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Abstract

It is known that a k-term DNF can have at most 2k − 1 prime implicants and that this bound is

sharp. We determine all k-term DNF having the maximal number of prime implicants. It is shown

that a DNF is maximal if and only if it corresponds to a non-repeating decision tree with literals

assigned to the leaves in a certain way. We also mention some related results and open problems.

1. Introduction

Prime implicants of a Boolean function, or, in other words, maximal subcubes of a subset of

the n-dimensional hypercube, form a basic concept for the theory of Boolean functions and their

applications. Concerning the maximal number of prime implicants, it is known that an n-variable

Boolean function can have at most O( 3n√
n
) prime implicants, and there are n-variable Boolean

functions with Ω(3n

n ) prime implicants (see, e.g., [4]).

∗This material is based upon work supported by the National Science Foundation under Grant Nos. CCR-0100036

and CCF-0431059.
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Figure 1: A non-repeating, unate-leaf decision tree (NUD)

Another case considered is the maximal number of prime implicants of Boolean functions repre-

sented by disjunctive normal forms (DNF) with a bounded number of terms. The result that a

k-term DNF can have at most 2k − 1 prime implicants was discovered independently by Chan-

dra and Markowsky [4], Levin [17] and McMullen and Shearer [19]. For a recent application in

computational learning theory, see Hellerstein and Raghavan [9]. It was shown by Laborde [16],

Levin [17] and McMullen and Shearer [19] that the bound is sharp, i.e., there are k-term DNF with

2k − 1 prime implicants (Chandra and Markowsky gave an example with more than 2k/2 prime

implicants). In view of these results, we call a DNF maximal if it has k terms and 2k − 1 prime

implicants for some k.

In this paper we complete the results of [4, 16, 17, 19] by determining all the maximal disjunctive

normal forms. In order to formulate the description, let us introduce the following definition.

By a tree we mean a rooted binary tree such that for every inner node, the edge leading to its left

(resp., right) child is labeled 0 (resp., 1). For a given k ≥ 2 and r ≥ 0, let us consider the pairwise

distinct variables x1, . . . , xk−1, y1, . . . , yk and z1, . . . , zr. For each of the y and z variables, pick an

orientation, i.e., form the literals yǫi

i (i = 1, . . . , k) and z
δj

j (j = 1, . . . , r), where for ǫi and δj the

value 1 (resp., 0) corresponds, as usual, to an unnegated (resp., negated) variable. A non-repeating,

unate-leaf decision tree (NUD) T over these variables and literals is constructed by taking a tree

with k− 1 inner nodes (and thus with k leaves), assigning to each inner node a distinct x variable,

assigning to each leaf a distinct y literal from those formed above, and, in addition, assigning to

each leaf an arbitrary subset of the z literals formed above. The set of leaves of T is denoted by

L. If we want to mention the number of x variables and y literals used in the construction, then

we refer to T as a k-NUD (the value r is irrelevant). Figure 1 gives an example of a 5-NUD (the

labeling of the edges is omitted for simplicity).

A k-NUD represents a k-term DNF, determined as follows. For a leaf ℓ ∈ L, let the term tℓ be

the conjunction of the x literals along the path leading to ℓ (where traversing an edge labeled 1

corresponds to an unnegated literal, and traversing an edge labeled 0 corresponds to a negated

literal) and of the y and z literals assigned to ℓ. The k-term DNF represented by the k-NUD T is

ϕT =
∨

ℓ∈L

tℓ.
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For example, the 5-term DNF represented by the 5-NUD of Figure 1 is

x1 x2 x4 y1 z1 ∨ x1 x2 x4 y2 z2 z3 ∨ x1 x2 y3 z1 ∨ x1 x3 y4 z1 z4 ∨ x1 x3 y5 z2.

The Boolean function represented by ϕT can also be thought of in the following way: given a truth

assignment a to all the variables, use the values of the x variables to determine a path from the

root to a leaf. The function value is 1 if a makes all the y and z literals assigned to this leaf true,

and it is 0 otherwise. It is clear from the definition that the input vectors accepted at a leaf ℓ

are precisely those vectors which satisfy the term tℓ. The function ϕT is a generalized addressing

function or multiplexer [20, 25]. If a DNF ϕ comes from a NUD T , then T can be reconstructed

from ϕ. The y and z literals are those which are unate in ϕ, i.e., their negation does not occur in ϕ,

while the x variables are those which occur both negated and unnegated. Among the x variables,

the one labeling the root is the only one which occurs in every term (either unnegated or negated).

