
16. Absztrakt adattípusok megvalósításai

Az adatkezelés szintjei:

1. Probléma szintje.

2. Modell szintje.

3. Absztrakt adattípus szintje.

4. Absztrakt adatszerkezet szintje.

5. Adatszerkezet szintje.

6. Gépi szint.

Absztrakt adattípus: A = (E,M)

1. E: értékhalmaz,

2. M: műveletek halmaza.

"Absztrakt" jelző jelentése:

i. Nem ismert az adatokat tároló adatszerkezet.

ii. Nem ismertek a műveleteket megvalósító algoritmusok, a műveletek specifikációjukkal definiáltak.

Alapvető absztrakt adattípusok

16.1. Verem

Értékhalmaz: Verem= {〈a1, . . . ,an〉 : ai ∈ E}
Műveletek:

V : Verem, x : E

{Igaz} Letesit(V) {V = 〈〉}
{V = V} Megszuntet(V) {Hamis}
{V = V} Uresit(V) {V = 〈〉}

{V = 〈a1, . . . ,an〉} VeremBe(V,x) {V = 〈a1, . . . ,an,x〉}
{V = 〈a1, . . . ,an〉 ∧n > 0} VeremBol(V,x) {V = 〈a1, . . . ,an−1〉 ∧x = an}

{V = V} Urese(V) {Urese= Pre(V) = 〈〉}
{V = 〈a1, . . . ,an〉} Tete je(V,x) {x = an ∧V = Pre(V)}

{V = 〈a1, . . . ,an〉 ∧n > 0} Torol(V) {V = 〈a1, . . . ,an−1〉}

1. Tömbös megvalósítás.
Hátránya: előre rögzített méretű memóriát kell foglalni.

Tar
1 n
a1 an

Meret

teto=n

1. ábra. Verem tömbös megvalósítása.

2. Megvalósítás lánccal.

1

an

Fej

a1

2. ábra. Verem megvalósítása lánccal.

Dinamikus memória allokálás. m byte allokálása ténylegesen

d(m+4)/16e∗16

byte-ot foglal a halomból! Tehát a tényleges tárigény, ha az adatelemek mérete m byte:

d(m+4+4)/16e∗16

3. Kombinált megvalósítás.
K adatelemet tartalmazó tömbszeletek láncolása.
Memória igény:

...

1 K 1 K 1 Kind

Fej

3. ábra. Verem kombinált megvalósítása.

d(dn/KeSizeo f(Elemtip)+4+4)/16e∗16

A müveletek (a MEGSZUNTET és URESIT kivételével) futási ideje n-elemű veremre: Tlr (n) = Θ(1)

Unit VeremP;
Interface

Type
Elemtip = ??? ;(* a generikus paraméter *)
Tipus = Pointer ;(* a Verem adattipus fő típusa *)
Verem = VeremP.Tipus;

{ a Verem adattipus muveletei: }
Procedure Letesit(Var V : Tipus);
Procedure Megszuntet(Var V : Tipus);
Procedure Uresit(Var V : Tipus);
Procedure VeremBe(Var V : Tipus;

X : Elemtip);
Procedure VeremBol(Var V : Tipus;

Var X : Elemtip);
Function ElemSzam(V : Tipus) : Word;
Procedure Teteje(V : Tipus;

Var X : Elemtip);
Procedure Torol(Var V : Tipus);

Implementation
{ reprezentáció pointerlánc használatával }
Type

Lanc = ^Cella;
Cella = Record

2

adat : Elemtip;
csat : Lanc

End;
RepTip = Record

Fej: Lanc;
ESzam: Word

End;

{ A műveletek megvalósítása }
Procedure Letesit(Var V : Tipus);
Var Vr : ^RepTip Absolute V;
Begin

New(Vr);
Vr^.Fej := Nil;
Vr^.Eszam:=0;

End (* Letesit *) ;

Procedure Uresit(Var V : Tipus);
Var Vr : ^RepTip Absolute V;

P, Q : Lanc;
Begin

P := Vr^.Fej;
While P <> Nil Do Begin
Q := p^.csat; Dispose(P);
P := Q

End;
Vr^.Fej := Nil; Vr^.ESzam:= 0;

End (* Uresit *) ;

Procedure Megszuntet(Var V : Tipus);
Var Vr : ^RepTip Absolute V;
Begin

Uresit(V);
Dispose(Vr);

End (* Megszuntet *) ;

Procedure VeremBe(Var V : Tipus; X : Elemtip);
Var Vr : ^RepTip Absolute V;

