
3. Absztrakt adattípusok

Az adatkezelés szintjei:

1. Probléma szintje.

2. Modell szintje.

3. Absztrakt adattípus szintje.

4. Absztrakt adatszerkezet szintje.

5. Adatszerkezet szintje.

6. Gépi szint.

Absztrakt adattípus: A = (E,M)

1. E: értékhalmaz,

2. M: műveletek halmaza.

"Absztrakt" jelző jelentése:

i. Nem ismert az adatokat tároló adatszerkezet.

ii. Nem ismertek a műveleteket megvalósító algoritmusok, a műveletek specifikációjukkal definiáltak.

Alapvet ő absztrakt adattípusok

3.1. Verem

Értékhalmaz: Verem= {〈a1, . . . ,an〉 : ai ∈ E, i = 1, . . . ,n,n≥ 0}
Műveletek:

V : Verem, x : E

{Igaz} Letesit(V) {V = 〈〉}
{V = V} Megszuntet(V) {Igaz}
{V = V} Uresit(V) {V = 〈〉}

{V = 〈a1, . . . ,an〉} VeremBe(V,x) {V = 〈a1, . . . ,an,x〉}
{V = 〈a1, . . . ,an〉 ∧n > 0} VeremBol(V,x) {V = 〈a1, . . . ,an−1〉 ∧x = an}

{V = V} NemUres(V) {NemUres= (Pre(V) 6= 〈〉)}
{V = 〈a1, . . . ,an〉 ∧n > 0} Tete je(V,x) {x = an ∧V = Pre(V)}
{V = 〈a1, . . . ,an〉 ∧n > 0} Torol(V) {V = 〈a1, . . . ,an−1〉}

Még az egyszerű absztrakt adattípusoknak is különböző megvalósítása lehet. Mindig azt a megvalósítást kell kiválasztani,
amelyik az adott feladat megoldásához a legmegfelelőbb. A megvalósítást alapvetően befolyásolja a megvalósításra használt
programozási nyelv. Objektum orientált nyelvek esetén (java, C++, C#) interfész (vagy absztrakt) osztály használata biztosítja azt,
hogy a megvalósítástól független algoritmust készíthessünk. Pontosabban, csak a LETESIT művelet függ a megvalósítástól. A java
nyelv esetén a Verem adattípus interfész osztálya a következő:

public interface Verem<E>{
public void Uresit();
public boolean NemUres();
public void VeremBe(E x);
public E VeremBol();
public E Teteje();
public void Torol();

}

1

Ha VeremL osztály egy megvalósítása a Verem adattípusnak (interfésznek), és egész számokat tartalmazó V vermet akarunk
létesíteni, akkor ezt a VeremL osztály konstruktorának hívásával végezhetjük, ahol típus-paraméterként kell megadni az Integer
típust (osztályt).
Megjegyzés. Típus-paraméter csak referencia típus lehet, elemi típus (int, long, float, double, char, boolean) nem. Azonban az
int ←→ Integer,... típuskonverzió automatikus. Tehát pl. Verem<Integer> V típus esetén alkalmazható a int x=V.VeremBol();,
V.VeremBe(x); utasítás.

Verem<Integer> V = new VeremL<Integer>();

Verem megvalósítások:
VeremT: tömb adatszerkezettel,
VeremL: lánc adatszerkezettel,
VeremK: kombinált adatszerkezettel.

Példa verem adattípus használatára:
A postfix konverzió megvalósítása veremmel.

private static int Prior(char c){
switch (c){

case ’(’: return 0;
case ’+’: return 1;
case ’-’: return 1;
case ’*’: return 2;
case ’/’: return 2;

}
return -1;

}
public static String Postfix(String K){

Verem<Character> V=new VeremL<Character>();
V.VeremBe(’(’);

String Postform="";
char jel, op;

for (int i=0; i<K.length(); i++){
jel=K.charAt(i);
if (Character.isLetter(jel)){

Postform=Postform+jel;
}else if (jel==’(’){

V.VeremBe(jel);
}else if (jel==’)’){

op=V.VeremBol();
while (op!=’(’) {

Postform=Postform+op;
op=V.VeremBol();

