
Revising Threshold Functions

Robert H. Sloan a,1 Balázs Szörényi b,2 György Turán c,b,1

aDepartment of Computer Science, University of Illinois at Chicago, Chicago, IL
60607-7053, USA

bResearch Group on Artificial Intelligence, Hungarian Academy of Sciences and
University of Szeged, Szeged, Hungary-6720

cDepartment of Mathematics, Statistics and Computer Science, University of
Illinois at Chicago, Chicago, IL 60607-7045, USA

Abstract

A revision algorithm is a learning algorithm that identifies the target concept, start-
ing from an initial concept. Such an algorithm is considered efficient if its complexity
(in terms of the resource one is interested in) is polynomial in the syntactic distance
between the initial and the target concept, but only polylogarithmic in the number
of variables in the universe. We give an efficient revision algorithm in the model of
learning with equivalence and membership queries for threshold functions, and some
negative results showing, for instance, that threshold functions cannot be revised
efficiently from either type of query alone. The algorithms work in a general revision
model where both deletion and addition type revision operators are allowed.

1 Introduction

Computationally efficient learnability has been studied from many different
angles in computational learning theory for the last two decades, for example,
in both the PAC and query learning models, and by measuring complexity
in terms of sample size, the number of queries, or running time. Attribute-
efficient learning algorithms are required to be efficient (polynomial) in the

Email addresses: sloan@uic.edu (Robert H. Sloan),
szorenyi@inf.u-szeged.hu (Balázs Szörényi), gyt@uic.edu (György Turán).

URL: www.cs.uic.edu/~sloan (Robert H. Sloan).
1 Research supported in part by by the National Science Foundation under grants
CCR-0100336 and CCF-0431059.
2 Part of this work was done while Szörényi was visiting at University of Illinois at
Chicago.

Preprint submitted to Elsevier Science 13 April 2006

number of relevant variables, and “super-efficient” (polylogarithmic) in the
total number of variables [2, 3]. It is argued that practical and biologically
plausible learning algorithms need to be attribute efficient.

A related notion, efficient revision algorithms, originated in machine learn-
ing [9, 13, 16, 21], and has received some attention in computational learning
theory as well. A revision algorithm is applied in a situation where learning
does not start from scratch, but there is an initial concept available, which
is a reasonable approximation of the target concept. The standard example
is an initial version of an expert system provided by a domain expert. The
efficiency criterion in this case is to be efficient (polynomial) in the distance
from the initial concept to the target (whatever distance means; we will re-
turn to this issue shortly), and to be “super-efficient” (polylogarithmic) in
the total size of the initial formula. Again, it is argued that this is a realis-
tic requirement, as many complex concepts can only be hoped to be learned
efficiently if a reasonably good initial approximation is available. The notion
of distance usually considered is a syntactic one: the number of edit opera-
tions that need to be applied to the initial representation in order to get a
representation of the target. The particular edit operations considered depend
on the concept class. Intuitively, attribute-efficient learning is a special case
of efficient revision, when the initial concept has an empty representation. In
machine learning, the study of revision algorithms is referred to as theory re-
vision; detailed references to the literature are given in Wrobel’s overviews of
theory revision [26, 27] and also in our recent papers [5, 6].

It is a general observation both in practice and in theory that edit operations
that delete something from the initial representation are easier to handle than
those that add something to it. In practice, of course, revisions that add are
just as important as those that delete; there is no reason to believe that small
errors in, say, an expert system, would be one sided.

The theoretical study of revision algorithms was initiated by Mooney [12] in
the PAC framework. We have studied revision algorithms in the model of learn-
ing with equivalence and membership queries [5, 6] and in the mistake-bound
model [19]. Formal definitions for query model learning, that is, learning from
equivalence and membership queries [1], are given in Section 2. For purposes
of this introduction, a membership query asks whether an instance is posi-
tive (i.e., belongs to the target concept) or negative (does not belong to the
target concept), and an equivalence query asks whether a proposed concept
is correct, and a counterexample is returned if the proposed concept is not
correct.

It seems to be an interesting general question whether attribute-efficiently
learnable classes can also be revised efficiently. Our previous work answers this
question negatively. Monotone DNF can be learned by an attribute-efficient

2

learning algorithm [2], but our previous work on revising DNF [6] shows,
among other things, that monotone DNF cannot be revised efficiently. We
did obtain efficient revision algorithms for monotone DNF with a bounded
number of terms when both deletion and addition type revisions are allowed.
However, we also showed that efficient revision of general (or even monotone)
DNF is not possible, even with only deletion type revisions.

Two classes of Boolean functions that seem to be important in practice for
AI applications are Horn sentences, the foundation of rule-based systems, and
threshold functions, the foundation of neural nets. Previously we have given
revision algorithms for Horn sentences if only deletion type revisions are per-
mitted [5], and for certain restricted classes of Horn sentences with both types
of revisions [4]. In this article, we consider threshold functions, and we give an
efficient revision algorithm for threshold functions with both types of revisions.

We have also given revision algorithms (with both types of revisions) for two
other classes that have attribute-efficient learning algorithms: for parity func-
tions in [6] and for projective DNF in [19]. Projective DNF is a class of DNF
introduced by Valiant [23], as a special case of his projective learning model,
and as part of a framework to formulate expressive and biologically plausible
learning models. In biological terms revision may be relevant for learning when
some information is hard-wired from birth; see, e.g., Pinker [14] for recent ar-
guments in favor of hereditary information in the brain.