Uj : Lanc;
Begin

New(Uj);
Uj^.adat := X;
Uj^.csat := Vr^.Fej;
Vr^.Fej := Uj;
Inc(Vr^.ESzam);

End (* VeremBe *) ;

Procedure VeremBol(Var V : Tipus; Var X : Elemtip);
Var Vr : ^RepTip Absolute V; P : Lanc;
Begin

P := Vr^.Fej;
If P <> Nil Then Begin
X := P^.adat; Vr^.Fej := P^.csat;
Dec(Vr^.ESzam); Dispose(P)

End
End (* VeremBol *) ;

3

Function ElemSzam(V : Tipus) : Word;
Var Vr : ^RepTip Absolute V;
Begin

ElemSzam := Vr^.ESzam
End (* Elemszam *) ;

Procedure Teteje(V : Tipus; Var X : Elemtip);
Var Vr : ^RepTip Absolute V;
Begin

If Vr^.Fej <> Nil Then
X := Vr^.Fej^.adat

End (* Teteje *) ;

Procedure Torol(Var V : Tipus);
Var Vr : ^RepTip Absolute V; P : Lanc;
Begin

P:= Vr^.Fej;
If P <> Nil Then Begin
Vr^.Fej := P^.csat;
Dispose(P); Dec(Vr^.ESzam);

End
End (* Torol *) ;

End (* VeremP *).

16.2. Sor

Értékhalmaz: Sor= {〈a1, . . . ,an〉 : ai ∈ E}
Műveletek:

S: Sor, x : E

{Igaz} Letesit(S) {S= 〈〉}
{S= S} Megszuntet(S) {Hamis}
{S= S} Uresit(S) {S= 〈〉}

{S= 〈a1, . . . ,an〉} SorBa(S,x) {S= 〈a1, . . . ,an,x〉}
{S= 〈a1, . . . ,an〉 ∧n > 0} SorBol(S,x) {x = a1 ∧S= 〈a2, . . . ,an〉}

{S= 〈a1, . . . ,an〉} Elemszam(S) {Elemszam= n}
{S= 〈a1, . . . ,an〉 ∧n > 0} Elso(S,x) {x = a1 ∧S= Pre(S)}
{S= 〈a1, . . . ,an〉 ∧n > 0} Torol(S) {S= 〈a2, . . . ,an〉}

1. Megvalósítás cirkuláris tömbbel.

Unit SorT ;
Interface

Type
Elemtip = ??? ;(* generikus paraméter *)
Tipus = Pointer ;(* a Sor adattipus típusa *)
Sor = SorT.Tipus;

{ A Sor adattipus muveletei : }
Procedure Letesit(Var S : Tipus);
Procedure Uresit(Var S : Tipus);

4

Tar
1

an

Meret

a1

eleje vege

eleje vege

Meret1

1 Meret

elejevege

Tar

Tar

4. ábra. Sor megvalósítása cirkuláris többel.

Function Elemszam(S : Tipus) :Word;
Procedure SorBa(Var S : Tipus;

X : Elemtip);
Procedure SorBol(Var S : Tipus;

Var X : Elemtip);
Procedure Elso(S : Tipus;

Var X : Elemtip);
Procedure Torol(Var S : Tipus);

Implementation
(* Reprezentáció cirkuláris tömbbel *)
Const

Meret = ??? ;(* a cirkuláris tömb mérete, impl. paraméter *)
Type

RepTip = Record
tar : Array[1..Meret] Of Elemtip;
eleje, vege : 0..Meret

End;
(* A műveletek megvalósítása *)
Procedure Letesit(Var S : Tipus);
Var Sr : ^RepTip Absolute S;
Begin

New(Sr);
Sr^.eleje := 0; Sr^.vege:=0;

End (* Letesit *);

Procedure SorBa(Var S : Tipus;
X : Elemtip);

Var Sr : ^RepTip Absolute S;
Begin

With Sr^ Do
If vege <> eleje Then Begin
vege := (vege Mod Meret)+1;
tar[vege] := X

End;
End (* SorBa *) ;

Procedure SorBol(Var S : Tipus;
Var X : Elemtip);

Var Sr : ^RepTip Absolute S;

5

Begin
With Sr^ Do
If vege <> 0 Then Begin

eleje := eleje Mod Meret+1;
X:= tar[eleje];
If eleje = vege Then Begin

eleje := 0; vege := 0
End

End
End (* SorBol *) ;

Function ElemSzam(S : Tipus) :Word;
Var Sr : ^RepTip Absolute S; E: Integer;
Begin