The left child is the only x variable which occurs in every term containing the negation of the root

variable, etc. In view of this correspondence, with some abuse of terminology, we can talk about a

DNF being a NUD, rather than being equivalent to a NUD. The maximal DNF of [16, 19] (resp.,

[17]) corresponds to a tree which is a single path (resp., a complete binary tree), without any z

literals. A NUD generalizes these examples by allowing for an binary arbitrary tree and for the

additional z literals. Now we can formulate the description of maximal DNF.

Theorem 1. A DNF is maximal if and only if it is equivalent to a NUD.

A closely related class of DNF tautologies is obtained if we consider trees with the same kind of

inner nodes, but without any literals assigned to the leaves. In the case of the example of Figure 1,

the corresponding DNF tautology is

x1 x2 x4 ∨ x1 x2 x4 ∨ x1 x2 ∨ x1 x3 ∨ x1 x3 .

Let us refer to this class of tautologies as nonrepeating decision tree tautologies, or ND ’s. The

main step in the proof of Theorem 1, the ND Lemma (Lemma 11) is to show that for every DNF

tautology the following two properties are equivalent: a) any two of its terms have exactly one

conflicting pair of literals (in other words, the terms are pairwise neighboring), b) it is an ND.

Lemma 11 was proven recently, independently from our work, by Kullmann [14, 15]. Kullmann’s

proof uses the concept of Hermitian defect and other concepts from linear algebra. (The Hermitian

rank of a symmetric matrix is the maximum of the number of positive and the number of negative

eigenvalues of the matrix (Gregory, Watts and Shader [7]), and the Hermitian defect is the difference

of the order of the matrix and its Hermitian rank [14, 15].) Kullmann also uses the characterization

of ND’s as strongly minimal tautologies with the additional property that the number of terms is

one more than the number of variables (Aharoni and Linial [1], Davydov et al. [5], Kullmann [13]),

proved using Hall’s theorem or resolution techniques. (A tautology is strongly minimal if deleting

any term, or adding any literal to a term results in a non-tautology.) Our proof is an elementary

combinatorial argument.
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We note that ND’s come up in other contexts as well, e.g., in connection with the complexity of

analytic tableaux (Urquhart [24], referring to earlier unpublished work of Cook, and Arai et al. [2]).

Another related topic is the decision tree complexity of tautologies (Lovász et al. [18]).

The characterization of ND’s as pairwise neighboring DNF tautologies is a direct consequence of

the following Splitting Lemma (Lemma 10): if the n-dimensional hypercube is partitioned into

subcubes of pairwise distance one, then there is a split of the whole cube into two half cubes such

that every cube of the partition is contained in one of the two halves. We also consider the question

of what can be said about cube partitions without the distance assumption. The goodness of a

split into two half cubes can be measured by the fraction of the total volume of subcubes contained

in one of the two halves (thus in the distance 1 case one always has a split of measure 1). This

measures the fraction of points for which flipping the component corresponding to the two half

cubes gives a point in a different subcube of the partition. Thus the goodness of the split measures

the influence of the variable corresponding to the half cubes, on the partition (for other notions

of influence, see, e.g., Hammer et al. [8] and Kahn et al. [11]). We give general lower and upper

bounds for the best achievable split. The upper bound uses a result of Savický and Sgall [21] on

DNF tautologies with bounded occurrences of the variables.

Recent related work on the combinatorial aspects of the satisfiability problem (see Kullmann [15]

for a recent survey) makes use of the connection with partitioning complete graphs into complete

bipartite graphs (bicliques). This connection, and in particular, the Graham–Pollak theorem [6]

is used by Laborde [16] to show that a maximal k-term DNF contains at least 2 k − 1 variables.

(This result, in turn, follows immediately from Theorem 1 above without using the Graham–Pollak

theorem.) We give an application of the Splitting Lemma (Lemma 10) to show that the family of

recursive partitions into complete bipartite graphs has an extremal property among all partitions

into complete bipartite graphs.