Valiant showed that projective DNF are attribute-efficiently learnable in the
mistake-bound model, and we extended his result by showing that they are
efficiently revisable. Our algorithm was based on showing that a natural ex-
tension of the Winnow algorithm is in fact an efficient revision algorithm for
disjunctions even in the presence of attribute errors.

Valiant’s related models [24, 25] also involve threshold functions, and as thresh-
old functions are also known to be attribute-efficiently learnable, this raises
the question whether threshold functions can be revised efficiently. Threshold
functions (also called Boolean threshold functions or zero-one threshold func-
tions in the literature) form a much studied concept class in computational
learning theory. Winnow is an attribute-efficient mistake-bounded learning
algorithm [10]. Hegedűs [7] gave Θ(n) upper and lower bounds (n is the to-
tal number of variables) for the number of queries needed to learn threshold
functions in the query model; the algorithm uses only membership queries.

Attribute-efficient proper query learning algorithms are given in Uehara et al.
[22] and Hegedűs and Indyk [8]. Further related results are given in [15, 17, 20].

In this paper we present results for the revision of threshold functions, in
the general revision model allowing both deletions and additions (more pre-
cise definitions are given in Section 2). We use the model of learning with

3

membership and equivalence queries.

Our main result is a revision algorithm for threshold functions using
O(dist(ϕ, ψ) · log n) queries (Theorem 5), where dist is the revision distance,
defined formally in Section 2. In this algorithm the pattern mentioned above
is reversed, and it turns out to be easier to handle additions than deletions.
It is also shown that both query types are necessary for efficient revision, and
that the query complexity of the algorithm is essentially optimal up to order of
magnitude. Another interesting point is that the natural extension of Winnow
mentioned above does not work in this more general context.

Organization of paper Preliminaries are given in Section 2, and the main
revision algorithm for threshold functions, including analysis, in Section 3.
Some lower bounds on the problem are given, and one open problem is pre-
sented in Section 4. Finally an example run of the revision algorithm is given
in the Appendix.

2 Preliminaries

We use standard notions from propositional logic such as variable, literal,
term (or conjunction), clause (or disjunction), etc. The set of variables for
n-variable formulas and functions is Xn = {x1, . . . , xn}. (In this paper, n will
always be the total number of variables.) Instances or vectors are elements
x ∈ {0, 1}n. When convenient we treat x as a subset of [n] = {1, . . . , n} or
Xn, corresponding to the components, resp. the variables, which are set to
true in x. Given a set Y ⊆ [n], we write χY = (α1, . . . , αn) ∈ {0, 1}n for the
characteristic vector of Y . We write x = (x1, . . . , xn) ≤ y = (y1, . . . , yn) if
xi ≤ yi for every i = 1, . . . , n.

An n-variable threshold function THt
U is specified by a set U ⊆ [n] and a

threshold 0 ≤ t ≤ n, such that for a vector x = (x1, . . . , xn) ∈ {0, 1}n it holds
that THt

U(x) = 1 if at least t of the variables with subscripts in U are set to
1 in x; otherwise THt

U(x) = 0. In other words, THt
U(x) = 1 iff

∑n
i=1 αixi ≥ t,

where χU = (α1, . . . , αn). We say that S is a positive (resp., negative) set if
χS is a positive (resp., negative) example of the target threshold function.
(As the number of variables is clear from the context, we do not mention
it in the notation.) Note that for every non-constant threshold function its
set of relevant variables and its threshold are well defined, thus every non-
constant function has a unique representation. The variables with indices in
U (resp., outside of U) are the relevant (resp., irrelevant) variables of THt

U .
As noted in the introduction, functions of this type are also called Boolean
threshold functions and 0-1-threshold functions, in order to distinguish them

4

from the more general kind of threshold functions where the coefficients αi

can be arbitrary real numbers. We simply call them threshold functions, as
we only consider this restricted class.

A set S is maximal negative (or critical) for threshold function THt
U if |S∩U | =

t− 1; and minimal positive for THt
U if |S ∩ U | = t.

We use the standard model of membership and equivalence queries (with coun-
terexamples), denoted by MQ and EQ [1]. The unknown Boolean function to
be learned is called the target concept (in this paper, always a threshold func-
tion that is a revision of a given threshold function). In an equivalence query,
the learning algorithm proposes a hypothesis, a concept h, and the answer
depends on whether h ≡ c, where c is the target concept. If so, the answer
is “correct”, and the learning algorithm has succeeded in its goal of exact
identification of the target concept. Otherwise, the answer is a counterexam-
ple, any instance x such that c(x) 6= h(x). In this paper we consider proper
equivalence queries, meaning that the queried hypotheses must also be taken
from the given concept class—in our case the class of Boolean threshold func-
tions. When the learning algorithm makes a membership query on instance x,
denoted MQ(x), it gets back the value c(x), where c is the target concept.

Given the above, we can state the following proposition which we use implicitly
throughout:

Proposition 1 If S is maximal negative for ψ = THt
U , then for every Z ⊆

Xn\S it holds that Z contains at least one variable in U (i.e., relevant variable
of ψ) iff MQ(χS∪Z) = 1.