With Sr^ Do Begin
E := vege - eleje;
If vege = 0 Then

ElemSzam:=0
Else If E > 0 Then

ElemSzam:= E
Else

ElemSzam:= E + Meret
End;

End (* ElemSzam *) ;
Procedure Uresit(Var S : Tipus);
Var Sr : ^RepTip Absolute S;
Begin

Sr^.eleje := 0; Sr^.vege := 0
End (* Uresit *) ;

Procedure Elso(S : Tipus;
Var X : Elemtip);

Var Sr : ^RepTip Absolute S;
Begin

X := Sr^.tar[Sr^.eleje Mod Meret+1]
End (* Elso *) ;

Procedure Torol(Var S : Tipus);
Var Sr : ^RepTip Absolute S;
Begin

With Sr^ Do
If vege <> 0 Then Begin

eleje := eleje Mod Meret+1;
If eleje = vege Then

Begin
eleje := 0; vege := 0

End
End

End (* Torol *) ;
End (* Sor *) .

2. Sor megvalósítás lánccal.

3. Sor kombinált megvalósítása.
A müveletek (a MEGSZUNTET és URESIT kivételével) futási ideje n-elemű sorra: Tlr (n) = Θ(1)

6

ana1

eleje vege

5. ábra. Sor megvalósítása lánccal.

an

eleje vege

a1

6. ábra. Sor megvalósítása lánccal, fiktív első cellával.

16.3. Prioritási Sor

Értékhalmaz: PriSor= { S= {a1, . . . ,an} : S⊆ E}, E-n értelmezett a ≤ lineáris rendezési reláció.
Műveletek:

S: PriSor, x : E

{Igaz} Letesit(S,≤) {S= /0}
{S= S} Megszuntet(S) {Hamis}
{S= S} Uresit(S) {S= /0}
{S= S} SorBa(S,x) {S= Pre(S)∪{x}}
{S 6= /0} SorBol(S,x) {x = min(Pre(S)) ∧Pre(S) = S∪{x}}

{S= {a1, . . . ,an}} Elemszam(S) {Elemszam= n}
{S 6= /0} Elso(S,x) {x = min(Pre(S)) ∧Pre(S) = S}
{S 6= /0} Torol(S) {S= Pre(S)−{min(Pre(S))}}

Megvalósítás kupaccal.

Unit PriSor ;
{ Minimumos prioritási sor adattipus megvalósítása kupaccal }

Interface
Type

Elemtip = ???;
RendRelTip = Function (Var X,Y: Elemtip): Boolean;
Tipus = Pointer ;(* az adattípus fő típusa *)
PriSorT=PriSor.Tipus;

{ A prioritási sor adattipus műveletei: }
Procedure Letesit(Var S : Tipus; R: RendRelTip);
Procedure Megszuntet(Var S : Tipus);
Procedure Uresit(Var S : Tipus);
Function Elemszam(S : Tipus) : Word;

...

1 K 1 K

eleje vege

7. ábra. Sor kombinalt megvalósítása.

7

Procedure SorBa(Var S : Tipus;
X : Elemtip);

Procedure SorBol(Var S : Tipus;
Var X : Elemtip);

Procedure Elso(S : Tipus;
Var X : Elemtip);

Procedure Torol(Var S: Tipus);

Implementation
{ repezentacio tombos kupaccal} }
Const

Meret = ??? ;(* a reprezentáló tömb mérete, impl. paraméter *)
Type
Fa = Array[1..Meret] Of Elemtip;
RepTip = Record

F : Fa;
Eszam : 0..Meret;
Kis:RendReltip

End;
{ Segéd műveletek: }

Procedure Emel(Var F:Fa; Var Kis:RendReltip;
i:Word);

{Input: Ha j<>i akkor F[Apa(j)]<=F[j] }
{Output: Minden pontra teljesul a kupac tulajdonsag}
Var
apa,fiu:Word; X:Elemtip;

Begin{Emel}
X:=F[i];
fiu:=i;
apa:=fiu Shr 1;
While (apa>0) And Kis(X, F[apa]) Do Begin

F[fiu]:=F[apa];
fiu:=apa; apa:=fiu Shr 1;

End{while};
F[fiu]:=X;

End{Emel};

Procedure Sullyeszt(Var F:Fa; Var Kis:RendReltip; Eszam, i:Word);
{Input: Ha j<>i akkor F[j]<=F[Bfiu(j)] F[j]<=F[Jfiu(j)] }
{Output: Minden pontra teljesul a kupac tulajdonsag}
Var
apa,fiu:Word; X:Elemtip;