The paper is organized as follows. After some preliminaries in Section 2, the results of [4, 16, 17, 19]

are presented in Section 3. The proof of Theorem 1 is given in Section 4. Section 5 contains the

bounds for the general splitting problem. The connection to partitions of complete graphs into

complete bipartite graphs is discussed briefly in Section 6. Section 7 contains some further open

problems on the number of prime implicants.

2. Preliminaries

A literal is a variable or a negated variable, a term is a conjunction (or a set) of literals, and a

disjunctive normal form (DNF) is a disjunction of terms. The empty conjunction (resp. disjunction)

is identically true (resp. false). It is assumed that terms do not contain both a variable and its

negation. The size of a term t, denoted by |t|, is the number of its literals. The number of conflicts

between two terms is the number of variables occurring unnegated in one term and negated in the
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other. A DNF is disjoint if any two of its terms have at least one conflict. We write ψ ≤ ϕ if every

truth assignment satisfying ψ also satisfies ϕ, and ψ < ϕ if, in addition, there is a truth assignment

a with ψ(a) = 0 and ϕ(a) = 1. The set of vectors in {0, 1}n satisfying ϕ are denoted by T (ϕ). If

t is a term then T (t) is a subcube (or simply cube) in {0, 1}n, with |T (t)| = 2n−|t|. With an abuse

of notation, we usually write cube t instead of cube T (t). (This is an example of switching freely

between syntactic and semantic views of the same object, which occurs frequently in the paper and

is, in general, useful in the study of Boolean functions.) For a literal z, the z half cube of {0, 1}n

is the (n− 1)-dimensional subcube formed by the vectors for which z is true.

A term t is an implicant of a DNF ϕ = t1∨· · ·∨ tk if t ≤ ϕ. In this case we also say that ϕ is a cover

of t, as the union of the cubes T (ti) covers the cube T (t). Note that the variables occurring in t

and ϕ may differ. It may be assumed w.l.o.g. that by a truth assignment we mean an assignment

of truth values to every variable occurring in t or ϕ. The term t is a prime implicant of ϕ, if t is an

implicant of ϕ, but every term obtained by deleting a literal from t is not an implicant of ϕ. The

DNF ϕ is a minimal cover of the term t, if ϕ is a cover of t (i.e., t is an implicant of ϕ), but every

DNF obtained from ϕ by deleting a term is not a cover of t.

Let t be a term, and ϕ = t1 ∨ · · · ∨ tk be a DNF. Every term ti of ϕ can be uniquely written in the

form

ti = t′i ∧ t
′′
i , (1)

where t′i contains all the literals from ti which also occur in t, and t′′i contains the remaining literals

of ti.

Given a DNF ϕ, let V ar(ϕ) (resp., Lit(ϕ)) denote the set of variables (resp., literals) occurring in

any term of ϕ, and let

UL(ϕ) = {z ∈ Lit(ϕ) : z̄ 6∈ Lit(ϕ)} (2)

be the set of unate literals in ϕ, i.e. the set of those literals occurring in ϕ, for which their negation

does not occur in ϕ.

For a ∈ {0, 1}n, the vector a(ℓ) is the vector obtained from a by flipping its component corresponding

to the literal ℓ, e.g., for variables x1, x2, x3, x4 one has 1010(x2) = 1110 and also 1010(x̄2) = 1110.

Given a, b ∈ {0, 1}n, the term corresponding to the smallest subcube containing both a and b is

obtained by including every literal corresponding to components where a and b agree. For example,

the smallest subcube containing both 1010 and 1100 is x1x4. The Hamming distance d(a, b) of

a, b ∈ {0, 1}n is the number of components where a and b differ. The graph of the n-dimensional

cube has {0, 1}n as vertices, and edges (a, b) for every a, b of Hamming distance 1. The distance

of two subcubes C1 and C2 is min{d(a, b) : a ∈ C1, b ∈ C2}. Note that the distance of T (t1) and

T (t2) is equal to the number of conflicts between the terms t1 and t2. A partition of the cube into

subcubes can also be viewed as a disjoint DNF tautology. A partition of a cube into subcubes is

pairwise neighboring, if any two subcubes in the partition have distance 1. A set of terms forms

a pairwise neighboring partition if the corresponding set of cubes forms a pairwise neighboring
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partition.