2.1 Revision

The revision distance between a representation ϕ of an initial Boolean func-
tion (or concept) and a concept c is defined to be the minimum number of
applications of a specified set of syntactic revision operators to ϕ needed to
obtain a representation of c (from a specified set of representations; in this
paper threshold functions are always represented by specifying the set of rele-
vant variables and the threshold). The revision operators may depend on the
concept class one is interested in. Usually, a revision operator can either be
deletion-type or addition-type.

In the case of threshold functions, deletions mean deleting a relevant vari-
able and additions mean adding a new relevant variable. In the general model
for this class we also allow the modification of the threshold. We consider the
modification of the threshold by any amount to be a single operation (as op-
posed to changing it by one); as we are going to prove upper bounds, this only

5

makes the results stronger. Thus, for example, the revision distance between
ϕ = TH1

{x1,x2,x4} and TH3
{x1,x2,x3,x5} is 4 in the general model.

We use dist(ϕ, ψ) to denote the revision distance from ϕ to ψ whenever the
revision operators are clear from context.

A revision algorithm for a (representation of a) function ϕ has access to mem-
bership and equivalence oracles for an unknown target concept and must re-
turn some representation of the target concept. Our goal is to find revision
algorithms whose query complexity is polynomial in d = dist(ϕ, ψ), but at
most polylogarithmic in n, the number of variables in the universe.

We state only query bounds in this paper; all our revision algorithms run
in polynomial time, given access to the membership and equivalence query
oracles.

3 Revising threshold functions: Algorithm

We present a threshold revision algorithm ReviseThreshold. The overall re-
vision algorithm is given as Algorithm 1, using the procedures described in Al-
gorithms 3 and 4. Throughout this section, let the initial function be ϕ = TH t

U

and the target function be ψ = THθ
R. Algorithm ReviseThreshold has

three main stages. First we identify all the variables that are irrelevant in ϕ
but relevant in ψ (Algorithm FindAdditions). Then we identify all the vari-
ables that are relevant in ϕ but irrelevant in ψ (Algorithm FindDeletions).
Finally, we determine the target threshold. (In our pseudocode this third step
is built into Algorithm FindDeletions as the last iteration, after the set of
relevant variables of the target function is identified.)

A sample run of the algorithm is given in Appendix A. It is broken up in two
subsections, reflecting the above described partitioning of the original task.

Algorithm 1 The procedure ReviseThreshold(ϕ), where ϕ = THt
U .

1: Use 2 MQ’s to determine if target is constant 0 or 1; if so return
2: V := FindAdditions(U)
3: ψ := FindDeletions(U ∪ V)
4: return ψ

Before getting into further details, we need to point out an additional sub-
routine. Our revision algorithm frequently uses a kind of binary search, often
used in learning algorithms involving membership queries, presented as Algo-
rithm 2. The starting points of the binary search are two instances, a negative
instance neg and a positive instance pos such that neg ≤ pos. The algorithm
returns two items: the first is a set of variables that when added to neg make

6

a positive instance; the second is a variable that is maximal negative in the
sense that the first component plus neg becomes a negative instance if that
variable is turned off.

Algorithm 2 BinarySearch(neg,pos).

Require: MQ(neg) = 0 and MQ(pos) = 1 and neg ≤ pos
1: neg0 := neg
2: while neg and pos differ in more than 1 position do
3: Partition pos \ neg into approximately equal-size sets d1 and d2.
4: Put mid := neg with positions in d1 switched to 1
5: if MQ(mid) = 0 then
6: neg := mid
7: else
8: pos := mid
9: end if

10: end while
11: v := the one variable on which pos and neg differ
12: return ((pos \ neg0), v)

3.1 Correctness and analysis

First we analyze algorithm FindAdditions (Algorithm 3), which is respon-
sible for finding all missing relevant variables.

Lemma 2 Let R be the relevant variables of the nonconstant target function.
If Algorithm FindAdditions is called with input U ⊆ Xn, then it returns
R \ U , using O(|R \ U | log n) queries.

PROOF. The algorithm stores the uncertain but potentially relevant vari-
ables in the set Potentials (thus Potentials is initially set to Xn \ U). The
procedure first determines a set Base ⊆ U such that Base is negative, and
Base∪Potentials is positive (unless Potentials contains no relevant variables—
in which case there are no new relevant variables used by ψ, so we quit in Line
8).

Then the search for new relevant variables starts. We repeatedly use
BinarySearch(Base,Base ∪ Potentials) to find one relevant variable, and
then remove this variable from Potentials . After removing a certain number
of relevant variables from Potentials , the instance Base ∪Potentials must be-
come minimal positive. After reaching this point, we do not only remove any
newly found relevant variables from Potentials , but we also add them to the
set Base. From this point on, it holds that |(Base∪Potentials)∩R| = θ. Thus

7

Algorithm 3 The procedure FindAdditions(U)

Require: the target function is not constant
1: Potentials := Xn \ U
2: if MQ(χU) = 0 then
3: Base := U
4: else
5: (Base, x) := BinarySearch(∅, U)
6: Base := Base \ {x}
7: if MQ(χBase∪Potentials) = 0 then
8: return ∅
9: end if

10: end if
11: NewRelevants := ∅
12: repeat
13: (Y, y) := BinarySearch(Base,Base ∪ Potentials)
14: NewRelevants := NewRelevants ∪ {y}
15: Potentials := Potentials \ {y}
16: if MQ(χBase∪Potentials) = 0 then
17: Base := Base ∪ {y}
18: end if
19: until MQ(χBase) = 1
20: return NewRelevants

the indicator that the last relevant variable has been removed from Potentials
is that Base becomes positive (MQ(χBase) = 1).