Begin{Sullyeszt}
X:=F[i]; apa:=i; fiu:=apa Shl 1;
While (fiu<=Eszam) Do Begin

If Kis(F[fiu+1], F[fiu]) Then Inc(fiu);
If Not Kis(F[fiu], X) Then Break;
F[apa]:=F[fiu];
apa:=fiu; fiu:=apa Shl 1;

End{while};
F[apa]:=X;

End{Sullyeszt};

{ a muveletek megvalositasa }
Procedure Letesit(Var S : Tipus;R:RendRelTip);

8

Var Sr : ^ RepTip Absolute S;
Begin

New(Sr);
Sr^.Eszam :=0;
Sr^.Kis:=R;

End (* Letesit *);
Procedure Megszuntet(Var S : Tipus);
Var Sr : ^ RepTip Absolute S;
Begin

Dispose(Sr);
End (* Letesit *);

Procedure Uresit(Var S : Tipus);
Var Sr : ^ RepTip Absolute S;
Begin

Sr^.Eszam := 0
End (* Uresit *) ;

Function ElemSzam(S : Tipus) : Word;
Var Sr : ^ RepTip Absolute S;
Begin

ElemSzam := Sr^.Eszam
End (* ElemSzam *) ;

Procedure SorBa(Var S : Tipus;
X : Elemtip);

Var Sr : ^ RepTip Absolute S;
apa, fiu : Integer;

Begin
With Sr^ Do
If Eszam < Meret Then Begin
Inc(Eszam);
F[Eszam]:=X;
Emel(F, Kis, Eszam);

End{if}
End (* SorBa *) ;

Procedure SorBol(Var S : Tipus;
Var X : Elemtip);

Var Sr : ^ RepTip Absolute S;
apa, fiu : integer; E : Elemtip;

Begin
With Sr^ Do
If Eszam <> 0 Then Begin
X:=F[1];
F[1]:=F[Eszam];
Dec(Eszam);
Sullyeszt(F, Kis, Eszam, 1);

End{if};
End (* SorBol *) ;

Procedure Elso(S : Tipus; Var X : Elemtip);
Var Sr : ^ RepTip Absolute S;
Begin

X := Sr^.F[1]
End (* Elso *) ;

Procedure Torol(Var S : Tipus);

9

Var E : Elemtip;
Begin

SorBol(S, E);
End (* Torol *) ;

End (* PriSor *) .

A műveletek futási ideje.
SORBA és SORBOL futási ideje: Tlr (n) = O(lgn)

16.4. Módosítható prioritási Sor

Műveletek: Prioritási sor műveletek + MODOSIT

Feltesszük, hogy az adatelemeket az 1..n számokkal azonosítjuk, továbbá az elemek típusa:

Type
Elemtip=Record Kulcs:Kulcstip; Adat:Adattip End;

és a rendezés a kulcsmező alapján történik.
MODOSIT(S,I,K) művelet K-ra módosítja az i. elemet kulcsát és az új kulcs alapján módosítja az elem helyét az adatszerkezetben.
Szükség van olyan Hol függvényre, amely minden i-re megmondja, hogy hol van az F kupacban az i-edik elem:

F [Hol[i]] = i∧Hol[F [j]] = j

Unit ModPSor ;
Interface
Type

Kulcstip=???;
AdatTip =???;
Elemtip = Record Kulcs:Kulcstip; Adat:AdatTip End;
Tipus = Pointer ;(* az adattipus fő tipusa *)
MPriSor=ModPSor.Tipus;

{ A módosítható prioritási sor adattipus műveletei: }
Procedure Letesit(Var S : Tipus);
Procedure Megszuntet(Var S : Tipus);
Procedure Uresit(Var S : Tipus);
Function Elemszam(S : Tipus) : Word;
Procedure SorBa(Var S : Tipus;

X : Elemtip);
Procedure SorBol(Var S : Tipus;

Var X : Elemtip);
Procedure Elso(S : Tipus; Var X : Elemtip);

Procedure Torol(Var S : Tipus; i : Word);
Procedure Modosit(Var S : Tipus;

i : Word; K:Kulcstip);

Implementation
{ repezentáció tömbös kupaccal }
Const
Meret = ??? ;(* a reprezentalo tomb merete *)

Type
Fa = Array[1..Meret] Of 0..Meret;
AdatSor=Array[1..Meret] of Elemtip;
SorTip = Record

A : AdatSor;

10

F : Fa;
Hol:Array[1..Meret] of 0..Meret;
Eszam : 0..Meret;

End;
RepTip=SorTip;