}
}else{ //műveleti jel

while (Prior(V.Teteje()) > Prior(jel)){
op=V.VeremBol();
Postform=Postform+op;

}
V.VeremBe(jel);

}
}

op=V.VeremBol(); //a veremben maradt műveleti jelek kiírása

2

while (op!=’(’) {
Postform=Postform+op;
op=V.VeremBol();

}
return Postform;

}

3.2. Sor

Értékhalmaz: Sor= {〈a1, . . . ,an〉 : ai ∈ E, i = 1, . . . ,n,n≥ 0}
Műveletek:

S: Sor, x : E

{Igaz} Letesit(S) {S= 〈〉}
{S= S} Megszuntet(S) {Igaz}
{S= S} Uresit(S) {S= 〈〉}

{S= 〈a1, . . . ,an〉} SorBa(S,x) {S= 〈a1, . . . ,an,x〉}
{S= 〈a1, . . . ,an〉 ∧n > 0} SorBol(S,x) {x = a1 ∧S= 〈a2, . . . ,an〉}

{S= 〈a1, . . . ,an〉} Elemszam(S) {Elemszam= n}
{S= 〈a1, . . . ,an〉 ∧n > 0} Elso(S,x) {x = a1 ∧S= Pre(S)}
{S= 〈a1, . . . ,an〉 ∧n > 0} Torol(S) {S= 〈a2, . . . ,an〉}

public interface Sor<E>{
public void Uresit();
public int Elemszam();
public void SorBa(E x);
public E SorBol();
public E Elso();
public void Torol();

}

Sor megvalósítások:
SorT: tömb adatszerkezettel,
SorL: lánc adatszerkezettel,
SorK: kombinált adatszerkezettel.

3.3. Prioritási Sor

Értékhalmaz: PriSor= { S: S⊆ E}, E-n értelmezett a ≤ lineáris rendezési reláció.
Műveletek:

S: PriSor, x : E

{Igaz} Letesit(S,≤) {S= /0}
{S= S} Megszuntet(S) {Igaz}
{S= S} Uresit(S) {S= /0}
{S= S} SorBa(S,x) {S= Pre(S)∪{x}}
{S 6= /0} SorBol(S,x) {x = min(Pre(S)) ∧Pre(S) = S∪{x}}

{S= {a1, . . . ,an}} Elemszam(S) {Elemszam= n}
{S 6= /0} Elso(S,x) {x = min(Pre(S)) ∧Pre(S) = S}
{S 6= /0} Torol(S) {S= Pre(S)−{min(Pre(S))}}

3

public interface PriSor<E extends Comparable<E>>
extends Sor<E>{

}

Prioritási sor megvalósítások:
PriSorT: kupac-tömb adatszerkezettel,
PriSorR: kupac-tömb adatszerkezettel, a rendezési reláció konstruktor paraméter.
Példa prioritási sor alkalmazására.

Probléma: Halmaz k-adik legkisebb elemének kiválasztása.
Bement: H = {a1, . . . ,an}, különböző egész szám, 1≤ k≤ n.
Kimenet: ai ∈ H, amelyre |{x : x∈ H,x≤ ai}|= k,

import java.io.*; import java.util.Scanner;
public class Kivalaszto{

public static int Kivalaszt(){
Scanner stdin = new Scanner(System.in);
System.out.println("Elemek száma?");
int n=stdin.nextInt(); stdin.nextLine();
System.out.println("Hanyadik?");
int k=stdin.nextInt(); stdin.nextLine();
if (k>n) return 0;
int x=0;
PriSor<Integer> S = new PriSorT<Integer>(n);
for (int i=1; i<=n; i++){

x=stdin.nextInt();
S.SorBa(x);

} stdin.close();
for (int i=1; i<=k; i++)

x=S.SorBol();
return x;

}
public static void main (String[] args){

int x=new Kivalaszto().Kivalaszt();
System.out.println("A keresett szám: "+x);

}
}

3.4. Lista

Értékhalmaz: Lista= {〈a1, . . . ,ai−1〉〈ai , . . . ,an〉 : a j ∈ E, j = 1, . . . ,n,0≤ i−1≤ n,n≥ 0}
Műveletek:

L,L1,L2 : Lista, x : E

4

{Igaz} Letesit(L) {L = 〈〉〈〉}
{L = L} Megszuntet(L) {Igaz}
{L = L} Uresit(L) {L = 〈〉〈〉}
{L = L} Urese(L) {Urese= (Pre(L) = 〈〉〈〉}
{L = L} Ele jen(L) {= Pre(L) = 〈〉〈a1, . . . ,an〉}
{L = L} Vegen(L) {Vegen= L = 〈a1, . . . ,an〉〈〉}

{L = 〈a1, . . . ,ai−1〉〈ai , . . . ,an〉} Ele jere(L) {L = 〈〉〈a1, . . . ,an〉}
{L = 〈a1, . . . ,ai−1〉〈ai , . . . ,an〉} Vegere(L) {L = 〈a1, . . . ,an〉〈〉}

{L = 〈a1, . . . ,ai−1〉〈ai , . . . ,an〉∧ i ≤ n} Tovabb(L) {L = 〈a1, . . . ,ai−1,ai〉
〈ai+1, . . . ,an〉}

{L = 〈a1, . . . ,ai−1〉〈ai , . . . ,an〉∧ i ≤ n} Kiolvas(L,x) {x = ai ∧L = Pre(L)}
{L = 〈a1, . . . ,ai−1〉〈ai ,ai+1 . . . ,an〉∧ i ≤ n} Modosit(L,x) {L = 〈a1, . . . ,ai−1〉

〈x,ai+1, . . . ,an〉}
{L = 〈a1, . . . ,ai−1〉〈ai , . . . ,an〉} Bovit(L,x) {L = 〈a1, . . . ,ai−1〉

〈x,ai , . . . ,an〉}
{L = 〈a1, . . . ,ai−1〉〈ai ,ai+1, . . . ,an〉∧ i ≤ n} Torol(L) {L = 〈a1, . . . ,ai−1〉

〈ai+1, . . . ,an〉}
{L1 = 〈α1〉〈β1〉,L2 = 〈α2〉〈β2〉} Kapcsol(L1,L2) {L1 = 〈α1〉〈α2β1〉,L2 = 〈〉〈β2〉}

public interface Lista<E>{
public void Uresit();
public boolean Urese();
public boolean Elejen();
public boolean Vegen();
public void Elejere();
public void Vegere();
public void Tovabb();
public E Kiolvas();
public void Modosit(E x);
public void Bovit(E x);
public void Torol();
public void Kapcsol(Lista<E> l2);

}

Lista megvalósítások:
ListaL: lánc adatszerkezettel,
ListaT: tömb adatszerkezettel.
Példa lista alkalmazására.

Probléma: Két rendezett lista összefűzése rendezett listává.
Bement: L1 = 〈a1, . . . ,ai−1〉〈ai , . . . ,an〉, (ak ≤ ak+1, 1≤ k < n)

L2 = 〈b1, . . . ,b j−1〉〈b j , . . . ,bm〉, (bk ≤ bk+1,1≤ k < m)
Kimenet: L1 = 〈〉〈c1, . . . ,cn+m〉, (ci ≤ ci+1,1≤ i < n+m)

{c1, . . . ,cn+m}= {a1, . . . ,an}∪{b1, . . . ,bm}
L2 = 〈〉〈〉

public static void ListaFuz(Lista<Integer> L1, Lista<Integer> L2){
L1.Elejere();
L2.Elejere();
int a=L1.Kiolvas();

5

int b=L2.Kiolvas();
while (!L1.Vegen() && !L2.Vegen()){

if (a<=b){
L1.Tovabb();
if (!L1.Vegen())

a=L1.Kiolvas();
}else{

L2.Tovabb();
L1.Kapcsol(L2);
L1.Tovabb();
if (!L2.Vegen())

b=L2.Kiolvas();
}

}//while
if (!L2.Vegen()){

L2.Vegere();
L1.Kapcsol(L2);

}
}

A while ciklus végrehajtásának egy adott pillanatában a ciklusmag elején:
L1 = 〈c1, . . . ,ck〉〈ai , . . . ,an〉, a = ai és
L2 = 〈〉〈b j , . . . ,bm〉, b = b j és
Teljesül, hogy