As BinarySearch always uses at most dlog2 ne membership queries per
call, and one addition requires one call to BinarySearch and at most two
other membership queries are made initially, the stated query complexity fol-
lows. 2

Now we turn to the discussion of procedure FindDeletions (Algorithm 4),
which finds all the irrelevant variables that appear in the initial hypotheses.
The procedure uses a function called MakeEven, presented as Algorithm 5.
MakeEven makes at most two queries; its main task is to move variables
around to ensure needed conditions, mostly parity, on certain sets. A more
detailed prose description of its behavior is given in the proof of Lemma 3.

Lemma 3 If the target function ψ = THθ
R is not constant and if R ⊆ H ⊆

Xn, then if Algorithm FindDeletions is called with input H, it returns ψ,
using O(|H \R| log n) queries.

8

Algorithm 4 The procedure FindDeletions(H)

Require: R ⊆ H (R = relevant variables in target)

1: if (xP := EQ(TH
|H|
H)) = Y ES then

2: return TH
|H|
H

3: end if
4: if (xN := EQ(TH1

H)) = Y ES then
5: return TH1

H

6: end if
7: P := xP ∩H; N := xN ∩H
8: ` := 1;u := |H|
9: while u > `+ 1 do

10: m := d(u+ `)/2e
11: if (x := EQ(THm

H)) = Y ES then
12: return THm

H

13: end if
14: x := x ∩H {Variables not in H are irrelevant}
15: if x is a positive counterexample then
16: P := x and u := m
17: else
18: N := x and ` := m
19: end if
20: end while
21: (P, p) := BinarySearch(∅, P)
22: Base := P ∩N , N ′ := N \Base, P ′ := P \Base
23: while |P ′| > 1 do
24: changedH :=MakeEven(Base,N ′, P ′, p,H) {Uses at most 2 MQs}
25: if changedH then
26: goto Line 1
27: end if
28: Let N0, N1 (resp. P0, P1) be an equal-sized partition of N ′ (resp. P ′)
29: Ask MQ(χBase∪Nj∪Pk

) for j, k = 0, 1
30: Let j and k be indices s.t. MQ(χBase∪Nj∪Pk

) = 0 {such j and k exist}
31: Base := Base ∪ Pk, P

′ := P1−k, N
′ := Nj

32: end while
33: H := H \N ′

34: goto Line 1

PROOF. First consider the case where no variables need to be deleted from
H. If the threshold is either 1 or |H|, this will be found by one of the two
initial equivalence queries to those two threshold functions. If the threshold is
some value in between, then it will be found by a binary search over threshold
values carried out by the first while loop. Then the correct threshold function
is returned at Line 12.

9

Algorithm 5 Function MakeEven(Base,N ′, P ′, p,H)

1: Test := (Base ∪ P ′) \ {p}
{For any i ∈ N ′, MQ(χTest∪{i}) = 1 iff i is relevant}

2: if |P ′| is odd then
3: Choose xa ∈ P ′ arbitrarily and move xa from P ′ to Base
4: Choose xi ∈ N ′ arbitrarily and move xi from N ′ to Base
5: if MQ(χTest∪{i}) 6= 1 then {xi irrelevant}
6: H := H \ {xi}
7: return true {H was modified}
8: end if
9: end if

10: if |N ′| is odd then
11: Choose xi ∈ N ′ arbitrarily and move xi from N ′ to Base
12: if MQ(χTest∪{i}) 6= 1 then {xi irrelevant}
13: H := H \ {xi}
14: return true {H was modified}
15: end if
16: end if
17: return false {H was not modified.}

Otherwise, there are some variables that need to be deleted. In this case, our
short-term goal is to find two sets of variables N and P such that

|N | ≥ |P |, and N is negative and P is positive for THθ
R . (1)

The two initial equivalence queries must have assigned P to be a positive
counterexample to TH1

H and N to be a negative counterexample to TH
|H|
H . In

the binary search over threshold values in the while loop at Lines 9–20, N is
always assigned negative counterexamples from equivalence queries and P is
always assigned positive counterexamples from equivalence queries.

Now we need to argue that at the end of that binary search (i.e., after Line 20),
we will have |N | ≥ |P |. Consider the last time that N is updated. (This could
be either when ` = 1 before the while loop or inside the while loop.) At that
update, we set N to be the variables from the negative counterexample that
are not known to be irrelevant. That is, we set N to be x ∩H, where x was
the counterexample from the equivalence query to THm

H (or to TH1
H if this was

before the while loop). Since we used a negative counterexample it must be
that THm

H(χN) = 1. Thus we know that |N | ≥ m. In the control of the binary
search over threshold values, the lower bound ` now becomes m, and ` is not
updated again. Thus this value of ` is the value of ` after the loop has ended,
and |N | ≥ ` from now on.

