max r,.

P, #0

Consequently, this definition leads to the following

Problem (P): Determine the optimal packing of circles for n > 2 in the
unit square.

From another point of view, we may consider only the centers of the circles,
so that we obtain the following problem: Locate n points in the unit square
in such a way that the minimal distance between any two of them be maximal.

Definition 2.2 Let us denote the number of the points by n > 2. A point ar-
rangement with a minimal distance m,, in the unit squareis A = (ay,...,a,) €
Amnv where Amn = {((1‘17 yl)a R (xnv yn)) € [07 1]2n | (xiix])2+(yliy])2 Z
m2 (1 <i<j<mn)}. Aisan optimal point arrangement, if A € A, , where
My, = max My,.

Ay, #0

This definition leads to

Problem (A): Determine the optimal point arrangements in the unit square
forn > 2.

Problems (P) and (A) are known to be equivalent [Sza00]. The following
relation holds between the radius 7,, of the optimal packing and the distance
m,, of the optimal point arrangement:

My,
P — 1
n 2(m, +1) )
The following problem settings are also equivalent with problems (P) and
(A), respectively:

e Find the smallest square of side p, that contains n equal and non-
overlapping circles with a radius of 1.

e Determine the smallest square of side @, that contains n points with mu-
tual distances of at least 1.
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Furthermore, it can be proved that

PnTn =1 and onMy, = 1. (2)

The following definition summarizes some terms used in this chapter.

Definition 2.3 We say, that

e two circles are in contact in a packing if the distance between their centers
is 21y,

e acircle is free (a rattler) if it can be moved inside the square by a positive
distance without getting in contact or overlapping another one,
a circle is fized if it isn’t a free circle,
the density of a packing in the unit square is d,, = nr2r.

2.1 The PECS Problem as a Global Optimization Problem

The PECS problem is on the one hand a geometrical problem and on the other
hand a continuous global optimization problem [TZ89]. Problem (A) can be
written shortly as a 2n dimensional optimization problem in the following
form:

max min_||s; — s .
sk€[0,1]2, 1<k<n 1<i<j<n

This problem can be considered as
a) a continuous nonlinear constrained global optimization problem:
max t

Ti,Yi

subject to

J@i—2) = -y =t (1<i<j<n)
0<uw,y; <1, 1<i<n.

b) a maz-min optimization problem:

max  min  s;;
Ti,yi  1<i<j<n

subject to

\/(Ii*l”j)“r(yi*yj)Q:Sij (I<i<j<mn)
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¢) a DC programming problem [6]:

A DC (difference of convex functions) programming problem is a mathemat-
ical programming problem, where the objective function can be given as a
difference of two convex functions. The objective function of the PECS prob-
lem can be stated as the difference of the convex functions g and h:

2n
g9(z) = 22,2]2-, and
j=1

h(z) = max 2 Z z?+(zi+zk)2+(zn+i+zn+k)2 c1<i<k<n,,
J€INJik

where J = {1,...,2n}, z = (1, .., Tn, Y1, -, Yn), Jir = {i, k,n+i,n + k}.
d) and finally as an all-quadratic optimization problem.
The general form of an all-quadratic optimization problem is

min [27Q%z + (d°)"z]

subject to

2TQlr +(dHY T+t <0 1=1,...,p
r e P,

where Q! (I = 0,...,p) are real (n + 1) x (n + 1) matrices, d! (I = 0,...,p)
are real (n + 1)-dimensional vectors, ¢! (I = 1,...,p) are real numbers, p is
the number of constraints, and P is a polyhedron. Solving the general case of
an all-quadratic optimization problem is knew to be NP-hard.

The PECS problem with the following values is a special all-quadratic
optimization problem with a linear objective function:

Q*=0, 2T = (o, @1, ..., Tan), (dO)T =(-1,0,...,0),

n(n —1)

(@t =0, ¢'=0, p= 5

, P= [07 \/i] X [Ov 1}2n7

and for all

1<4,5<2n+1,
1<l <" <n.
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2l
e 20",
-1, if i=7= o +1,
20" +1,
312 1 ifZ: :1
b _ ol _ ] J )
[QLJ*QU 1=2"+1andj=2l'+1,

1=2" and j = 2l/,
1=2'+1 and 7 =2l" +1,
1 =2l and j = 21",

0, otherwise.

