3. Absztrakt adattipusok

Az adatkezelés szintjei:
1. Probléma szintje.
2. Modell szintje.
3. Absztrakt adattipus szintje.
4. Absztrakt adatszerkezet szintje.
5. Adatszerkezet szintje.
6. Gépi szint.
Absztrakt adattipus: A= (E,M)

1. E: értékhalmaz,
2. M: miveletek halmaza.
"Absztrakt" jelzd jelentése:

i. Nem ismert az adatokat tarol6 adatszerkezet.

ii. Nem ismertek a mlveleteket megvaldsito algoritmusok, a miveletek specifikacidjukkal definialtak.

Alapvet 6 absztrakt adattipusok

3.1. Verem
Ertékhalmaz: Verem= {(ay,...,an) :a € E,i=1,...,n,n> 0}
Mveletek:
V :Veremx: E
{lgaz} Letesi(V) {Vv=(}
{V =V} Megszuntglv) {lgaz}
{V=V} Uresit(V) {V=0}
{V={(a,...,an)} VeremB¢V,x) {V={(as,...,an,X)}
{V={(ay,...,an) An>0} VeremBolV,x) {V = (ai,...,an-1) AX=an}
{V=V} NemUre¢v) {NemUres=(Pre(V)#())}
{V=(a,...,an) An>0} TetejéV,x) {x=an AV =Pre(V)}
{V={(ay,...,an) An>0} Torol(V) {V={(a,...,an-1)}

Még az egyszer(absztrakt adattipusoknak is kiilénb6z8 megvalodsitasa lehet. Mindig azt a megvalositast kell kivalasztani,
amelyik az adott feladat megoldasahoz a legmegfelel6bb. A megvalésitast alapvetéen befolydsolja a megvalésitasra hasznalt
programozési nyelv. Objektum orientélt nyelvek esetén (java, C++, C#) interfész (vagy absztrakt) osztaly hasznalata biztositja azt,
hogy a megvaldsitastdl fiiggetlen algoritmust készithessiink. Pontosabban, csak a LETESIT mUvelet fiigg a megvalositastol. A java
nyelv esetén a Verem adattipus interfész osztalya a kdvetkez6:

public interface Verem<E>{
public void Uresit();
public boolean NemUres();
public void VeremBe (E x);
public E VeremBol ();
public E Teteje();
public void Torol();

Ha VeremL osztaly egy megvalodsitdsa a Verem adattipusnak (interfésznek), és egész szdmokat tartalmaz6 V vermet akarunk
létesiteni, akkor ezt a VeremL osztaly konstruktoranak hivasaval végezhetjik, ahol tipus-paraméterként kell megadni az Integer
tipust (osztalyt).

Megjegyzés. Tipus-paraméter csak referencia tipus lehet, elemi tipus (int, long, float, double, char, boolean) nem. Azonban az
int —— Integer,... tipuskonverzié automatikus. Tehat pl. Verem<Integer> V tipus esetén alkalmazhaté a int x=V.VeremBol();,
V.VeremBe(x); utasitas.

Verem<Integer> V = new VeremL<Integer>();

Verem megvalésitasok:

VeremT: tdmb adatszerkezettel,
VeremL: lanc adatszerkezettel,
VeremK: kombinalt adatszerkezettel.

Példa verem adattipus hasznalatara:
A postfix konverzié megvalositasa veremmel.

private static int Prior(char c){
switch (c){
case ' (': return 0
case '+': return 1
case '-': return 1;
case '*': return 2
case '/': return 2
}
return -1;
}
public static String Postfix (String K) {
Verem<Character> V=new VeremL<Character>();
V.VeremBe (' (");

String Postform="";
char jel, op;

for (int 1i=0; i<K.length(); i++){
jel=K.charAt (i);
if (Character.isLetter (jel)) {
Postform=Postformt+ijel;
telse if (jel=='("){
V.VeremBe (jel);
lelse if (jel=='")"){
op=V.VeremBol () ;
while (op!=’' (") {
Postform=Postform+top;
op=V.VeremBol () ;
}
}else{ //mlveleti jel
while (Prior(V.Teteje()) > Prior(jel)){
op=V.VeremBol () ;
Postform=Postformtop;
}
V.VeremBe (jel);

op=V.VeremBol () ; //a veremben maradt miveleti jelek kiirésa

while (op!=' (") {
Postform=Postformtop;
op=V.VeremBol () ;