Similar conditions hold for P and u, the upper bound in the control of the
binary search. After the last update to P , it must be that |P | < m (since P is

10

a positive counterexample), u is updated to be this m, and u is not updated
again. Thus |P | < u.

When the while loop terminates, u ≤ ` + 1. Since |P | < u ≤ ` + 1, we have
|P | ≤ `. Since |N | ≥ ` , we now have Equation (1).

Now we want to use N and P to construct three sets with what we call the
“key property:”

Key property: A triple of sets of variables (Base, N ′, P ′) satisfies the key
property for (target) threshold function THR

θ if the sets are pairwise disjoint,
and it holds that

• Base ∪N ′ is negative,
• |(Base ∪ P ′) ∩R| = θ (i.e., Base ∪ P ′) is a minimal positive set), and
• |N ′| ≥ |P ′|.

Given N and P satisfying Equation (1), in Line 21 we make make P the set
returned by BinarySearch(∅, P), which makes P a minimal positive set. We
then set Base = N ∩ P , and P ′ = P \ Base and N ′ = N \ Base. The key
property must hold for this triple: N = Base ∪N ′ is negative; P ′ = Base ′ ∪P
is a minimal positive set, and it must be that |N ′| ≥ |P ′|.

The following claim gives two important features of the key property.

Claim 4 a) If (Base,N ′, P ′) satisfies the key property, then N ′ contains an
irrelevant variable and P ′ contains a relevant variable.

b) If (Base,N ′, P ′) satisfies the key property and |P ′| = 1, then every element
of N ′ is irrelevant.

Our overall goal now is to find at least one of the irrelevant variables in N ′

and delete it. From now on we maintain the key property among the three
sets, but in a way that in each iteration the size of N ′ and P ′ gets halved. For
this we split up N ′ (respectively P ′) into two equal-sized disjoint subsets N1

and N2 (resp. P1 and P2). When both |N ′| and |P ′| are even then we can do
this without any problem; otherwise we have to make some adjustments to N ′

and/or to P ′, that will be taken care of by procedure MakeEven, which we
will describe presently.

Assume for now that both |N ′| and |P ′| are even. Let θ′ = θ− |R∩Base|. We
have |R∩(N1∪N2)| < θ′ and |R∩(P1∪P2)| = θ′. Thus for some j, k ∈ {0, 1} we
have |R ∩ (Nj ∪ Pk)| < θ′ (equivalently MQ(χBase∪Nj∪Pk

) = 0). Note that the
sets Base := Base∪ Pk, N

′ := Nj and P ′ := P1−k still have the key property,
but the size of N ′ and P ′ is reduced by half. Thus after at most log n steps
P ′ is reduced to a set consisting of a single (relevant) variable. Thus N ′ is a

11

nonempty set of irrelevant variables (part b) of Claim 4).

Finally, the function MakeEven(Base,N ′, P ′) works as follows. Its job is to
move variables among sets so as to preserve the key property for Base, N ′, and
P ′, while making both N ′ and P ′ have even size. Sometimes instead, however,
it will remove an irrelevant variable from H—in this case it returns true and
its caller restarts with the smaller H.

First MakeEven checks whether |P ′| is odd, and if so, it moves an arbitrary
element xa of P ′ to Base. Note that if xa was relevant, this action might turn
Base ∪N ′ into a positive set; thus the key property might be violated; so an
arbitrary element xi will also be removed from N ′. If xi is irrelevant (which
can be tested using set Test defined at Line 1), MakeEven removes it from
H and immediately returns true, so the overall search can be restarted.

Otherwise (i.e, if xi is relevant) the key property holds for the new triple
(Base,N ′, P ′), and |P ′| is even. Then MakeEven checks if |N ′| is odd, and
if so, an arbitrary xi gets removed from N ′; again we have the same check
whether xi is irrelevant.

If MakeEven returns false (no irrelevant xi was removed from H), then the
resulting triple will also have the key property.

Now we give the complexity analysis.

For each deletion found, we can require first 2 + dlog2 ne equivalence queries
to get the sets N and P , and then one call to BinarySearch to make P a
minimal positive set. We next iterate, shrinking both |P ′| and |N ′| by half in
each iteration, at most dlog2 ne times. In each such iteration we make at most
7 membership queries. Thus (as BinarySearch always uses at most dlog2 ne
membership queries per call) the deletions require at most O(|H \ R| log n)
queries. 2

Now we can state the main result of the section.

Theorem 5 ReviseThreshold is a threshold function revision algorithm
of query complexity O(dist(ϕ, ψ) log n), where ϕ is the initial function and ψ
is the target function.

PROOF. First, two membership queries are used to determine if the target
is either of the two constant Boolean functions. For nonconstant functions,
the complexity and the correctness follow from Lemmas 2 and 3. 2

12

4 Lower bounds and an open problem

In this section, we show that both types of queries are needed for the efficient
revision of threshold functions, and that the query complexity of our algorithm
is essentially optimal up to order of magnitude. The first result shows that
efficient revision is not possible with membership queries, even if we allow a
restricted type of equivalence queries as well, and the second result shows that
efficient revision is not possible with equivalence queries alone.