{c1, . . . ,ck}= {a1, . . . ,ai−1}∪{b1, . . . ,b j−1}
c1≤ c2≤ . . .≤ ck

ck ≤ ai , ck ≤ b j

Ez a feltétel ciklusinvariáns lesz, tehát az algoritmus helyes.
A L ISTAFUZ algoritmus futási idejének elemzése.
Tegyük fel, hogy minden lista művelet futási ideje konstans.
Legjobb eset: Tl j (n,m) = Θ(min(n,m)).
legrosszabb eset: Tlr (n,m) = Θ(n+m).
Átlagos eset: Ta(n,m) = Θ(n+m).

Ta(n,m) =
1
2
(Θ(n)+

1
(m+1)

m

∑
j=0

j +Θ(m)+
1

n+1

n

∑
i=0

i)

=
1
2
(Θ(n)+

1
(m+1)

m(m+1)
2

+Θ(m)+
1

n+1
n(n+1)

2
)

=
1
2
(Θ(n)+

m
2

+Θ(m)+
n
2
) = Θ(n)+Θ(m)+Θ(n)+Θ(m)

= Θ(n+m)

A LISTAFUZ csak egész elemtípusú listákra alkalmazható. Látható azonban, hogy csak az a<=b utasítás függ az elemtípustól. Ez
is csak annyiban, hogy az elemtípuson értelmezve kell legyen a <= lineáris rendezési reláció. A típus-paraméterezett metódusok
lehetővé teszik, hogy ilyen esetekben egyetlen kódot írhassunk. A feltétel az, hogy az E elemtípus a Comparable<E> osztály
leszármazottja legyen, tehát implementáljs a compareTo metódust.
Az ilyen esetet, amikor megköveteljük, hogy az elemtípus rendelkezzen meghatározott műveletekkel, típuskorlátozásnak nevezzük.

public static <E extends Comparable<E> > //típuskorlátozás
void ListaFuz(Lista<E> L1, Lista<E> L2){
L1.Elejere();
L2.Elejere();
E a=L1.Kiolvas();

6

E b=L2.Kiolvas();
while (!L1.Vegen() && !L2.Vegen()){

if (a.compareTo(b)<=0){ // a<=b
L1.Tovabb();
if (!L1.Vegen())

a=L1.Kiolvas();
}else{

L2.Tovabb();
L1.Kapcsol(L2);
L1.Tovabb();
if (!L2.Vegen())

b=L2.Kiolvas();
}

}//while
if (!L2.Vegen()){

L2.Vegere();
L1.Kapcsol(L2);

}
}

3.5. Kétirányú lista

Értékhalmaz: Lista2 = {〈a1, . . . ,ai−1〉〈ai , . . . ,an〉 : ai ∈ E, i = 1, . . . ,n,n≥ 0}
Műveletek: Lista műveletei + Vissza

L : Lista2

{L = 〈a1, . . . ,ai−1〉〈ai , . . . ,an〉∧ i > 0} Vissza(L) {L = 〈a1, . . . ,ai−2〉
〈ai−1,ai ,ai+1, . . . ,an〉}

public class Lista2<E> extends Lista<E>{
public void Vissza();

}

Kétirányú lista (Lista2) megvalósítások
Lista2L: kétirányú lánc adatszerkezettel.

3.6. Tömb

Értékhalmaz: Tomb= {〈a1, . . . ,an〉 : ai ∈ E∪{⊥}, i = 1, . . . ,n,n≥ 1}
Műveletek:

T : Tomb, x : E, i : Integer

{Igaz} Letesit(T,n) {T = 〈⊥, . . . ,⊥〉}
{T = 〈a1, . . . ,ai−1,ai ,ai+1, . . . ,an〉 ∧1≤ i ≤ n} Kiolvas(T, i,x) {T = Pre(T) ∧x = ai}

{T = 〈a1, . . . ,ai , . . . ,an〉 ∧1≤ i ≤ n} Modosit(T, i,x) {T = 〈a1, . . . ,x, . . . ,an〉}

Megvalósítás

//Letesit(T,n):
E[] T=new E[n];
//Kiolvas(T,i,x):

7

x=T[i];
//Modosit(T,i,x):
T[i]=x;

A tömb típus rendelkezik iterátorral, tehát a

for (int i=0; i<T.length; i++) M(T[i])

ismétlés helyett írhatjuk az egyszerű

for (E x:T) M(x)

utasítást.