In this model, zq is the minimal distance between the points. The coordi-
nates of the i*" point (1 <1i < n) are (z2;_1,T2;).

The investigations show that those approaches are effective that use not
only optimization models, but some geometrical properties of the problem,
too. Before we study the most efficient earlier approaches, we give some the-
oretical lower bounds for 7,,.

3 Theoretical Lower Bound for m,,

In this section we show a proof for the statement that the known ﬁ

asymptotic formula is a lower bound of 7.
Proposition 1. For every integer n > 2

2 _
— < T,

V3n

Proof: Proposition 1 is equivalent with the following statement:

There can be at least %02 points located in a square of side o such that
the distances between the pairs of points are at least 1.

The proof is constructive, and it is based on the hexagonal grid packing.
Let us divide the square into stripes of width @ This division determines

{%J + 1 parallel zones. The first level is one side of the square. On this

level |o] + 1 points can be located, where the first point is in the edge of
the square and the distance between the points is 1. On the second level
the distance between the side of the square and the first point is % On this
level one can place La — %J + 1 points. If the number of the level is an odd
number, then there are always |o] + 1 points on this level and for an even

number there are La - %J + 1 points. If V—\%J + 1 is even, then there are
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Sk

(lo] + |0 — 3| +2) points in the square. If it is odd, then there are

S
N

&

| 22|+
(lo = 3] + lo] +2) + |o] + 1 points. In both cases it is easy to see that

L2J 2

the stated inequality holds, because 20 < |0 — 1| + 0] +2, 20 -1 < {EJ

V3 V3
and have 0 — 1 < | o], therefore
22 141

2
V3 20 <n = —=0?<n (even case),

V3

and

20
20 _q 9
V3 95t —l+l<n = -—=o2<n (odd case).

2 V3 0

The theoretical lower bounds of 77,, were well improved by computer aided
methods. These approaches usually fall into two classes: deterministic and
stochastic methods. A typical way to find approximate packings in the latter
case is to apply stochastic global optimization algorithms.

4 Some Earlier Approaches for Finding Approximate
Packings

In this section we give an overview of some earlier methods to find approximate
packings. Several strategies were used (e.g. nonlinear programming solvers,
and the Cabri-Geométry software). Here we summarize some useful earlier
approaches to find approximate packings for higher n values.

4.1 Energy Function Minimization

The PECS problem as a mathematical programming problem can be formal-
ized in the following way:

max  min ||s; — s
1<i<j<n

subject to
5, €[0,1]?, 1<i<n.

3=

By virtue of mi — sl = i = s;|I™ th b-
y virtue o 13?2;1'191”81 sl lim (KE:K”HSZ sJ||> , the pro

lem is relaxed as

1
min E I —
si€0.1)%, 1sisn 1<i<j<n l|si — 5j||m
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This objective function can be interpreted as a potential or energy function. A
physical analogon of this approach is to regard the points as electrical charges
(all positive or all negative) which are repulsing eachother. If the minimal
distance between the charged particles increases, the corresponding value of
the potential function decreases. K. J. Nurmela and P. R. J. Ostergard [NO97]
used a similar energy function with large values of m:

> ()

1<i<j<n

Introducing z; = sin(z;) and y; = sin(y;), it transforms into an uncon-
strained optimization problem in variables x;,y;7 where the coordinates of
the centers of the circles fulfill the constraints —1 < z; < 1, -1 < y; < 1.
They published candidate packings up to 50 circles using a combination of
the Goldstein-Armijo backtracking linear search and the Newton method for
the optimization.