Theorem 6 Efficient revision of threshold functions is not possible if both
membership and equivalence queries can be used, but the equivalence queries
must always use the threshold value of the initial function (which is guaranteed
to be the threshold of the target as well).

PROOF. Let the initial function be THn−1
{x1,...,xn}.

Let ψi = THn−1
{x1,...,xn}\{xi} for 1 ≤ i ≤ n. Initially the adversary places every ψi

in a set Ψ of possible target concepts.

The adversary answers the learner’s membership query MQ(χU) for some U ⊆
{x1, . . . , xn} as follows:

• “no”, if |U | < n− 1.
• “yes”, if |U | = n or if Ψ = {THn−1

U }
• “no”, if neither of the above applies. Also, set Ψ = Ψ \ {ψi} for i with
{xi} = {x1, . . . , xn} \ U .

The adversary answers the learner’s equivalence query EQ(THn−1
U) for some

U ⊆ {x1, . . . , xn} as follows:

• If |U | < n − 1 (i.e., the hypothesis is the everywhere-false function) then
return vector 1n as a positive counterexample.

• If |U | = n, then for some ψi 6∈ Ψ present the vector that is 0 in position i
and 1 elsewhere as a positive counterexample.

If no ψi was previously removed from Ψ, then present 01n−1 as a positive
counterexample, and remove ψ1 from Ψ.

• If U = {x1, . . . , xn} \ {xi} and |Ψ \ ψi| ≥ 1, then present χU as a negative
counterexample, and remove ψi from the set Ψ.

• If none of the above applies (thus Ψ = {THn−1
U }), return “yes”.

It follows by a standard case analysis that |Ψ| is decreased by at most one
after each query. Thus the learner must make at least n queries, although the
revision distance is 1. 2

13

Theorem 7 Efficient revision of threshold functions is not possible using only
equivalence queries.

PROOF. Set n = 2k. We give an adversary argument with initial function
THk

{x1,...,xn}, where the universe of variables is {x1, . . . , xn}. For k+1 ≤ i ≤ n,

let ψi = THk
{x1,...,xn}\{xi}. The target will be one of the ψi, and the adversary

initializes a set Ψ to be all the ψi.

In response to the learner’s query EQ(TH`
U), answer “no” (except where spec-

ified otherwise below), and

• if ` < k:
· If |U | ≥ ` present χU ′ as a negative counterexample, where U ′ is any

subset of U with cardinality `.
· Otherwise present 1k0k as a positive counterexample.

• If ` > k, present 1k0k as a positive counterexample.
• If ` = k:
· In case U ⊇ {xk+1, . . . , xn}, present 0k1k as a negative counterexample.
· Otherwise, if {x1, . . . , xk} 6⊆ U present 1k0k as a positive counterexample.
· Now it must be that U contains all of {x1, . . . , xk}, and is missing at least

one of {xk+1, . . . , xn}.
The counterexample returned with a “no” answer should be χ{2,...,k}∪{i}

for some “missing” xi.
In particular, if there is a missing xi such that ψi 6∈ Ψ, use that value

of i. If not, and if |Ψ| > 1, then use any i, and also remove ψi from Ψ.
Otherwise, return “yes.”

So the revision algorithm must make at least n queries when the revision
distance is only 1. 2

Now we show that the query bound of algorithm ReviseThreshold cannot
be improved for small values of d (i.e., constant d), and cannot be much
improved in general. We gave a revision algorithm with query complexity
O(d log n); we give here the close lower bound of Ω(d log(n/d)). (We think
that the first one is closer to the real answer)

Proposition 8 There is a threshold function ϕ such that the number of mem-
bership and equivalence queries needed to find a distance d revision of ϕ is
Ω(d log n

d
).

PROOF. The VC-dimension is a lower bound on the number of queries
needed to learn a function in the query model (from both types of queries) [11].

14

Let ϕ be TH1
∅. The result follows from the fact that the VC-dimension of

disjunctions consisting of at most d variables is Ω(d log n
d
) [10]. 2

The following result answers the question that arises naturally whenever one
is learning threshold functions: why not use Winnow? After all it is one of the
most successful tools for learning threshold functions. Furthermore, previously
it has been successfully used for revision (see, e.g., [18, 19]). The answer is
simple and somewhat surprising: under our settings, using Winnow as defined
in [10] would result in an inefficient revision algorithm.

Proposition 9 Winnow is not an efficient revision algorithm for threshold
functions. More precisely, for any weight vector representing the initial thresh-
old function TH1

x1,...,xn
, Winnow can make n mistakes when the target function

is TH2
x1,...,xn

.

PROOF. The statement follows easily, noting that the weight of each relevant
variable is at least as big as the threshold used by Winnow, thus giving Winnow
the negative examples e1 = χ{x1}, . . . , en = χ{xn} one after another, it will
evaluate to 1 for each of them. 2

It would be interesting to consider disjunctions of a bounded number of thresh-
old functions in the revision model. This class is a generalization of monotone
DNF with a bounded number of terms, which can be revised efficiently [6]. It
is also related to the robust logic framework of Valiant [23] mentioned in the
introduction.

Acknowledgements

We thank the referees of this journal article for doing an excellent, very thor-
ough job of reviewing. They significantly improved the quality of the presen-
tation here.