}

return Postform;

3.2. Sor

Ertékhalmaz: Sor= {(ay,...,an) ;& €E,i=1,...,n,n> 0}
Mveletek:

{lgaz} Letesi(S) {S=(}
{S=S} MegszuntetS) {lgaz}

{S=S} Uresit(S) {S=()}
{S={(a,...,an)} SorB4Sx) {S={(ai,...,an,X)}
{S={(a1,...,an) An>0} SorBo(Sx) {x=ay AS=(ap,...,an)}
{S=(a1,...,an)} Elemszart5) {Elemszam-n}
{S=(a1,...,an) An>0} Elso(S x) {x=a1 AS=Pre(9)}

{S={(a1,...,an) AN>0} Torol(S) {S=(ay,...,an)}

public interface Sor<E>{
public void Uresit();
public int Elemszam();
public void SorBa(E x);
public E SorBol();
public E Elso();
public void Torol();

}

Sor megvaldsitasok:

SorT: tdmb adatszerkezettel,
SorL: lanc adatszerkezettel,
SorK: kombinalt adatszerkezettel.

3.3. Prioritasi Sor

Ertékhalmaz: PriSor= { S: SC E}, E-n értelmezett a < linearis rendezési relacio.
Miiveletek:
S: PriSor, x: E

{lgaz} Letesi{S<) {S=0}
{S=S} MegszuntdlS) {lgaz
{S=¢S} Uresit(S) {S=0}
{S=S} SorBdSx) {S=Pre(SuU{x}}
{S#0} SorBolSx) {x=min(Pre(S)) APre(S)=SU{x}}
{S={ai,...,an}} ElemszantS) {Elemszam=n}
{S#0} Elso(S x) {x=min(Pre(S)) APre(S) = S}
{S# 0} Torol(S) {S=Pre(S) — {min(Pre(9))}}

public interface PriSor<E extends Comparable<E>>
extends Sor<EkE>{

}

Prioritasi sor megvalositasok:
PriSorT: kupac-tomb adatszerkezettel,

PriSorR: kupac-tdmb adatszerkezettel, a rendezési relacié konstruktor parameéter.

Példa prioritasi sor alkalmazasara.

Probléma: Halmaz k-adik legkisebb elemének kivalasztasa.
Bement:
Kimenet: & € H, amelyre [{x:xe H,x<a}| =Kk,
import java.io.*; import java.util.Scanner;
public class Kivalaszto{
public static int Kivalaszt () {
Scanner stdin new Scanner (System.in);
System.out.println ("Elemek szdma?");
int n=stdin.nextInt(); stdin.nextLine();
System.out.println ("Hanyadik?");
int k=stdin.nextInt (); stdin.nextLine();

if (k>n) return 0;

int x=0;

PriSor<Integer> S = new PriSorT<Integer>(n
for (int i=1; i<=n; 1++){

x=stdin.nextInt ();
S.SorBa(x);
} stdin.close();
for (int i=1; i<=k;
x=S.SorBol () ;
return x;

i++4)

}

public static void main (String[] args) {
int x=new Kivalaszto().Kivalaszt();
System.out.println("A keresett szdm: "+x);

3.4. Lista

Ertékhalmaz: Lista= {(a1,...,a_1)(&,...,an) :aj € E,j =1,
Mveletek:

L,L1,L2:

H={a,...,an}, kulonbozs egész szam, 1 <k < n.

)i

...,n0<i—1<nn>0}

Lista, x: E

{lgaz}

{L=L}

L=1}

{L=L}

L=t}

L=1}

{L={(a1,...,a-1)&,...,an)}
{L=(ag,...,a-1)(@,...,an)}
{L={(ay,...,ai-1)(&,...,an) Al <n}
{L={(ay,...,a_1){&,...,an) Al <n}
{L={(a1,...,8-1)(&,a+41...,8n) Al <n}
{L=(as,...,a-1)(a,...,an)}

{L: <a-l»~~~7aifl><aiaai+lv'“aan>/\i < n}
{L1=(01)(B1),L2= (a2)(B2)}

LetesifL)
Megszuntet.)
Uresit(L)
UresglL)
ElejenL)
VegerfL)
Elejerel)
Vegerél)
TovabifL)

Kiolvas(L, x)
Modosit(L,X)

Bovit(L,x)

Torol(L)

Kapcsol(L1,L2)