3. Prime implicants and k-term DNF

In this section we describe the results of [4, 16, 17, 19] on prime implicants of k-term DNF. We

give a complete presentation in order to make the paper self-contained, to clarify what are the

consequences of the separate assumptions of being an implicant, a prime implicant, resp. a minimal

cover, and to give an explicit formulation of results implicit in [16]. We use the notation introduced

above in (1) and (2).

Proposition 2. A term t is an implicant of a DNF ϕ if and only if
∨k

i=1 t
′′
i = 1.

Proof. For the ⇐ direction, let a be a truth assignment such that t(a) = 1. Then t′i(a) = 1 for

every i and t′′i (a) = 1 for some i, so ti(a) = 1 for some i, and thus ϕ(a) = 1.

For the ⇒ direction assume
∨k

i=1 t
′′
i < 1, i.e.,

(

∨k
i=1 t

′′
i

)

(a) = 0 for some a. The literals occurring

in
∨k

i=1 t
′′
i do not occur in t, but it may be the case that the negation of such a literal occurs in

t. Let b be the truth assignment obtained from a by setting all the literals of t to 1. Then every

literal in
∨k

i=1 t
′′
i is either unchanged, or is changed to 0, thus

(

∨k
i=1 t

′′
i

)

(b) = 0, and so ϕ(b) = 0.

But t(b) = 1, contradicting the fact that t is an implicant of ϕ.

Proposition 3. If t is a prime implicant of ϕ then

a) t =
∧k

i=1 t
′
i,

b) every literal of t occurs in ϕ.

Proof. For a), it follows from the definition that t ≤
∧k

i=1 t
′
i. Assume that a variable x in t does

not occur in any ti. Then x does not occur in ϕ at all, though x̄ may occur in some t′′i . But then t

is an implicant of the disjunction of those terms in ϕ which do not contain x̄, and so by deleting x

from t we still get an implicant of ϕ. Part b) follows trivially from a).

Proposition 4. If ϕ is a minimal cover of t then

a) Lit(t) ∩ Lit(ϕ) = UL(ϕ),

b)
∨k

i=1 t
′′
i is a minimal cover of 1.

Proof. For the ⊆ part of a) note that if t contains a non-unate literal z of ϕ, then terms containing

z̄ can be deleted from ϕ and we still get a cover of t, contradicting the minimality of ϕ. For the

⊇ part of a), assume that a unate literal z is not contained in t. Then z̄ t is also an implicant of

ϕ, which is covered by the terms of ϕ not containing z. As these terms do not contain z̄ either,

their disjunction covers t as well, again contradicting the minimality of ϕ. Part b) follows from

Proposition 2.
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Putting together Propositions 2, 3 and 4, we get the following.

Theorem 5. If t is a prime implicant of ϕ and ϕ is a minimal cover of t, then

a) t is the conjunction of the literals in UL(ϕ),

b)
∨k

i=1 t
′′
i is a minimal cover of 1. 2

Theorem 6 ([4, 17, 19]). Every k-term DNF has at most 2k − 1 prime implicants.

Proof. Let ϕ be a k-term DNF and t be a prime implicant of ϕ. Consider a minimal set of terms of

ϕ covering t. Then, by Theorem 5 a), t is uniquely determined by this nonempty set of terms.

The next result gives important structural information on maximal DNF’s.

Theorem 7 ([16]). Let ϕ = t1 ∨ · · · ∨ tk be a k-term DNF with 2k − 1 prime implicants, and let t

be the term formed by the literals in UL(ϕ).

Then

a)
∨k

i=1 t
′′
i is a minimal cover of 1,

b) t′′i and t′′j conflict in exactly one variable, for every 1 ≤ i < j ≤ k.

Proof. By Theorems 5 and 6, every nonempty subset of the terms of ϕ is a minimal covering of

some prime implicant of ϕ. Part a) follows by applying Theorem 5 b) to all the terms.

Let us consider now ψi,j = ti ∨ tj . Again, this is a minimal cover of a prime implicant of ϕ. If ti

and tj do not conflict in any variable, then, by Theorem 5 a), the corresponding prime implicant

is the term formed by all the literals in ti and tj. But that term is not a prime implicant. Indeed,

it must be the case that ti 6= tj , and so ti ∧ tj < ti or ti ∧ tj < tj . If ti and tj conflict in more than

one variable, then we get a contradiction to Theorem 5 b), as the disjunction of two terms with at

least two conflicts cannot be 1.