References

[1] D. Angluin. Queries and concept learning. Machine Learning, 2(4):319–342,
Apr. 1988.

15

[2] A. Blum, L. Hellerstein, and N. Littlestone. Learning in the presence of finitely
or infinitely many irrelevant attributes. J. of Comput. Syst. Sci., 50(1):32–40,
1995. Earlier version in 4th COLT, 1991.

[3] N. Bshouty and L. Hellerstein. Attribute-efficient learning in query and mistake-
bound models. J. of Comput. Syst. Sci., 56(3):310–319, 1998.

[4] J. Goldsmith, R. H. Sloan, B. Szörényi, and G. Turán. New revision algorithms.
In Algorithmic Learning Theory, 15th International Conference, ALT 2004,
Padova, Italy, October 2004, Proceedings, volume 3244 of Lecture Notes in
Artificial Intelligence, pages 395–409. Springer, 2004.

[5] J. Goldsmith, R. H. Sloan, B. Szörényi, and G. Turán. Theory revision with
queries: Horn, read-once, and parity formulas. Artificial Intelligence, 156:139–
176, 2004.

[6] J. Goldsmith, R. H. Sloan, and G. Turán. Theory revision with queries: DNF
formulas. Machine Learning, 47(2/3):257–295, 2002.

[7] T. Hegedűs. On training simple neural networks and small-weight neurons. In
Computational Learning Theory: EuroColt ’93, volume New Series Number 53
of The Institute of Mathematics and its Applications Conference Series, pages
69–82, Oxford, 1994. Oxford University Press.

[8] T. Hegedűs and P. Indyk. On learning disjunctions of zero-one threshold
functions with queries. In Algorithmic Learning Theory, 8th International
Workshop, ALT ’97, Sendai, Japan, October 1997, Proceedings, volume 1316 of
Lecture Notes in Artificial Intelligence, pages 446–460. Springer, 1997.

[9] M. Koppel, R. Feldman, and A. M. Segre. Bias-driven revision of logical domain
theories. Journal of Artificial Intelligence Research, 1:159–208, 1994.

[10] N. Littlestone. Learning quickly when irrelevant attributes abound: A new
linear-threshold algorithm. Machine Learning, 2(4):285–318, 1988.

[11] W. Maass and G. Turán. Lower bound methods and separation results for
on-line learning models. Machine Learning, 9:107–145, 1992.

[12] R. J. Mooney. A preliminary PAC analysis of theory revision. In T. Petsche,
editor, Computational Learning Theory and Natural Learning Systems, volume
III: Selecting Good Models, chapter 3, pages 43–53. MIT Press, 1995.

[13] D. Ourston and R. J. Mooney. Theory refinement combining analytical and
empirical methods. Artificial Intelligence, 66:273–309, 1994.

[14] S. Pinker. The Blank Slate: The Modern Denial of Human Nature. Viking
Press, 2002.

[15] L. Pitt and L. G. Valiant. Computational limitations on learning from examples.
J. ACM, 35(4):965–984, 1988.

[16] B. L. Richards and R. J. Mooney. Automated refinement of first-order Horn-
clause domain theories. Machine Learning, 19:95–131, 1995.

16

[17] M. Schmitt. On methods to keep learning away from intractability. In Proc.
International Conference on Artifical Neural Networks (ICANN) ’95, volume 1,
pages 211–216, 1995.

[18] R. H. Sloan and B. Szörényi. Revising projective DNF in the presence of noise.
In Proc. Kalmár Workshop on Logic and Computer Science, pages 143–152,
Szeged, Hungary, Oct. 2003. Dept. of Informatics, University of Szeged. Journal-
length version submitted and under review. Both versions available on-line from
URL http://www.cs.uic.edu/~sloan/papers.html.

[19] R. H. Sloan, B. Szörényi, and G. Turán. Projective DNF formulae and their
revision. In Learning Theory and Kernel Machines, 16th Annual Conference on
Learning Theory and 7th Kernel Workshop, COLT/Kernel 2003, Washington,
DC, USA, August 24-27, 2003, Proceedings, volume 2777 of Lecture Notes in
Artificial Intelligence, pages 625–639. Springer, 2003.

[20] R. H. Sloan and G. Turán. Learning from incomplete boundary queries
using split graphs and hypergraphs. In Computational Learning Theory,
Third European Conference, EuroCOLT ’97, Jerusalem, Israel, March 1997,
Proceedings, number 1208 in Lecture Notes in Artificial Intelligence, pages 38–
50. Springer, 1997.

[21] G. G. Towell and J. W. Shavlik. Extracting refined rules from knowledge-based
neural networks. Machine Learning, 13:71–101, 1993.

[22] R. Uehara, K. Tsuchida, and I. Wegener. Identification of partial disjunction,
parity, and threshold functions. Theoretical Computer Science, 230:131–147,
1999.

[23] L. G. Valiant. Projection learning. Machine Learning, 37(2):115–130, 1999.

[24] L. G. Valiant. A neuroidal architecture for cognitive computation. J. ACM,
47(5):854–882, 2000.

[25] L. G. Valiant. Robust logics. Artificial Intelligence, 117:231–253, 2000.

[26] S. Wrobel. Concept Formation and Knowledge Revision. Kluwer, 1994.