{L=00}
{lgaz}
{L=00}
{Urese= (Pre(L) = (){)}
{=Pre(L) =()(as,...,an)}
{Vegen=L = (a1,...,an){)}
{L={((a,...,an)}
{L=(as,...,an){)}
{L={(a1,...,q-1,&)
(@it1,---,an)}
{x=aAL=Prel)}
{L={(a1,...,a8-1)
(X,8j11,...,8n)}
{L=(a,...,a-1)
(X.a,...,an)}
{L=(a,....a- 1>
(@it1,---,an)}
{L1= <0(1><0‘2l31>’|-2 (OB

2)}

public interface Lista<E>{

public
public
public
public
public
public
public
public
public
public
public
public
}

void Uresit ();
boolean Urese();
boolean Elejen();
boolean Vegen();
void Elejere();
void Vegere();
void Tovabb();

E Kiolvas();

void Modosit (E x);
void Bovit (E x);
void Torol();

void Kapcsol (Lista<kE> 12);

Lista megval6sitasok:

ListaL: lanc

adatszerkezettel,

ListaT: tdmb adatszerkezettel.
Példa lista alkalmazasara.

Probléma: Két rendezett lista 6sszeflizése rendezett listava.

Bement:

Kimenet:

L1=(as,...,a-1)(@,...,an), (& < a1, 1 <k<n)
L2 = (by,...,bj_1)(bj,...,bm), (bx <byxi1,1<k<m)
L1=()(c1,...,Cntm), (G < Ci11,1<i<n4+m)
{c1,..,Cnim} ={a,...,an} U{b1,...,bm}

L2=()()

public static void ListaFuz (Lista<Integer> L1,
Ll.Elejere();
L2.Elejere();

int a=

Ll.Kiolvas();

Lista<Integer> L2) {

int b=L2.Kiolvas();
while (!Ll.Vegen() && 'L2.Vegen()) {
if (a<=b){
L1.Tovabb();
if (!Ll.Vegen())
a=L1.Kiolvas();
}elsef{
L2.Tovabb () ;
L1l.Kapcsol (L2);
L1.Tovabb();
if (!L2.Vegen())
b=L2.Kiolvas();
}
}//while
if (!'L2.Vegen()) {
L2.Vegere();
Ll.Kapcsol (L2);

}

A while ciklus végrehajtasanak egy adott pillanataban a ciklusmag elején:
L1={c1,...,C)(&,...,an), a=& és

L2=()(bj,...,bm), b=Dj és

Teljesil, hogy

{cl,...,ck}:{ab...,aj,l}u{bb...,b,-,l}
C1<C<...<C
Ck<a, C<bh

Ez a feltétel ciklusinvarians lesz, tehat az algoritmus helyes.
A Li1sTAFuUz algoritmus futasi idejének elemzése.

Tegyuk fel, hogy minden lista m(ivelet futasi ideje konstans.
Legjobb eset: Tjj(n,m) = ©(min(n,m)).

legrosszabb eset: Tj; (n,m) = ©(n+m).

Atlagos eset: Ta(n,m) = ©(n+m).

(O(n) + 7(mi) Ji)j +0O(m)+ Wll iii)

1 m(m+1) 1 n(n+1)
miy 2 oMt)
T n

> +0O(m) + 5) = 0O(n)+ (M) +O(n) + O(m)

Ta(n,m) =

°
s
+

(©(n) +
(n+m)

ONIEF N NP

A LISTAFUZ csak egész elemtipusu listéakra alkalmazhatd. Lathaté azonban, hogy csak az a<=b utasitas fiigg az elemtipustol. Ez
is csak annyiban, hogy az elemtipuson értelmezve kell legyen a <= lineéris rendezési relacié. A tipus-paraméterezett metédusok
lehet6évé teszik, hogy ilyen esetekben egyetlen kédot irhassunk. A feltétel az, hogy az E elemtipus a Comparable<E> osztaly
leszarmazottja legyen, tehat implementéljs a compareTo metédust.