4.2 Billiard Simulation

Let us consider a random arrangement of the points. Draw equal circles around
the points without overlapping. Each circle can be considered as a ball with
an initial radius, moving direction, and speed. Start the balls and increase
slowly the common radius of them. The swing of each ball during the process
will be less and less. The algorithm stops when the packing or a substructure
of the packing becomes rigid for even. Using billiard simulation, R. L. Graham
and B. D. Lubachevsky [GL96] reported several approximate packings for up
to 50 circles and for some values beyond.

4.3 A Perturbation Method

D. W. Boll et al. [BDGLO00] used a stochastic algorithm which gave improved
packings for n = 32,37,48, and 50. A brief outline of their method is
1. Step: consider n random points in the unit square and define s = 0.25,
2. Step: for each point
a) perturb the place of the center by s in North, South, East
or West direction,
b) if during the movement the distance between the point and
its nearest neighbour becomes greater, update the new loca-
tion of the point,
3. Step repeat Step 2 while movable points exist,
4. Step s :=s/1.5, if s > 1071° and continue with Step 2.

Using the previous simple algorithm good candidate packings can be found
after some millions of iterations. They have found unpublished approximate
packings up to n = 200.
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4.4 TAMSASS-PECS

The TAMSASS-PECS (Threshold Accepting Modified Single Agent Stochas-
tic Search for Packing Equal Circles in a Square) method is based on the
Threshold Accepting global optimization technique and a modified SASS lo-
cal optimization algorithm. The algorithm starts with a pseudorandom initial
packing with certain set, standard deviation and threshold level. The algo-
rithm tries to improve the current solution by an iterative procedure. At every
step it tries to find a better position of the actual point using a local search.
The stopping criterion is based on the value of the standard deviation, which
is decreased at every iteration. The framework of the method is the Threshold
Accepting approach. It is a close alternative of the Simulated Annealing algo-
rithms. It accepts every move that leads to a new approximate solution not
much worse than the current one and rejects other moves. Using TAMSASS-
PECS L. G. Casado et al. [CGSCO01] reported approximate packings up to
n = 100 and improved some earlier packings.

4.5 A Deterministic Approach Based on LP-relaxation

The PECS problem can be regarded as an all-quadratic optimization problem,
i.e. an optimization problem with not necessarily convex quadratic constraints.
The hardness is due to the large number of constraints. This approach provides
a rectangular subdivision branch-and-bound algorithm. To provide an upper
bound at each node of the branch-and-bound tree, M. Locatelli and U. Raber
used the special structure of the constraints and gave an LP-relaxation [LR02].
They have found candidate packings up to 39 circles proving the optimality
theoretically within a given accuracy, except when n = 36 and 37. Moreover,
a new solution for n = 37 has been detected, but not yet proved to be optimal
within the given tolerance.

5 The MBS Algorithm

We will call our approach MBS (Modified Billiard Simulation). The basic idea
is as follows: Distribute randomly n points inside the unit square and blow
them up as increasing circles in a uniform manner. This can be done by incre-
menting the radii gradually from an initial value, which is a safe lower bound.
In early stages of the process, when the distance between the small circles is
much greater than their size and no collisions occur, there is no need to change
their positions. As the circles grow, we have to deal with collisions between
them, and with those between the circles and the boundaries. The iteration
stops when the improvement is too small or the number of iterations is larger
than a given number.
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The efficiency of the MBS algorithm comes from a significant reduction
of computational costs. The basic idea is as follows: It is not necessary to
calculate and store the distance between two circles if they are too far from
each other and will never meet. For the numerical calculation the program
uses two matrices CCD and CED. Matrix CCD stores the adjacency between
the objects themselves, and the matrix CED holds this between the objects
and the sides of the square. At start, all matrix elements are set to NEAR
which implies that only such pairs of circles will be checked during the cal-
culation. When after thousands of collosions a mutual distance of a pair is
great enough, then the value is set to FAR which means that this contact will
never occur in later iterations. As long as the program runs the cost of the
subroutine which determines the contacts will become less and less.

It is useful to consider not only random arrangements for the initial pack-
ing but hexagonal or other regular lattice packings too. Sometimes the rela-
tionship between the number of the circles and the structure of packing can
predict a good initial configuration. The code and the found packings can be
downloaded from the Packomania web-site: http://www.packomania.com/.

