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• Eye, cornea
– in technical terms, the human eye can 

be considered an imaging sensor with its 
frontal section being responsible for focu-
sing the incoming light rays, while

– its rear section is responsible for conver-
ting the image formed on its internal sur-
face into electrical signals for further pro-
cessing

– the cornea – located in its frontal section – is the primary 
optical structure of the human eye 

– the corneal tissue is transparent
– the human cornea is an optical structure, which generates 

about the 70% of the total refractive power of the eye

– other structures in the light-path – including the crys-
talline lens – contribute less total refractive power
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• The corneal surface
– often modelled as a spherical calotte

– there are more complex models, as well

• Purpose of a cornea topographic examination
– determine and display the shape and the refractive power

of the living cornea

– due to the high refractive power of the cornea, the detailed
topography is of great diagnostic importance 
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The measurement properties of the conventional Placido disk-
based topographers are rather problematic, as no point corres-
pondences are available for the purpose of the geometrical sur-
face reconstruction.
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dom-coloured Placido disk, point correspondences can be 
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Recently, a multi-camera 
surface reconstruction me-
thod was proposed for the 
purpose  of  corneal topogra-
phy. The reconstruction is 
achieved by solving the partial 
differential equations  (PDE’s)
describing the specular reflec-
tions at the corneal surface.
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The measurement patterns used in the multi-camera 
topographer arrangement: a square grid of circular spots with its 
centre marked and a position-coding colour checkerboard.
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• Zernike functions
– introduced by Frits Zernike, a Nobel prize-winner physicist
– to model symmetries and aberrations of optical systems

(e.g., telescopes)

– various schemes of normalization and numbering

– an example of Zernike functions, namely Y2 , is shown 
below; its index-pair is shown as a red dot in the trapezoid-
shaped index-space
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• Zernike functions and coefficients
– nowadays, ophthalmologists are quite familiar with the 

Zernike surfaces that smoothly wave over the unit disk

– they use these surfaces exactly in the way as was intended 
by Zernike, that is, to describe various symmetries and 
aberrations of an optical system

– in this case, of the human eye

– more precisely of the corneal surface – measured with 
some corneal topographer

– of the refractive properties of the eyeball – measured with a 
Shack-Hartmann wavefront-sensor

– the description is given in the form of Zernike cofficients
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• The optical aberrations 
– may cause serious acuity problems, and 

– significant factors to be considered in planning of sight-
correcting operations

– wide range of statistical data concerning the eyes of 
various groups of people is available for the most important 
Zernike coefficients

– difficult – or in certain cases impossible – to take high-
resolution retinal images without compensating the 
aberrations of the eye, however, by compensating them 
high-resolution retinal imaging can be achieved
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• Utilizing discrete orthogonality
– although, the corneal Zernike coefficients have always been 

obtained from measurements at discrete corneal points

– via computations using some discretization of the 
continuous Zernike functions

– the developers of these algorithms could not rely on the 
discrete orthogonality of Zernike functions

– simply because no mesh of points ensuring discrete 
orthogonality was known

– the discrete orthogonality of Zernike functions was a target 
of considerable research for some time 

– only recently was a mesh of points ensuring discrete ortho-
gonality of the Zernike functions found and introduced by
Pap and Schipp
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– the application of the polar-transform to variables x and y
results in

where ρ and θ are the radial and the azimuthal variables,
respectively, over the unit disk, i.e., where

– using ρ and θ, g(x, y) can be transcribed into the following 
form
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– the set of Zernike polynomials of degree less than 2N is 
as follows

– the radial polynomial marked above can be expressed
with Jacobi polynomials Pα,β in the following manner:
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pseudo-colour representation

– the index-space is shown for N = 6, that is, for the set of 
Zernike polynomials of degree less than 12

– an example of Zernike functions, namely Y2 , is shown in a 
pseudo-colour representation

– the index-space is shown for N = 6, that is, for the set of 
Zernike polynomials of degree less than 12

33



1717

Discretization of Zernike functions ― Mesh 
ensuring the discrete orthogonality

of Zernike functions 1/4

Discretization of Zernike functions ― Mesh 
ensuring the discrete orthogonality

of Zernike functions 1/4

– the mesh, or the set of nodal points proven to ensure the 
discrete orthogonality of Zernike functions (over this mesh) 
is as follows:
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1919

Discretization of Zernike functions ― Mesh 
ensuring the discrete orthogonality

of Zernike functions 3/4

Discretization of Zernike functions ― Mesh 
ensuring the discrete orthogonality

of Zernike functions 3/4
– by using the following discrete integral

the discrete orthogonality of the Zernike functions can be 
proven
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– the weights A8 , . . ., A8– the weights A8 , . . ., A8
11 88
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– quadrature formulas are known for some well-researched 

continuous orthogonal polynomials of one variable since 
Gauss's time

– these are expressed in the following way:

– the integration of function f(x) using its quadrature
formula is much more precise than a numerical integration 
using over some arbitrary, e.g., equidistant mesh

– in our case, that is, for the discretization of the radial 
Zernike polynomials the N roots of Legendre-polynomials
PN were used

– though, the formula for deriving the weights is not given 
here, it is exact for every polynomial f of order less than 2N
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– the discrete Zernike coefficients associated with function 
T(ρ, θ) can be calculated with the following discrete 
integral

– if T(ρ, θ) happens to be an arbitrary linear combination of 
Zernike functions of degree less than 2N, then the above 
discrete integrals

– for n's and m's satisfying the inequality 2n + |m| < 2N

– result in the exact Zernike coefficients, i.e., the ones that 
are calculated from the corresponding continuous integrals
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– a program implementation was developed for computing the 
discrete Zernike coefficients

– with the developed program, the precision of the discrete 
orthogonality can be checked for the mesh of points

– the precision of the discrete orthogonality for the above 
index-set and for its corresponding mesh, for the two 
Zernike functions (with the marked indices) the error was 
3.8 ·10-18
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– the input functions were selected from the test surfaces 
for corneal topographers

– two sphero-cylindrical surfaces and their Zernike
coefficients, note that the lower one is more cylindrical
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– the input functions were selected from the test surfaces 
for corneal topographers

– a surface modelling a deformed cornea, called keratoconus,
and its active Zernike cofficients
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and its active Zernike cofficients
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• the discretization used in this paper was proposed by Pap 
and Schipp

• it has relevance to the concrete application field, but could 
also benefit physicists and engineers dealing with optical 
measurements and measurement devices

• however, using this mesh as a measurement-pattern in a 
reflective corneal topographer will not result in a sampling 
that ensures discrete orthogonality of the Zernike
functions as the corneal surfaces does not have a standard 
shape

• to benefit in reflective corneal topography from the 
discretization used in this paper, the optical system –
together with the internal control mechanism – of the 
topographer must ensure that the sampling points on the 
corneal surface are positioned according to the mesh with 
respect to the optical axis of the camera

• the above requirement is best achieved by some adaptive 
optical mechanism and appropriate control
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