Az ilyen esetet, amikor megkdveteljik, hogy az elemtipus rendelkezzen meghatéarozott miiveletekkel, tipuskorlatozasnak nevezzik.

public static <E extends Comparable<E> > //tipuskorlétozas
void ListaFuz (Lista<E> L1, Lista<E> L2) {
L1.Elejere();
L2.Elejere();
E a=Ll1.Kiolvas();

E b=L2.Kiolvas();
while (!Ll.Vegen() && 'L2.Vegen()) {
if (a.compareTo(b)<=0){ // a<=b
L1.Tovabb();
if (!Ll.Vegen())
a=L1.Kiolvas();
}elsef{
L2.Tovabb () ;
L1l.Kapcsol (L2);
L1.Tovabb();
if (!L2.Vegen())
b=L2.Kiolvas();
}
}//while
if (!'L2.Vegen()) {
L2.Vegere();
Ll.Kapcsol (L2);

3.5. Kétiranyu lista

Ertékhalmaz: Lista2 = {(ay,...,a_1){&,...,an) :a €E,i=1,...,n,n> 0}
M(veletek: Lista miiveletei + Vissza
L : Lista2

{L=(a,...,&-1)(&,...,an) Ai >0} Visszdl) {L=(aq,...,a_2)
(8i-1,8,@11,..,8n)}

public class Lista2<E> extends Lista<E>{
public void Visszal();

}

Kétiranyu lista (Lista2) megvalositasok
Lista2L: kétirAnya lanc adatszerkezettel.

3.6. Témb

Ertékhalmaz: Tomb= {(as,...,an) & e EU{L},i=1,...,n,n>1}
Miveletek:
T:Tombhx: E,i: Integer

{lgaz} Letesi{T,n) {T=(Ll,...,1)}
{T:<a]_,...,aj,l7ai,aj+1,...,an>/\1§iSn} KiOIVaiT,i,X) {T:Pre(T)/\X:al}
{T=(a1,...,a,...,an) A1<i<n} Modosi(T,i,x) {T={(a1,...,X...,an)}

Megvaldsitas

//Letesit (T, n):
E[] T=new E[n];
//Kiolvas(T,1,x):

x=T[1];
//Modosit (T,1i,x):
T[i]=x;

A tdmb tipus rendelkezik iteratorral, tehat a

for (int 1i=0; i<T.length; i++) M(T[i])
ismétlés helyett irhatjuk az egyszer(

for (E x:T) M(x)

utasitast.

3.7. Sorozat

Ertékhalmaz: Sorozat={(ay,...,an) :a € E,i=1,...,n,n> 0}
Miveletek:
S:Sorozatx: E,i: Integer

{lgaz} Letesi{S) {S=()}
{S=S} MegszuntdtS) {lgaz}
{S=S} Uresit(S) {S=()}

{S=(a1,...,an)} Elemszantt) {Elemszam=n)}
{S=(ay,...,a,...,an) N1 <i<n} KiolvagSi,x) {x=a A S=Pre(S)}
{S={(a1,...,a&,...,an) AL<i<n} Modosit(Si,x) {S=(a1,...,X,...,an)}

{S={(a1,...,&,811,...,an) ANO<i<n} Bovit(Si,x) {S={(ag,...,a&,X&+1,---,8n)}
{S=(a1,...,&-1,8,8+1,...,an) AN1<i<n} Torol(Si) {S={(ai,...,a&-1,8+1,.--,an)}
{S=S} IterKezdSl) {}
{I=1} lterAd(l,x) {}
{I=1} IterVegdl) {}

public interface Sorozat<E> extends Iterable<E>{
public void Uresit();
public int Elemszam();
public E Kiolvas(int 1i);
public void Modosit (int i, E x);
public void Bovit (int i, E x);
public void Torol (int 1i);
public Iterator<E> iterator();

}

Sorozat megval6sitasok
SorozatBKF: binaris keres6fa adatszerkezettel,
SorozatAVL: AVL-kiegyensulyozott binaris keres6fa adatszerkezettel.

3.8. Halmaz

Ertékhalmaz: Halmaz={ H:H C E}
Mveletek:
H:Halmaz x: E, | : Iterator

{lgaz} Letesi({H) {H =0}
{H=H} MegszuntgH) {lgaz}
{H=H} Uresit(H) {H =0}

{H={ay,...,an}} ElemszartH) {Elemszan=n}

{H=H} EleméH,x) {Eleme=xecPre(H)}
{H=H} Bovit(H,x) {H=Pre(H)U{x}}
{H=H} TorolH,x) {H=Pre(H)—{x}}
{H=H} IlterKezdH,I) {}

{I=1} lterAd(l,x) {}

{I=1} IltervVeg€l) {}

public interface Halmaz<E> extends Iterable<E>({

public void Uresit();
public int Elemszam();

public boolean Eleme (E x);

public void Bovit (E x)

public boolean Torol (E x);

public E Keres(E x);