6 Approximate Packings up to n=200

In this section the found packings are reported up to n = 200 using the MBS
algorithm. The packings were found by numerical computations. An impor-
tant part of the investigations is to prvoide a guaranty that the arrangements
with the given structures really (in mathematical sense) exist. A possible way
for proving is based on a system of equations which corresponds to the pack-
ings. The solution of the system of equations (if it exists) prove rigorously the
existence of the packing. To solve the system of equations is easy if we can
guess the solution. Sometimes the structures of the packings help us to guess
the exact coordinates of the circles (e.g. for grid packings). For the present
situation any kind of reliable tools can be used (e.g. the software package
INTBIS) to solve the system of equations.

The numerical value of m, could be incorrect due to rounding, so we
checked the calculations by interval arithmetic computations, too. Based on
these computations the new m,, value is the minimum of the lower bounds of
the mutual interval distances between the points. In a formula it is

my, = min Dy,
1<i<j<n

where

Dij = \/(Xz‘ - X;)? + (Vi - Y;)%,
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Fig. 2. Density plots for up to 200 circles.

and (z;,y;) is the coordinates of the ith point (1 < ¢ < n). Underlining means
the lower bound. The capital letters denote intervals. The accuracy of the
calculations was 107 !4, A fully interval arithmetic based method to validate
the solutions was proposed by M.Cs. Markét [Mar03, Mar04, MCO05].

Fig. 2 shows the density plots of packings for up to 200 circles. It is inter-
esting to observe the local maxima of the graphs. Usually the related packings
are grid or near-grid packings.

Tables 1-3 use bold face for the improved packings compared to other,
previous results, and italic style denotes that there are better known values,
but the coordinates have not been published yet. In 66 cases we have found
similar values to the packings reported in the literature. In 24 cases the results
are worse than Dave Boll et al.’s packings. The number of the improved lower
bounds of the packings is 110. In these tables we summarized the numerical
results.
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Table 1. The numerical results for n = 2 — 36 circles.

n exact r, exact m, approx. my dn
2 3(2-V2) V2 1.4142135624 0.5390120845
31(8-5vV2+4v3-3v6) V6—V2 1.0352761804 0.6096448087
41 1 1.0000000000 0.7853981634
51(-1+V2) $Ma 0.7071067812 0.6737651056
6 45 (—13 4+ 6v13) V13 0.6009252126 0.6639569095
7 5(4-V3) 4-2v3 0.5358983849 0.6693108268
8 1(1+vV2-3) ims 0.5176380902 0.7309638253
95 : 0.5000000000 0.7853981634
10 - - 0.4212795440 0.6900357853
11 (see below) (see below)  0.3982073102 0.7007415778
12 22 (—34+ 15V/34) =34 0.3887301263 0.7384682239
13 - - 0.3660960077 0.7332646949
14 L(6—/3) Z(4—+/3) 0.3489152604 0.7356792555
15 213 27 0.3410813774 0.7620560109
16 & : 0.3333333333 0.7853981634
17 - - 0.3061539853 0.7335502633
18 2 (—13 +12V/13) ime 0.3004626063 0.7546533579
19 - - 0.2895419920 0.7523078967
20 1+5(65 — 8v/2) =(6—+v2) 0.2866116524 0.7794936869
21 — - 0.2718122554 0.7533577029
22 - - 0.2679584016 0.7716801121
23 (=7 —5V2+4V3+3V6) tms 0.2588190451 0.7636310321
24 (21 —5v2+3v3 — 4V6) r3 0.2543330950 0.7749632598
25 15 3 0.2500000000 0.7853981634
26 — - 0.2387347572 0.7584690905
27 =055 (—89 + 40+/89) V89 0.2358495283 0.7723114565

28 -

29 —

30 1505 (
31—

32 -

33 —

34 %mg
35 (see below)
36 15

126 — 51/10)