4. Proof of Theorem 1

In this section we prove Theorem 1: a DNF is maximal if and only if it is equivalent to a NUD.

First we consider the ⇐ direction.

Lemma 8. Every NUD corresponds to a maximal DNF.

Proof. Let T be a k-NUD, and let H be a nonempty subset of its leaves. Define the term

tH = UL({tℓ : ℓ ∈ H}).
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Let a be a truth assignment satisfying tH . It follows by induction on the number of inner nodes

evaluated, that on input a we arrive at a leaf belonging to H, and it follows from the definition of

tH that a satisfies every literal assigned to that leaf. Thus tH is an implicant of ϕT .

Assume that we delete an x literal, say xǫ
i from tH , to get the term t′. As xǫ

i ∈ UL({tℓ : ℓ ∈ H}),

there is a leaf ℓ1 belonging to H below the ǫ-child of the inner node xi, but no leaf below the

(1 − ǫ)-child of xi is in H. Let a be the vector satisfying all the literals in tℓ1 and tH , with every

literal of the form y
ǫj

j not occurring in these terms set to 0. Let b = a(xi). On the input b we arrive

at a leaf ℓ2 below the (1− ǫ)-child of xi. But the y literal assigned to ℓ2 is set to 0 in b, and hence

ϕT (b) = 0. On the other hand, b still satisfies t′. Thus t′ is not an implicant.

Assume now that we delete a y literal, say y
ǫj

j , from tH , to get the term t′. Let ℓ be the leaf

containing y
ǫj

j . It follows from the definition of tH that ℓ ∈ H. Let a be a vector satisfying tℓ and

tH , and let b = a(yj). Then the input b leads to ℓ, but as the literal y
ǫj

j has value 0 for vector b, we

get ϕT (b) = 0. On the other hand, b still satisfies t′. Thus t′ is not an implicant. The case when

we delete a z literal, say z
δj

j , from tH is the same, except now there may be several leaves in H

containing z
δj

j . We can choose any such leaf, and repeat the same argument as for y
ǫj

j . It again

follows that the term obtained after deleting the literal is not an implicant.

Thus the term tH is a prime implicant of ϕT . Terms corresponding to different subsets of L are

different, as each leaf has its unique y literal. Hence ϕT has at least 2k − 1 prime implicants, and

so it is maximal by Theorem 6.

The rest of this section contains the proof of the ⇒ direction of Theorem 1.

Lemma 9. Every maximal DNF is equivalent to a NUD.

Proof. Let ϕ = t1 ∨ · · · ∨ tk be a k-term DNF with 2k − 1 prime implicants. Consider the term

t = UL(ϕ), and the decomposition ti = t′i ∧ t′′i of the terms of ϕ with respect to t, as in (1).

According to Theorem 7, the terms t′′1, . . . , t
′′
k form a pairwise neighboring partition over the non-

unate variables occurring in ϕ, i.e., over {0, 1}s, where s = |V ar(ϕ)\UL(ϕ)|. The following lemma

states a basic combinatorial property of pairwise neighboring partitions.

Lemma 10 (Splitting Lemma). If a set of k ≥ 2 terms forms a pairwise neighboring partition,

then there is a variable that occurs (unnegated or negated) in every term.

Proof. We proceed by induction on the number of variables; the case of one or two variables is

trivial. Let u1, . . . , uk be terms forming a pairwise neighboring partition of {0, 1}s.

Consider the ℓ half cube corresponding to an arbitrary literal ℓ. The restriction of u1, . . . , uk to

the ℓ half cube is formed by deleting terms which contain the literal ℓ. It follows directly from

the definitions that the restriction gives a pairwise neighboring partition of the ℓ half cube. If the

restriction consists of a single cube then ℓ is a term of the original partition. In this case every
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other term of the original partition must contain ℓ and we are done. Hence in what follows we may

assume that the restrictions always contain at least two terms.