3.9. RHalmaz

Ertékhalmaz: Halmaz= { H : H C E, E-n értelmezett a < linearis rendezési relacid. }

Miveletek: Halmaz miveletek +

H:Halmaz x: E, | : Iterator

{H # 0} Min(H) {=min{x:xeH}}
{H#0} Max(H) {=max{x:xeH}}
{H#0} ElozdH,x) {=maX{y:yeH-—-xAy<x}}
{H#0} KovetdqH,x) {=min{y:yeH —xAx<y}}

public interface RHalmaz<E extends Comparable<E>>
extends Halmaz<E>, Iterable<E>{

}

public E Min();
public E Max();

public E Elozo(E x);
public E Koveto (E x);

A Halmaz adattipus megvalositasai:
HalmazB: bitvektor adatszerkezettel; E=1..n
HalmazT: tomb adatszerkezettel,

HalmazL: lanc adatszerkezettel,

HalmazHL: hasit6tabla (Utkdzésfeloldas lancolassal) adatszerkezettel,
HalmazHN: hasitotabla (litk6zésfeloldas nyilt cimzéssel) adatszerkezettel.
Az RHalmaz adattipus megvalésitasai:

RHalmazT: rendezett tdmb adatszerkezettel,

RHalmazL: rendezett lanc adatszerkezettel,

RHalmazBKF: binaris keres6éfa adatszerkezettel,

RHalmazAVL: AVL-kiegyensulyozott binaris keres6fa adatszerkezettel,
RHalmazPFFa: piros-fekete fa adatszerkezettel.

Forall x in H Do
M(x) ;

Diszkrét ismétléses vezérlés megvaldsitasai iteratorral.
Pascal megvalositas:

IterKezd(H,I);

While Not IterVege(I) Do Begin
IterAd(I,x);
M(x);

End;

java megvalésitas:

Iterator<E> I=H.iterator(); //IterKezd(H,1I)

while (I.hasNext()) { //'IterVege (I)
x=I.next (); //IterAd (I, x)
M(x);

}
vagy kiterjesztett for-ciklussal:

for (E x:H)
M(x);

Példa Halmaz absztrakt adattipus alkalmazasara.

Probléma: Adott sorozat kilonb6z6 elemének kivalasztasa.
Bement: S=(a,...,an) egész szamok.
Kimenet: H = {x:x¢€ S}.

import java.io.*; import java.util.*;
public class HalmazPelda({
public static void main (String[] args) {
Scanner stdin = new Scanner (System.in);
Halmaz<Integer> H=new HalmazL<Integer>();
int x;
System.out.println ("Elemek szdma?");
int n=stdin.nextInt(); stdin.nextLine();
for (int i=1; i<=n; 1++){
x=stdin.nextInt ();
if (!H.Eleme (x))
H.Bovit (x);
}
stdin.close();
Iterator<Integer> it=H.iterator(); //IterKezd(H,it)

while (it.hasNext()) { //!IterVege (it)
x=it.next (); //IterAd(it, x)
System.out.print (x+" ");

}

System.out.println();

for (int e:H) //H elemeinek kiiratésa for ciklussal
System.out.print (e+" ");

10

3.10. Fuggveény (parcialis fuggvény)

Ertékhalmaz:

Fuggveny={F:F CE=K x A (Vke K)(Wx,y € A)((k,x) e FA(K,Y) e F = x=Y)}

Mdveletek:

F : Fuggvenyk: K, x: A

{lgaz} Letesi(F) {F =0} (1)
{F=F} Megszuntdt) {lgaz})
{F=F} Uresit(F) {F =0} ©))
{F=F} EleméF,k) {Eleme=(3xe A)((k,x)eF)} (4)
{F=F} ElemszanftF) {Elemszam-|F|} (5)
{(Hae A)((k,a) e F)} Kiolvas(F,k,x) {x=aAF =PreF)} (6)
{(vae A)((k,a) ¢ F)} KiolvagF,k,x) {F =Pre(F)Ax=Pre(x)} 7)
{(GacA)((ka)eF)} ModositF,kx) {F=Pre(F)—{(ka}U{(kx}} ®)
{(vae A)((k,a) ¢ F)} ModositF,k,x) {F =Pre(F)Ax=Pre(x)} 9)
{(vae A)((k,a) ¢ F)} Bovit(F.k,x) {F=Pre(F)u{(k,x)}} (10)
{GacA)((k,a) e F)} Bovit(F,k,x) {F =Pre(F) Ax=Pre(x)} (11)
{(3acA)((k,a) e F)} Torol(F, k) {F =Pre(F)—{(k,a)}} (12)
{(vae A)((k,a) ¢ F)} Torol(F, k) {F =Pre(F)} (13)
{F=F} IlterKezdF,I) {} (14)
{I=1} lterAd(l,k.x) {} (15)
{I=1I} IterVegél) {} (16)
public interface Fuggveny<K, A>
extends Iterable<KulcsPar<K, A>>{
public int Elemszam();
public void Uresit();
public boolean Eleme (K k);
public void Bovit (K k, A a);
public boolean Torol (K k);
public A Kiolvas (K k);
public void Modosit (K k, A a);
}
public class KulcsPar<K, A > implements Cloneable({
public K kulcs;
public A adat;
public KulcsPar (K k, A a){
kulcs=k; adat=a;
}
public boolean equals(Object x) {
return this.kulcs.equals(((KulcsPar<K,A>)x).kulcs);

}

public int hashCode () {
return this.kulcs.hashCode();

}
}

Forall (k,x) in F Do

M(k,x);

11

KulcsPar<K,A> par;
Iterator<KulcsPar<K,A>> I=F.iterator();
while (I.hasNext()) {

par=I.next ();

M(par.kulcs, par.adat);
}

//IterKezd(F,I)
//!IterVege (I)
//IterAd(I,par)

for (KulcsPar<K,A> par : F)

M(par.kulcs, par.adat);

A Flggvény adattipus megvalositasai:

FuggvenyT: tdmb adatszerkezettel, az értelmezési tartomany (K) tipusa Integer;

public class FuggvenyT<A> implements Fuggveny<Integer, A>.

FuggvenyH: <k,a> parok halmazaként, ekkor konstruktor paraméterként kell megadni, hogy milyen halmaz abrazolast akarunk:

e "Lanc" lanc adatszerkezet

e "Tomb" tdmb adatszerkezet

e "HasitL" hasitotébla lancolassal adatszerkezet

e "HasitN" hasitotabla nyilt cimzéssel adatszerkezet

FuggvenyR: az értelmezési tartomanyon értelmezett lin. rendezés, ekkor konstruktor paraméterként kell megadni, hogy milyen

halmaz abrazolast akarunk:

e "BKF" binaris keres6fa

e "AVLFa" AVL-keres6fa

e "PFFa" piros-fekete keres6fa

3.11. Relacio

Ertékhalmaz;
Relacio= { R: RCE =K x A}
Mdveletek:

R:Relacigk: K,a: A

{lgaz} Letesi(R) {F =0}
{F =F} MegszuntéR) {lgaz}
{F=F} Uresit(R) {F =0}
{F=F} EleméRk,a) {Eleme=((k,a)cR)}
{F=F} ElemszartR) {Elemszam- |R|}
{(k,a) ¢ R)} Bovit(Rk,a) {R=Pre(R)u{(k,a)}}
{(k,a) e R)} Torol(Rk,a) {R=Pre(R)—{(k,a)}}
{R=R)} KTorol(Rk) {R=Pre(R)—{(ka): (ka)ecPreR)}}
{R=R)} ATorol(Rja) {R=Pre(R)—{(k.a):(k,a)cPre(R)}}
{R=R)} KPar(Rk) {{a:(ka)ecPreR)}}
{R=R)} APar(Ra) {{k:(k,a)cPre(R)}}
{R=R} lterKezdR 1) {}
{I=1} IterAd(l,k,a) {}
{I=1} ltervVegdl) {}

12

public interface Relacio<k, A>
extends Iterable<Par<K, A>>{
public int Elemszam();
public void Uresit();
public boolean Eleme(K k, A a);
public void Bovit (K k, A a);
public boolean Torol (K k, A a);
public void KTorol (K k);
public void ATorol (A a);
public Halmaz<A> KPar (K k);
public Halmaz<K> APar (A a);

}

A Relacio adattipus megvalésitasai:

RelacioL: lanc adatszerkezettel,

RelacioBKF: binaris kereséfa adatszerkezettel, mind K, mind A rendezett tipus kell legyen.
RelacioAVL: AVL-fa binaris keres6fa adatszerkezettel, mind K, mind A rendezett tipus kell legyen.

13