0.2305354936 0.7718541114
0.2268829007 0.7789062418

%(20 —/10) 0.2245029645 0.7920190265

27”23

2 T24
1

5

0.2175472916 0.7772974787
0.2131341934 0.7757618736
0.2113283841 0.7888523039
0.2056046467 0.7766490643
0.2027636009 0.7812272130
0.2000000000 0.7853981634

m11:i<7473\/§+2\/§+3\/6+(4+\f72\f*\/6> 1+2x/§)

T35 =

772 772

112 — 17v2 + 8V3 — 15V6)
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Table 2. The numerical results for n = 37 — 124 circles.

n

approx. My,

dn

n

approx. My

dn

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80

0.1964291842
0.1953423041
0.1943650631
0.1881755220
0.1860995118
0.1842770721
0.1801911354
0.1786392456
0.1757163141
0.1744593608
0.1712705638
0.1694054293
0.1673860768
0.1665265773
0.1656183743
0.1653862379
0.1626480663
0.1591395163
0.1575557475
0.1561565004
0.1547474069
0.1526925313
0.1515619183
0.1495056540
0.1485441266
0.1474526798
0.1468193136
0.1453677544
0.1446990147
0.1438039660
0.1430855758
0.1429094775
0.1399481818
0.1379067766
0.1366129972
0.1358499279
0.1347098276
0.1339986726
0.1324888136
0.1317300376
0.1308410780
0.1304607726
0.1299652027
0.1296133854

0.7833027206
0.7970425568
0.8111790272
0.7879795188
0.7927238993
0.7986842786
0.7872641664
0.7938428078
0.7894442684
0.7971871319
0.7892938820
0.7911440338
0.7912169895
0.8002721839
0.8086569481
0.8225308420
0.8146424042
0.7994076230
0.8002712972
0.8023517295
0.8039656738
0.7993307243
0.8026893318
0.7971391564
0.8013741245
0.8041134778
0,8109737806
0.8096850385
0.8157400181
0.8193554530
0.8245156558
0.8350205982
0.8167765737
0.8075060206
0.8055769545
0.8089083021
0.8080563922
0.8115167751
0.8061980168
0.8086999566
0.8095910198
0.8158933303
0.8208069227
0.8272178885

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
118
114
115
116
117
118
119
120
121
122
123
124

0.1283368559
0.1274269118
0.1264543531
0.1257627022
0.1253084290
0.1250425340
0.1228265796
0.1220983545
0.1209431296
0.1204480494
0.1198126022
0.1193622666
0.1183841706
0.1180563847
0.1171194312
0.1167579991
0.1163574839
0.1165351364
0.1160181348
0.1145801945
0.1137678096
0.1130265581
0.1124324277
0.1119552283
0.1117113035
0.1111479979
0.1098006344
0.1091766948
0.1087836926
0.1081056069
0.1077672183
0.1072831265
0.1068253164
0.1066053963
0.1059840023
0.1056270416
0.1053200675
0.1051451721
0.1050811970
0.1050454468
0.1034896517
0.1028022705
0.1021525019
0.1015480773

0.8230005836
0.8227146966
0.8215014743
0.8233399269
0.8278015474
0.8343840262
0.8176519577
0.8183334905
0.8137202694
0.8168616061
0.8181738104
0.8216190446
0.8184234765
0.8231316147
0.8201101448
0.8241689679
0.8276442131
0.8335521941
0.8402999370
0.8300157794
0.8276766917
0.8261170420
0.8263480419
0.8280134249
0.8327015567
0.8330195984
0.8226089313
0.8218111889
0.8240438322
0.8222742690
0.8250669455
0.8257591285
0.8267201679
0.8309359404
0.8294126663
0.8315355075
0.8342993237
0.8389032937
0.8450812908
0.8516581650
0.8358581333
0.8328448925
0.8298691626
0.8276525614

13
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Table 3. The numerical results for n = 125 — 200 circles.