{ Segéd műveletek: }

Procedure Emel(Var S:SorTip; i:Word);
{Input: Ha j<>i akkor A[F[Apa(j)]]<=A[F[j]] }
{Output: Minden pontra teljesul a kupac tulajdonsag}
Var
apa,fiu,x:Word;

Begin{Emel}
With S Do Begin

x:=F[i];
fiu:=i;
apa:=fiu Shr 1;
While (apa>0) And (A[x].kulcs < A[F[apa]].kulcs) Do Begin

F[fiu]:=F[apa];
Hol[F[apa]]:=fiu;
fiu:=apa; apa:=fiu Shr 1;

End{while};
F[fiu]:=x;
Hol[x]:=fiu

End{with};
End{Emel};

Procedure Sullyeszt(Var S:SorTip; Eszam, i:Word);
{Input: Ha j<>i akkor A[F[j]]<=A[F[Bal(j)]] A[F[j]]<=A[F[Jobb(j)]] }
{Output: Minden pontra teljesul a kupac tulajdonsag}
Var
apa,fiu,x:Word;

Begin{Sullyeszt}
With S Do Begin
x:=F[i];
apa:=i;
fiu:=apa Shl 1;
While (fiu<=Eszam) Do Begin

If A[F[fiu+1]].kulcs < A[F[fiu]].kulcs Then Inc(fiu);
If A[x].kulcs <= A[F[fiu]].kulcs Then Break;
F[apa]:=F[fiu];
Hol[F[fiu]]:=apa;
apa:=fiu; fiu:=apa Shl 1;

End{while};
F[apa]:=x;
Hol[x]:=apa

End{with};
End{Sullyeszt};

Procedure Modosit(Var S : Tipus;
i : Word; K:Kulcstip);

Var Sr : ^RepTip Absolute S;
apa:Word;

Begin
apa:=Sr^.Hol[i] Shr 1;
If K < Sr^.A[Sr^.F[apa]].kulcs Then Begin

11

Sr^.A[i].kulcs:=K;
Emel(Sr^, Sr^.Hol[i]);

End Else Begin
Sr^.A[i].kulcs:=K;
Sullyeszt(Sr^, Sr^.Eszam, Sr^.Hol[i]);

End;
End;

MODOSIT futási ideje: Tlr (n) = O(lg n).

16.5. Lista

Értékhalmaz: Lista= {〈a1, . . . ,ai−1〉〈ai , . . . ,an〉 : ai ∈ E, i = 1, . . . ,n}
Műveletek:

L,L1,L2 : Lista, x : E

{Igaz} Letesit(L) {L = 〈〉〈〉}
{L = L} Megszuntet(L) {Hamis}
{L = L} Uresit(L) {L = 〈〉〈〉}
{L = L} Urese(L) {Urese= (Pre(L) = 〈〉〈〉}
{L = L} Ele jen(L) {= Pre(L) = 〈〉〈a1, . . . ,an〉}
{L = L} Vegen(L) {Vegen= L = 〈a1, . . . ,an〉〈〉}

{L = 〈a1, . . . ,ai−1〉〈ai , . . . ,an〉} Ele jere(L) {L = 〈〉〈a1, . . . ,an〉}
{L = 〈a1, . . . ,ai−1〉〈ai , . . . ,an〉} Vegere(L) {L = 〈a1, . . . ,an〉〈〉}

{L = 〈a1, . . . ,ai−1〉〈ai , . . . ,an〉∧ i ≤ n} Tovabb(L) {L = 〈a1, . . . ,ai−1,ai〉
〈ai+1, . . . ,an〉}

{L = 〈a1, . . . ,ai−1〉〈ai , . . . ,an〉∧ i ≤ n} Kiolvas(L,x) {x = ai ∧L = Pre(L)}
{L = 〈a1, . . . ,ai−1〉〈ai ,ai+1 . . . ,an〉∧ i ≤ n} Modosit(L,x) {L = 〈a1, . . . ,ai−1〉

〈x,ai+1, . . . ,an〉}
{L = 〈a1, . . . ,ai−1〉〈ai , . . . ,an〉} Bovit(L,x) {L = 〈a1, . . . ,ai−1〉

〈x,ai , . . . ,an〉}
{L = 〈a1, . . . ,ai−1〉〈ai ,ai+1, . . . ,an〉∧ i ≤ n} Torol(L) {L = 〈a1, . . . ,ai−1〉

〈ai+1, . . . ,an〉}
{L1 = 〈α1〉〈β1〉,L2 = 〈α2〉〈β2〉} Kapcsol(L1,L2) {L1 = 〈α1〉〈β2β1〉,L2 = 〈α2〉〈〉}

a1 ai−1 ai an

VegKurzor

8. ábra. Az S= 〈a1, . . . ,ai−1〉〈ai , . . . ,an〉 lista érték ábrázolása egyirányú körláccal.