[27] S. Wrobel. First order theory refinement. In L. De Raedt, editor, Advances in
ILP, pages 14–33. IOS Press, Amsterdam, 1995.

A Appendix: A simple example run

To demonstrate the algorithm, we provide an example run. Let the universe
be {xi : i = 1, . . . , 8}, and the initial function ϕ and unknown target function
ψ be

ϕ= TH1
{x1,x2,x4}

ψ= TH4
{x1,x2,x3,x5,x6} .

17

First, in subsection A.1 we determine all the relevant variables that were left
out from {x1, x2, x4}, then in subsection A.2 we further revise our hypotheses
from subsection A.1 by removing those irrelevant variables that appeared in
{x1, x2, x4}.

A.1 Adding the previously unknown relevant variables

Two MQ’s to 00000000 and 11111111 determine that the target function is
nonconstant.

We next determine the necessary additions, that is, the relevant variables from
{x3, x5, x6, x7, x8}, using Procedure FindAdditions. As χ{x1,x2,x4} is nega-
tive, Potentials = {x3, x5, x6, x7, x8} must contain some unknown relevant
variables.

In Lines 12–19 of Procedure FindAdditions, we repeatedly use Binary-
Search from Base = {x1, x2, x4} to Base ∪ Potentials to find one. Inside
BinarySearch ask MQ(11111100), the answer is 1. Ask MQ(11111000), the
answer is 1. Ask MQ(11110000), the answer is 0. The last negative and positive
examples differ by the single variable x5—thus x5 is relevant, and is returned
to FindAdditions, and FindAdditions adds x5 to NewRelevants.

Now exclude the newly found relevant variable x5 from consideration. As
χBase∪{x3,x6,x7,x8} is still positive, we make another similar call to Binary-

Search. Ask MQ(11110100), the answer is 1. Ask MQ(11110000), the answer
is 0. The last positive and negative vectors differ only on x6 —thus x6 is rel-
evant, and is added to NewRelevants. Excluding x6 from consideration too,
we find that χBase∪{x3,x7,x8} is negative. This means that the number of rel-

evant variables in {x1, x2, x4} ∪ {x3, x6, x7, x8} is the same as the unknown
threshold. So, we update Base from {x1, x2, x4} to {x1, x2, x4, x6}, and do
BinarySearch from Base to Base ∪ {x3, x7, x8}. Ask MQ(11110110), the
answer is 1. Ask MQ(11110100), the answer 1. Ask MQ(11010100), the an-
swer is 0—thus x3 is relevant. Testing χ{x1,x2,x3,x4,x6}, we find that it is positive;
thus since the number of relevant variables in {x1, x2, x3, x4, x6, x7, x8} is the
same as the threshold, we know that {x7, x8} contains no relevant variables.

A.2 Deleting the irrelevant variables

Now we know that H = {x1, x2, x3, x4, x5, x6} contains all the relevant vari-
ables; all that left is to get rid of the irrelevant ones (and determine the
threshold).

18

This is done in FindDeletions. Procedure FindDeletions first determines
a “big” positive and a “small” negative set. Suppose that we ask equivalence
queries for THθ

H , for θ = 1, . . . , |H|. Since ψ is not constant, we must find
two θ-values ` and u, and corresponding counterexamples χP and χN , such
that u = ` + 1, P is positive, and N is negative. Then it must also hold that
|P | ≤ u− 1 = ` ≤ |N |; thus N must contain an irrelevant element. In fact, we
determine the above `, u, P and N using binary search on the threshold value
θ.

First, in Lines 1–6, we ask the two extreme cases EQ(TH
|H|
H) and EQ(TH1

H),
getting counterexamples, say, 111110 and 000111. 3 The remainder of this bi-
nary search over threshold values is carried out in Lines 9–20. Ask EQ(TH4

H),
the answer is NO, and suppose we receive the negative counterexample 001111.
Ask EQ(TH5

U), the answer is NO, and suppose we receive the positive coun-
terexample 111010. Now we have u = 5, ` = 4, P = {x1, x2, x3, x5} and
N = {x3, x4, x5, x6}. Because P is already a minimal positive set, it does not
change in the call to BinarySearch at Line 21.

Now, with the help of P , we determine an irrelevant variable of N as follows.
We set their common part to be Base = {x3, x5}. The remaining parts of P
and N , which are P ′ = {x1, x2} and N ′ = {x4, x6} are both even, so the call
to MakeEven makes no changes (and returns false). We cut this remaining
part of P ′ (resp. N ′) in two equal parts: P1 = {x1} and P2 = {x2} (resp.
N1 = {x4} and N2 = {x6}). Asking membership queries for all combinations
Base∪Pi∪Nj, i, j = 1, 2, we find that Base∪P1∪N1 is negative, meanwhile
Base ∪ P1 ∪ P2 is positive. As P2 has cardinality 1, this means that x4 is
irrelevant; remove it from H.

Now we restart, and conduct a binary search on the threshold value again,
with the difference, that now H = {x1, x2, x3, x5, x6}. Ask EQ(TH3

H), the
answer is NO, and suppose we receive the negative counterexample 111000.
Then asking EQ(TH4

H) the answer will be YES: our learning process has come
to a successful end.

3 As x7 and x8 are known to be irrelevant, from here on we shall omit the corre-
sponding bits in the examples.

19