3.7. Sorozat

Értékhalmaz: Sorozat= {〈a1, . . . ,an〉 : ai ∈ E, i = 1, . . . ,n,n≥ 0}
Műveletek:

S: Sorozat, x : E, i : Integer

{Igaz} Letesit(S) {S= 〈〉}
{S= S} Megszuntet(S) {Igaz}
{S= S} Uresit(S) {S= 〈〉}

{S= 〈a1, . . . ,an〉} Elemszam(S) {Elemszam= n〉}
{S= 〈a1, . . . ,ai , . . . ,an〉 ∧1≤ i ≤ n} Kiolvas(S, i,x) {x = ai ∧ S= Pre(S)}
{S= 〈a1, . . . ,ai , . . . ,an〉 ∧1≤ i ≤ n} Modosit(S, i,x) {S= 〈a1, . . . ,x, . . . ,an〉}

{S= 〈a1, . . . ,ai ,ai+1, . . . ,an〉 ∧0≤ i ≤ n} Bovit(S, i,x) {S= 〈a1, . . . ,ai ,x,ai+1, . . . ,an〉}
{S= 〈a1, . . . ,ai−1,ai ,ai+1, . . . ,an〉 ∧1≤ i ≤ n} Torol(S, i) {S= 〈a1, . . . ,ai−1,ai+1, . . . ,an〉}

{S= S} IterKezd(S, I) {}
{I = I} IterAd(I ,x) {}
{I = I} IterVege(I) {}

public interface Sorozat<E> extends Iterable<E>{
public void Uresit();
public int Elemszam();
public E Kiolvas(int i);
public void Modosit(int i, E x);
public void Bovit(int i, E x);
public void Torol(int i);
public Iterator<E> iterator();

}

Sorozat megvalósítások
SorozatBKF: bináris keresőfa adatszerkezettel,
SorozatAVL: AVL-kiegyensúlyozott bináris keresőfa adatszerkezettel.

3.8. Halmaz

Értékhalmaz: Halmaz= { H : H ⊆ E}
Műveletek:

H : Halmaz, x : E, I : Iterator

8

{Igaz} Letesit(H) {H = /0}
{H = H} Megszuntet(H) {Igaz}
{H = H} Uresit(H) {H = /0}

{H = {a1, . . . ,an}} Elemszam(H) {Elemszam= n}
{H = H} Eleme(H,x) {Eleme= x∈ Pre(H)}
{H = H} Bovit(H,x) {H = Pre(H)∪{x}}
{H = H} Torol(H,x) {H = Pre(H)−{x}}
{H = H} IterKezd(H, I) {}
{I = I} IterAd(I ,x) {}
{I = I} IterVege(I) {}

public interface Halmaz<E> extends Iterable<E>{
public void Uresit();
public int Elemszam();
public boolean Eleme(E x);
public void Bovit(E x);
public boolean Torol(E x);
public E Keres(E x);

}

3.9. RHalmaz

Értékhalmaz: Halmaz= { H : H ⊆ E, E-n értelmezett a ≤ lineáris rendezési reláció. }
Műveletek: Halmaz műveletek +

H : Halmaz, x : E, I : Iterator

{H 6= /0} Min(H) {= min{x : x∈ H}}
{H 6= /0} Max(H) {= max{x : x∈ H}}
{H 6= /0} Elozo(H,x) {= max{y : y∈ H−x∧y≤ x}}
{H 6= /0} Koveto(H,x) {= min{y : y∈ H−x∧x≤ y}}

public interface RHalmaz<E extends Comparable<E>>
extends Halmaz<E>, Iterable<E>{

public E Min();
public E Max();
public E Elozo(E x);
public E Koveto(E x);