n

approx. my

dn

n

approx. My

d’n

125
126
127
128
129

130
131
132
133
134
135
136
137
138
139
140
141
142
143

144
145
146
147

148
149
150
151

152
153
154

155

156

157

158
159
160
161
162

0.1012318916
0.1009062359
0.1005031141
0.1000307339
0.0993263118
0.0988937215
0.0986288136
0.0982888835
0.0979321354
0.0978107863
0.0975218520
0.0973414248
0.0971962814
0.0965684977
0.0963607140
0.0960210816
0.0956706024
0.0954741493
0.0953634647
0.0940769937
0.0937839766
0.0932472250
0.0927445712
0.0924063478
0.0923037281
0.0920498844
0.0916459689
0.0911461597
0.0908262169
0.0906340269
0.0903257963
0.0899733630
0.0898047212
0.0896806181
0.0895956726
0.0894304663
0.0893487418
0.0888450720

0.8296158463
0.8313727312
0.8318980160
0.8312987414
0.8270941821
0.8269119921
0.8292143817
0.8303084177
0.8310764541
0.8354360146
0.8371459461
0.8405056543
0.8443861367
0.8405593584
0.8433304280
0.8439433382
0.8443178921
0.8471212060
0.8512820167
0.8362256095
0.8372440265
0.8342146320
0.8316620732
0.8317384492
0.8356565148
0.8370331951
0.8358530518
0.8329987760
0.8330913575
0.8352857436
0.8354733542
0.8348541653
0.8373181432
0.8405154516
0.8443652173
0.8468018971
0.8506653983
0.8471092098

163
164
165
166
167
168
169
170

171

172
173
174
175
176
177
178
179
180
181

182

183

184

185
186
187
188
189
190
191
192

193

19
195
196

197

198

199
200

0.0885685524
0.0881985853
0.0878493719
0.0875180593
0.0873073510
0.0871824504
0.0863882436
0.0859789843
0.0855822297
0.0853489718
0.0851552703
0.0850212754
0.0847072864
0.0845723809
0.0842258678
0.0839212683
0.0838518837
0.0837056682
0.0833661059
0.0831953206
0.0829799252
0.0828621097
0.0828104531
0.0827835097
0.0827219524
0.0826931189
0.0819385675
0.0815394198
0.0811842378
0.0809200493
0.0805888840
0.0804752001
0.0804115030
0.0800186870
0.0795255746
0.0792782634
0.0790085605
0.0789188489

0.8474713225
0.8461369376
0.8451107320
0.8443458471
0.8456746787
0.8485011578
0.8392971739
0.8369135174
0.8346948524
0.8353646965
0.8367106190
0.8391079841
0.8381936262
0.8405094143
0.8389085248
0.8380279161
0.8414507200
0.8434307533
0.8417768920
0.8432289693
0.8438130489
0.8462006652
0.8498202051
0.8539004243
0.8573124997
0.8613421953
0.8513795535
0.8481916850
0.8457992069
0.8451158427
0.8430949394
0.8452518615
0.8483644354
0.8450185742
0.8396607811
0.8390666657
0.8379950934
0.8404343621
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The figures of the packings are available in PostScript files including the
coordinates of the circles at the mentioned web-site. Fig. 3 represent two nice
approximate packings with free circles.

N Y Y Y Y Y O O I O

190 circles in the unit square 195 circles in the unit square

s 48»48»4@ 1
< > 4“» 4“» <
Sehd
B

< <

»8&@11

éﬁefal o

St

&k l »4"»4"

ﬁ>< ><a><

)
<

() R
S
<‘euau
<
P ‘ﬁ P
St
Sk <A < ‘
o
><ﬁ><“><“
)
G e
SRRy

radi us

= 0.037695999979 density
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0. 848191685066 radi us = 0.037213368627 density = 0.848364435455
421 distance = 0.080411503065 contacts = 514

Fig. 3. Approximate packings for 190 and 195 circles.

Summary

The chapter gives a short overview of some earlier models and computer aided
methods for the packing of equal circles in a square problem. Theoretical lower
bounds are given for every n and based on a modified billiard simulation
algorithm several approximate packings are reported up to n = 200.
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