Minden művelet futási ideje legrosszabb esetben is O(1).

12

a1 ai−1 ai an
L1

L2 b1 b j−1 b j bm

A Kapcsol(L1,L2) elõtt

A Kapcsol(L1,L2) után

a1

b1 b j−1 bm

anai−1

b j

ai
L1

L2

Kurzor1 Veg1

Kurzor2 Veg2

Kurzor1

Veg1Kurzor2
Veg2

9. ábra. Két lista kapcsolása.

16.6. Halmaz

Értékhalmaz: Halmaz= { H = {a1, . . . ,an} : H ⊆ E}
Műveletek:

H : Halmaz, x : E, I : Iterator

{Igaz} Letesit(H) {H = /0}
{H = H} Megszuntet(H) {Hamis}
{H = H} Uresit(H) {H = /0}
{H = H} Eleme(H,x) {Eleme= x∈ Pre(H)}

{H = {a1, . . . ,an}} Elemszam(H) {Elemszam= n}
{H = H} Bovit(H,x) {H = Pre(H)∪{x}}
{H = H} Torol(H,x) {H = Pre(H)−{x}}
{H = H} IterKezd(H, I) {}
{I = I} IterAd(I ,x) {}
{I = I} IterVege(I) {}

Forall x in H Do
M(x);

≡

IterKezd(H,I);
While Not IterVege(I) Do Begin
IterAd(I,x);
M(x);

End;

13

16.7. Halmaz megvalósítása bitvektorral

Feltétel: az Elemtipus felsorolás típus intervalluma lehet csak, Pl 1..MaxN.

Const
MaxN=???;
Type
Halmaz=Record

T:Array[1..MaxN] of Boolean;
Eszam:0..MaxN;

End;
Var
H:Halmaz;

x∈ H ⇔ H.T[x]
Az ELEME, BOVIT, TOROL futási ideje Θ(1).
Az iteráció futási ideje O(MaxN). A megvalósítása:

For x:=1 To MaxN Do
If H.T[x] Then M(x)

16.8. Halmaz megvalósítása tömbbel

Tar
1 n
a1 an

Meret

Eszam=n /l

10. ábra. Halmaz ábrázolása tömbben.

A Műveletek futási ideje n-elemű halmaz esetén:
ELEME: Tlr (n) = O(n), Ta(n) = O(n).
BOVIT: Tlr (n) = O(1), Ta(n) = O(1).
TOROL: Tlr (n) = O(n), Ta(n) = O(n).
Az iteráció futási ideje O(n).
Rendezett tömb esetén ELEME: Tlr (n) = O(lg n).

16.9. Halmaz megvalósítása láccal

an

eleje vege

a1

11. ábra. Halmaz ábrázolása láncban.

A Műveletek futási ideje n-elemű halmaz esetén:
ELEME: Tlr (n) = O(n), Ta(n) = O(n).
BOVIT: Tlr (n) = O(1), Ta(n) = O(1).
TOROL: Tlr (n) = O(n), Ta(n) = O(n).
Az iteráció futási ideje O(n).

14

16.10. Halmaz megvalósítása bináris keres őfával

A F = (M,R,Adat) absztrakt adatszerkezetet bináris keresőfának nevezzük, ha
1. F bináris fa, R= {bal, jobb},bal, jobb : M →M
2. Adat : M → Elemtipés Elemtip-on értelmezett egy ≤ lineáris rendezési reláció,
3. (∀x∈M)(∀p∈ Fbal(x))(∀q∈ Fjobb(x))(Adat(p)≤ Adat(x)≤ Adat(q))

x

p qa1

a2

a3

12. ábra. Keresőfa tulajdonság: Adat(p) = a1 ≤ Adat(x) = a2 ≤ a3 = Adat(q)

Procedure Inorder(F:BinFA; M:Muveltip);
Begin
If F<>Nil Then Begin
Inorder(F^.bal);
M(F^.adat);
Inorder(F^.jobb);

End
End{Inorder};

Állítás. F akkor és csak akkor bináris keresőfa, ha inorder bejárása rendezett sorozatot ad.
A BINKERFAKERES függvényeljárás egy nyilvánvaló megoldása a fában keresés feladatnak.