}

A Halmaz adattípus megvalósításai:
HalmazB: bitvektor adatszerkezettel; E=1..n
HalmazT: tömb adatszerkezettel,
HalmazL: lánc adatszerkezettel,
HalmazHL: hasítótábla (ütközésfeloldás láncolással) adatszerkezettel,
HalmazHN: hasítótábla (ütközésfeloldás nyílt címzéssel) adatszerkezettel.
Az RHalmaz adattípus megvalósításai:
RHalmazT: rendezett tömb adatszerkezettel,
RHalmazL: rendezett lánc adatszerkezettel,
RHalmazBKF: bináris keresőfa adatszerkezettel,

9

RHalmazAVL: AVL-kiegyensúlyozott bináris keresőfa adatszerkezettel,
RHalmazPFFa: piros-fekete fa adatszerkezettel.

Forall x in H Do
M(x);

Diszkrét ismétléses vezérlés megvalósításai iterátorral.
Pascal megvalósítás:

IterKezd(H,I);
While Not IterVege(I) Do Begin
IterAd(I,x);
M(x);

End;

java megvalósítás:

Iterator<E> I=H.iterator(); //IterKezd(H,I)
while (I.hasNext()){ //!IterVege(I)

x=I.next(); //IterAd(I,x)
M(x);

}

vagy kiterjesztett for-ciklussal:

for (E x:H)
M(x);

Példa Halmaz absztrakt adattípus alkalmazására.

Probléma: Adott sorozat különböző elemének kiválasztása.
Bement: S= 〈a1, . . . ,an〉 egész számok.
Kimenet: H = {x : x∈ S}.

import java.io.*; import java.util.*;
public class HalmazPelda{

public static void main (String[] args){
Scanner stdin = new Scanner(System.in);
Halmaz<Integer> H=new HalmazL<Integer>();
int x;
System.out.println("Elemek száma?");
int n=stdin.nextInt(); stdin.nextLine();
for (int i=1; i<=n; i++){

x=stdin.nextInt();
if (!H.Eleme(x))

H.Bovit(x);
}
stdin.close();
Iterator<Integer> it=H.iterator(); //IterKezd(H,it)
while (it.hasNext()){ //!IterVege(it)

x=it.next(); //IterAd(it,x)
System.out.print(x+" ");

}
System.out.println();
for (int e:H) //H elemeinek kiíratása for ciklussal

System.out.print(e+" ");
}

}

10

3.10. Függvény (parciális függvény)
Értékhalmaz:
Fuggveny= { F : F ⊆ E = K×A,(∀k∈ K)(∀x,y∈ A)((k,x) ∈ F ∧ (k,y) ∈ F ⇒ x = y)}
Műveletek:

F : Fuggveny, k : K, x : A

{Igaz} Letesit(F) {F = /0} (1)

{F = F} Megszuntet(F) {Igaz} (2)

{F = F} Uresit(F) {F = /0} (3)

{F = F} Eleme(F,k) {Eleme= (∃x∈ A)((k,x) ∈ F)} (4)

{F = F} Elemszam(F) {Elemszam= |F |} (5)

{(∃a∈ A)((k,a) ∈ F)} Kiolvas(F,k,x) {x = a∧F = Pre(F)} (6)

{(∀a∈ A)((k,a) /∈ F)} Kiolvas(F,k,x) {F = Pre(F)∧x = Pre(x)} (7)

{(∃a∈ A)((k,a) ∈ F)} Modosit(F,k,x) {F = Pre(F)−{(k,a)}∪{(k,x)}} (8)

{(∀a∈ A)((k,a) /∈ F)} Modosit(F,k,x) {F = Pre(F)∧x = Pre(x)} (9)

{(∀a∈ A)((k,a) /∈ F)} Bovit(F,k,x) {F = Pre(F)∪{(k,x)}} (10)

{(∃a∈ A)((k,a) ∈ F)} Bovit(F,k,x) {F = Pre(F)∧x = Pre(x)} (11)

{(∃a∈ A)((k,a) ∈ F)} Torol(F,k) {F = Pre(F)−{(k,a)}} (12)

{(∀a∈ A)((k,a) /∈ F)} Torol(F,k) {F = Pre(F)} (13)