Applying the induction hypothesis to the pairwise neighboring partition of the s − 1 dimensional

cube obtained by deleting the component corresponding to ℓ, and deleting the literal ℓ from each

of the remaining terms, it follows that there is a variable Split(ℓ), different from the variable of ℓ,

contained (negated or unnegated) in every term covering a point in the ℓ half cube. As there are

2s literals and s variables, there are literals ℓ1 and ℓ2 such that Split(ℓ1) = Split(ℓ2) = z for some

variable z.

We claim that z occurs (negated or unnegated) in every term of the partition u1, . . . , uk. If ℓ1 is

the negation of ℓ2, then z must occur in every term and we are done; henceforth we can assume

that ℓ1 and ℓ2 have different variables. Assume now for contradiction that z is not in every term

of the partition. Let u be a term of the partition containing neither z nor z, and let a be a point

in u. Then a belongs to neither the ℓ1 subcube, nor the ℓ2 subcube.

Consider the points a(ℓ1) and a(ℓ2), covered respectively by terms uℓ1 and uℓ2 of the partition. Note

that uℓ1 and uℓ2 are different. Indeed, if uℓ1 = uℓ2 = u′ then, as a(ℓ1) and a(ℓ2) differ in both their

ℓ1 and ℓ2 components, u′ contains neither ℓ1 nor ℓ2, and hence it covers a as well. This contradicts

the definition of a.

The points a(ℓ1) and a(ℓ2) differ only in their ℓ1 and ℓ2 components; hence the unique conflict of

the terms uℓ1 and uℓ2 is either ℓ1 or ℓ2. Assume without loss of generality that the conflict is ℓ1.

By definition, both uℓ1 and uℓ2 contain a z literal. As a(ℓ1) and a(ℓ2) do not conflict on z, both uℓ1

and uℓ2 contain the same z literal, say z. Thus so far we have that uℓ1 contains ℓǫ1 and z, and uℓ2

contains ℓ1−ǫ
1 and z, for some ǫ ∈ {0, 1}.

Now consider the point a(ℓ1,z) covered by the term uℓ1,z of the partition. As a(ℓ1,z) is in the ℓ1

subcube, it contains a z literal, which must be z. What is the unique conflict of u (the term

covering a) and uℓ1,z? As a(ℓ1,z) and a conflict only on their ℓ1 and z components, but u contains

no z literal, it must be ℓ1. Thus uℓ1,z contains ℓǫ1 and z. But then uℓ2 and uℓ1,z conflict in at least

two components, a contradiction.

The Splitting Lemma is now used to prove the characterization of nonrepeating decision tree tau-

tologies mentioned in the introduction.

Lemma 11 (ND Lemma [14]). A set of k ≥ 2 terms forms a pairwise neighboring partition if and

only if it is an ND.

Proof. Apply Lemma 10 to the pairwise neighboring partition to get a variable x1 occurring in

every term. It must be the case that x1 occurs both unnegated and negated, as otherwise the cubes

would not cover the whole cube. If the xǫ
1 half cube contains just one cube then we stop at that

branch, otherwise we use the lemma again to get a variable which occurs in every subcube of the
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partition, belonging to the xǫ
1 half cube, etc. In this way we get a tree, where the inner nodes are

labeled with variables and there are k leaves ℓ1, . . . , ℓk corresponding to the cubes in the partition.

(The tree constructed is (the dual of) a special search tree in the sense of [18] for the partition.)

The labels of the inner nodes are different, as the same label appearing twice would mean that

some pair of cubes have distance at least 2. Indeed, if variable xi occurs twice then let xj be the

variable labeling the least common ancestor of the two occurrences in the tree. By construction,

there are terms containing x̄i x̄j, resp. xi xj . Thus the partition is an ND.

Now we can complete the proof of Lemma 9. Lemma 11 gives a nonrepeating decision tree for the

pairwise neighboring terms t′′1, . . . , t
′′
k. We claim that by adding the literals in t′i to the leaf ℓi, we

get a k-NUD for ϕ. Consider any truth assignment a to the variables in ϕ. Evaluating the tree

on a, we arrive at a leaf corresponding to a term t′′i . As ϕ(a) = 1 iff t′i(a) = 1, the tree computes

ϕ correctly. By construction, all the literals in the leaves are unate. Thus, in order to verify the