Function BinKerFaKeres(a:Adat; F:BinFA):BinFa;
Begin
While (F<>Nil) And (a<>F^.adat) Do
If a<F^.adat Then

F:=F^.bal
Else

F:=F^.jobb;
BinKerFaKeres:=F;

End;

Az F bináris keresőfában a P pont követője az a Q pont, amelynek adata az Adat(P)-nél nagyobbak közül a legkisebb (ha van). A
követő két esete:

Unit BinFaM;
Interface
Type

Kulcstip = ??? ;(* a rendezési mező típusa *)
Adattip = ??? ;(* az adatmező típusa *)

15

10

3 21

2011

29

33

36

32

15

13

18

16

31

25

13. ábra. Példa bináris keresőfa

F

X

Y

Jobb(P)

Q

P

R

F

R

F

S Z
P X

F

Jobb(P)

YQ

F F1 1

2 2

ZS

14. ábra. Pont követőjének 1. esete: Jobb(P) 6=⊥, Kovet(P) = Min(Jobb(P))

16

F

Z

R

SQ Y

XP

R

S Z Q Y

1F
XP

F2

F3 F3

F1

F2

Q1 Q1

F

Bal(Q)= Bal(Q)=

15. ábra. Pont követőjének 2. esete: Jobb(P) =⊥, Kovet(P) = Q : Max(Bal(Q)) = P

Elemtip = Record
kulcs: Kulcstip;
adat : Adattip

End;
BinFa = ^BinFaPont;
BinFaPont = Record

adat : Elemtip;
bal, jobb : BinFa;
apa : BinFa;

End;
{ műveletek: }

Function Mini(F : BinFa): BinFa;
Function Maxi(F : BinFa): BinFa;
Function Kovet(F : BinFa; p:BinFa): BinFa;
Function Eloz(F : BinFa; p:BinFa): BinFa;

Implementation
Function Mini(F : BinFa): BinFa;

Var p:BinFA;
Begin

p:=F;
While p^.bal <> Nil Do p:= p^.bal;
Mini:=p;

End;

Function Maxi(F : BinFa): BinFa;
Var p:BinFA;
Begin

p:=F;
While p^.jobb <> Nil Do p:= p^.jobb;
Maxi:=p;

17

End;

Function Kovet(F : BinFa;p:BinFa): BinFa;
Var q0,q:BinFA;
Begin

If p^.jobb <> Nil Then Begin
q0:= p^.jobb;
While q0^.bal <> Nil Do q0:= q0^.bal;

End Else Begin
q:=F; q0:=Nil;
While q <> p Do

If p^.adat.kulcs < q^.adat.kulcs Then Begin
q0:= q; q:= q^.bal

End Else
q:= q^.jobb

End;
Kovet:= q0;

End;

Function Eloz(F : BinFa;p:BinFa): BinFa;
Var q0,q:BinFA;
Begin

If p^.bal <> Nil Then Begin
q0:= p^.bal;
While q0^.jobb <> Nil Do q0:= q0^.jobb;

End Else Begin
q:=F; q0:=Nil;
While q <> p Do

If p^.adat.kulcs > q^.adat.kulcs Then Begin
q0:= q; q:= q^.jobb

End Else
q:= q^.bal

End;
Eloz:= q0;

End;

Function Koveto(F : BinFa; p:BinFa): BinFa;
{Ha van apa pointer}

Begin
If p^.jobb <> Nil Then Begin
p:= p^.jobb;
While p^.bal <> Nil Do

p:=p^.bal;
End Else Begin
While (p^.apa<>Nil) And (p^.apa^.bal<>p) Do

p:=p^.apa;
p:=p^.apa;

End;
Koveto:=p;

End{Koveto};

Function Elozo(F : BinFa; p:BinFa): BinFa;
{Ha van apa pointer}

Begin
If p^.bal <> Nil Then Begin
p:= p^.bal;

18

While p^.jobb <> Nil Do
p:=p^.jobb;

End Else Begin
While (p^.apa<>Nil) And (p^.apa^.jobb<>p) Do

p:=p^.apa;
p:=p^.apa;

End;
Elozo:=p;

End{Elozo};

End (* BinFa *) .

Bináris keresőfa bővítése: az új pont beillesztése a keresőút végére.
A Q pont a K kulcshoz tartozó keresőút (K-keresőút) vége, ha K < Adat(Q) esetben Bal(Q) =⊥, illetve K ≥ Adat(Q) esetben

10

3 21

2011

29

33

36

32

15

13

18

16

31

25

30

16. ábra. A példa bináris keresőfa bővítése a 30 kulccsal.