{F = F} IterKezd(F, I) {} (14)

{I = I} IterAd(I ,k,x) {} (15)

{I = I} IterVege(I) {} (16)

public interface Fuggveny<K, A>
extends Iterable<KulcsPar<K, A>>{
public int Elemszam();
public void Uresit();
public boolean Eleme(K k);
public void Bovit(K k, A a);
public boolean Torol(K k);
public A Kiolvas(K k);
public void Modosit(K k, A a);

}

public class KulcsPar<K, A > implements Cloneable{
public K kulcs;
public A adat;
public KulcsPar(K k, A a){

kulcs=k; adat=a;
}
public boolean equals(Object x){

return this.kulcs.equals(((KulcsPar<K,A>)x).kulcs);
}
public int hashCode(){

return this.kulcs.hashCode();
}

}

Forall (k,x) in F Do
M(k,x);

≡

11

KulcsPar<K,A> par;
Iterator<KulcsPar<K,A>> I=F.iterator(); //IterKezd(F,I)
while (I.hasNext()){ //!IterVege(I)

par=I.next(); //IterAd(I,par)
M(par.kulcs, par.adat);

}

for (KulcsPar<K,A> par : F)
M(par.kulcs, par.adat);

A Függvény adattípus megvalósításai:
FuggvenyT: tömb adatszerkezettel, az értelmezési tartomány (K) típusa Integer;
public class FuggvenyT<A> implements Fuggveny<Integer, A>.
FuggvenyH: <k,a> párok halmazaként, ekkor konstruktor paraméterként kell megadni, hogy milyen halmaz ábrázolást akarunk:

• "Lanc" lánc adatszerkezet

• "Tomb" tömb adatszerkezet

• "HasitL" hasítótábla láncolással adatszerkezet

• "HasitN" hasítótábla nyílt címzéssel adatszerkezet

FuggvenyR: az értelmezési tartományon értelmezett lin. rendezés, ekkor konstruktor paraméterként kell megadni, hogy milyen
halmaz ábrázolást akarunk:

• "BKF" bináris keresőfa

• "AVLFa" AVL-keresőfa

• "PFFa" piros-fekete keresőfa

3.11. Reláció
Értékhalmaz:
Relacio= { R : R⊆ E = K×A}
Műveletek:

R : Relacio, k : K, a : A

{Igaz} Letesit(R) {F = /0}
{F = F} Megszuntet(R) {Igaz}
{F = F} Uresit(R) {F = /0}
{F = F} Eleme(R,k,a) {Eleme= ((k,a) ∈ R)}
{F = F} Elemszam(R) {Elemszam= |R|}

{(k,a) /∈ R)} Bovit(R,k,a) {R= Pre(R)∪{(k,a)}}
{(k,a) ∈ R)} Torol(R,k,a) {R= Pre(R)−{(k,a)}}
{R= R)} KTorol(R,k) {R= Pre(R)−{(k,a) : (k,a) ∈ Pre(R)}}
{R= R)} ATorol(R,a) {R= Pre(R)−{(k,a) : (k,a) ∈ Pre(R)}}
{R= R)} KPar(R,k) {{a : (k,a) ∈ Pre(R)}}
{R= R)} APar(R,a) {{k : (k,a) ∈ Pre(R)}}
{R= R} IterKezd(R, I) {}
{I = I} IterAd(I ,k,a) {}
{I = I} IterVege(I) {}

12

public interface Relacio<K, A>
extends Iterable<Par<K, A>>{
public int Elemszam();
public void Uresit();
public boolean Eleme(K k, A a);
public void Bovit(K k, A a);
public boolean Torol(K k, A a);
public void KTorol(K k);
public void ATorol(A a);
public Halmaz<A> KPar(K k);
public Halmaz<K> APar(A a);

}

A Relacio adattípus megvalósításai:
RelacioL: lánc adatszerkezettel,
RelacioBKF: bináris keresőfa adatszerkezettel, mind K, mind A rendezett típus kell legyen.
RelacioAVL: AVL-fa bináris keresőfa adatszerkezettel, mind K, mind A rendezett típus kell legyen.

13