NUD-ity of the tree, it only remains to show that for every leaf there is a literal which occurs only

in that leaf (that literal will be its y literal). Assume that this is not the case, and every (unate)

literal assigned to leaf ℓi occurs in some other leaf. Let xǫ
j be the last literal on the path leading

to ℓi. Then x1−ǫ
j ∈ UL(ϕ \ {ti}). We claim that UL(ϕ \ {ti}) \ {x

1−ǫ
j } is an implicant of ϕ. Let a

be a truth assignment satisfying every literal in UL(ϕ \ {ti}) \ {x
1−ǫ
j }, and let us evaluate the tree

on a. If we arrive at a leaf other than ℓi, then ϕ(a) = 1 by construction. But ϕ(a) = 1 if we arrive

at ℓi as well, as all unate literals in ℓi occur in other leaves, and thus they must be set to 1 in a.

Thus UL(ϕ \ {ti}) is not a prime implicant of ϕ, contradicting Theorems 5 and 6.

5. The general splitting problem for cube partitions

According to the Splitting Lemma (Lemma 10), for every pairwise neighboring cube partition, the

whole cube can be split into two halves in such a way that every cube of the partition is contained

in one of the halves. In this section we consider the following question: what can be said without

the pairwise neighboring property? Given an arbitrary partition of the whole cube into subcubes

and a split into two halves, let us say that a cube in the partition is good, if it is contained in either

one of the halves. We would like to find a split such that the good cubes contain many points.

Thus we consider the following quantities. Given a cube partition ϕ over the variables x1, . . . , xn

and a variable xj, let

vϕ,j =
∑

{

2−|t| : t ∈ ϕ, xj ∈ t or x̄j ∈ t
}

be the fraction of the volume of good cubes in ϕ with respect to the xj split of the cube, and let

αn = min
ϕ

max
1≤j≤n

vϕ,j ,

where ϕ ranges over all cube partitions, or in other words, over all disjoint DNF tautologies. Note
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that as ϕ is a partition it holds that
∑

t∈ϕ

2−|t| = 1. (3)

Theorem 12.

log n− log log n

n
≤ αn ≤ O

(

n−
1

5

)

.

Proof. Let ϕ = t1 ∨ · · · ∨ tr be a disjoint DNF tautology over the variables x1, . . . , xn. If the term

ti contains xj or x̄j, then ti contributes 2−|ti| to vϕ,j . Thus

n
∑

j=1

vϕ,j =
r

∑

i=1

|ti| · 2
−|ti|,

and there is a variable xj with

vϕ,j ≥
1

n

r
∑

i=1

|ti| · 2
−|ti|.

Let s denote the size of the shortest term in ϕ. As every term has size at least s, it follows from

(3) that

1

n

r
∑

i=1

|ti| · 2
−|ti| ≥

s

n

r
∑

i=1

2−|ti| =
s

n
.

On the other hand, for every variable xj occurring in a shortest term ti it holds that vϕ,j ≥ 2−s.

Thus

αn ≥ min
( s

n
, 2−s

)

. (4)

The lower bound then follows by taking s = log n − log log n, for which the two terms in (4) are

close to each other.

The upper bound follows from a construction of Savický and Sgall [21], providing an upper bound

on the number of variable occurrences in tautological k-DNF formulas (a problem introduced by

Tovey [23] and Kratochv́ıl, Savický and Tuza [12]). They constructed disjoint DNF tautologies over

n = 4ℓ variables, having 23ℓ
terms of size 3ℓ, such that every variable occurs in at most a

(

3

4

)ℓ

fraction of the terms. The bound then follows by a direct calculation.

We note that the upper bound of Savický and Sgall [21] has recently been improved almost optimally

by Hoory and Szeider [10]. The improved constructions do not appear to improve the bound above,

since the DNF constructed are not disjoint.

In view of Theorems 1 and 12 it may be of interest to consider the quantity αd
n, which is defined

as αn, except that ϕ is restricted to cube partitions with pairwise distances bounded by d. In the

construction of [21] the maximal distance grows linearly with n.
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6. Partitions of complete graphs into complete bipartite graphs

Given a set of pairwise disjoint cubes in {0, 1}n, corresponding to terms t1, . . . , tr, one can construct

a covering

G = {G1, . . . , Gn}

of the r-vertex complete graph Kr by complete bipartite graphs, where Gu has an edge connecting

vertices vi and vj if terms ti and tj conflict in the variable xu. If the set of cubes is pairwise

neighboring, then this covering is a partition, as the complete bipartite graphs are edge disjoint.

Conversely, given a covering G = {G1, . . . , Gn} ofKr by complete bipartite graphs, we can construct

a set of pairwise disjoint cubes t1, . . . , tr in {0, 1}n. For every Gu fix arbitrarily one of the sides as

the left side. The term ti contains xu (resp. x̄u), if vertex vi is contained in the left (resp. right)

side of Gu. If G is a partition, then it follows that the ti’s are pairwise neighboring. The cubes thus

constructed do not necessarily form a partition of {0, 1}n (an example is given below).

The Graham–Pollak theorem [6] states that every partition of Kr into complete bipartite graphs

consists of at least r − 1 graphs. A large class of such partitions, which can be called recursive

partitions, is obtained as follows. Take a complete bipartite graph on the whole vertex set. This

‘takes care’ of all edges connecting the two sides. In order to partition the remaining edges (those

having both endpoints in the same side), repeat the same construction, i.e., recursively add similar

partitions of the complete graphs formed by the two sides of this bipartite graph (see, e.g., [3]).

Consider a partition G = {G1, . . . , Gn} of Kr into complete bipartite graphs. Let the degree of

a vertex v with respect to G, denoted by dG(v), be the number of Gi’s containing v, and let the

volume vol(G) of the partition be defined as

vol(G) =
∑

v

2−dG(v).

In view of the translation into a set of pairwise disjoint cubes in {0, 1}n described above, vol(G) ≤ 1

for every G, as dG(vi) = |ti| for every i = 1, . . . , r, and vol(G) = 1 if and only if the cubes

form a partition of {0, 1}n. For example,the partition of K4 into the 3 complete bipartite graphs

({1}, {3, 4}), ({2}, {1, 4}), and ({3}, {2, 4}) (mentioned in [16]) has volume 7
8 . This partition of K4

is not recursive. (It was actually this example which suggested Lemma 10.) As a corollary to the

Splitting Lemma (Lemma 10) one gets the following characterization of recursive partitions. This

characterization is also a direct consequence of Kullmann’s [13, 14, 15] results.

Corollary 13. A partition G is recursive if and only if vol(G) = 1.

Proof. The ⇒ direction follows directly by induction on the number of vertices by considering the

bipartite graph from G which contains all the vertices.

For the ⇐ direction, one only has to note that the set of terms t1, . . . , tr constructed above is

pairwise neighboring, and by the volume condition it is also a partition of the whole cube.
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Applying Lemma 10 we get that there is a variable which occurs (unnegated or negated) in every

term. This means that the corresponding bipartite graph contains all the r vertices. The remaining

partitions of the two sides of this bipartite graph have total volume 2, and thus each side must

have volume 1. The statement then follows by induction.

The corollary shows that among partitions of Kr into complete bipartite graphs, recursive ones

have the largest possible volume. Among the partitions of Kr into r− 1 complete bipartite graphs,

which ones have minimal volume?

7. Other open problems

In this paper we have discussed k-term DNF with the largest number of prime implicants. Similar

results do not appear to be known for shortest prime implicants, i.e., prime implicants containing

the smallest possible number of literals. The k-term DNF

x1x̄2 ∨ x2x̄3 ∨ · · · xk−1x̄k ∨ xkx̄1,

which is false for 0k and 1k, and true everywhere else, has k(k − 1) prime implicants, namely xix̄j

for every i 6= j. These prime implicants are all shortest prime implicants, as the DNF has no prime

implicants consisting of a single literal. How many shortest prime implicants can a k-term DNF

have in general?

Another question concerns the maximal number of prime implicants of a Boolean function which

is true at a given number of points. As noted by Levin [17], every implicant is determined by

the top and bottom of the corresponding subcube, in the componentwise partial ordering of the

hypercube (the top and bottom may also be identical). Thus if a function is true at m points, then

it has O(m2) prime implicants. It is also noted in [17] that the n-variable function which is true for

vectors of weight between n
3 and 2n

3 , has mlog 3−o(1) prime implicants. (This is the function with

the largest known number of prime implicants among n-variable functions.) Thus the maximal

number of prime implicants is bounded by two polynomial functions of m, and the question is to

get sharper bounds.
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