Jobb(Q) =⊥, továbbá az F gyökértől Q-ig vezető úton minden Rpontra teljesül, hogy Q∈FBal(R), ha K < Adat(R) és Q∈FJobb(R),
ha K ≥ Adat(R).

Törlés bináris keres őfából.

Unit BinKerFa ; { Binaris keresofa }
Interface
Type

Kulcstip = ??? ;(* a rendezési mező tíusa *)
Adattip = ??? ;(* az adatmező típusa *)
Elemtip = Record

kulcs: Kulcstip;
adat : Adattip

End;
BinFa = ^BinFaPont;
BinFaPont = Record

adat : Elemtip;
bal, jobb : BinFa

End;

19

10

3 21

2011

29

33

36

32

15

13

18

16

31

25

30

17. ábra. A 29 kulcs törlése: egyszerű eset, a törlendő pontnak nincs bal fia.

10

3 21

2011

15

13

18

16

25

33

3631

3230

18. ábra.

20

10

3 21

2011

15

13

18

16

25

33

3631

3230

19. ábra. A 10 kulcs törlése: a törlendő pontnak két fia van. A törlendő pont helyettesítése a követőjével és a követő tényleges
törlése.

3 21

20

18

25

33

3631

3230

11

15

1613

20. ábra.

21

{ műveletek: }
Function Keres(F : BinFa;

K : Kulcstip) : BinFa;
Procedure Bovit0(Var F : BinFa; (* a bővítendő fa *)

X : Elemtip); (* a bővítendő elem *)
Procedure Bovit(Var F : BinFa; (* a bővítendő fa *)

X : Elemtip; (* a bővítendő elem *)
Var Tobb : Boolean); (* lehet többszörös elem ? *)

Procedure Torol(Var F : BinFa;
K : Kulcstip; (* a törlendő pont kulcsa *)

Var Volt : Boolean);(* volt ilyen pont ? *)

Implementation
Function Keres(F : BinFa; K : Kulcstip) : BinFa;

Begin
While (F <> Nil) Do
If K < F^.adat.kulcs Then

F := F^.bal
Else If K > F^.adat.kulcs Then

F := F^.jobb
Else

Break;

Keres:= F;
End (* Keres *) ;

Procedure Bovit0(Var F : BinFa;
X : Elemtip);

{Rekurzív bővítés, töbszörös elem megengedett és nem ellenőrzött}
Begin

If F = Nil Then Begin
New(F);
F^.adat:= X;
F^.bal:= Nil; F^.jobb:= Nil;

End Else Begin
If X.kulcs < F^.adat.kulcs Then

Bovit0(F^.bal, X)
Else

Bovit0(F^.jobb, X)
End;

End (* Bovit0 *) ;

Procedure Bovit(Var F : BinFa;
X : Elemtip;

Var Tobb : Boolean);
Var

P, Apa, Ujp : BinFa;
Nincs : Boolean;

Begin
New(Ujp); Nincs := True;
With Ujp^ Do Begin
adat := X ;
bal := Nil; jobb := Nil

End;
If F = Nil Then
F := Ujp

22

Else Begin
P := F;
While (P <> Nil) Do Begin

Apa := P;
If X.kulcs < P^.adat.kulcs Then

P := P^.bal
Else

If X.kulcs > P^.adat.kulcs Then
P := P^.jobb

Else Begin{P^.adat.kulcs=K}
Nincs:= False;
If Not Tobb Then Begin

Tobb:= True; Dispose(Ujp); Exit
End Else

p:= p^.jobb
End

End{while};
If X.kulcs < Apa^.adat.kulcs Then

Apa^.bal := Ujp
Else

Apa^.jobb := Ujp
End{else:F<>Nil};
Tobb := Not Nincs

End (* Bovit *) ;

Procedure Torol(Var F : BinFa; K : Kulcstip; Var Volt : Boolean);
Var
P, Apa, T : BinFa; Tovabb : Boolean;

Begin
P := F; Apa := P; Tovabb := True;
(* a K kulcsu pont keresese *)
While (P <> Nil) And Tovabb Do
If K < P^.adat.kulcs Then Begin

Apa := P; P := P^.bal
End Else If K > P^.adat.kulcs Then Begin

Apa := P; P := P^.jobb
End Else

Tovabb := False;
{end while}
Volt := Not Tovabb;
If Volt Then Begin
(* P^.adat.kulcs=K, Apa a P pont apja, ha P=F akkor P=Apa *)

T := P; (* a törlendő pont T *)
If P^.bal = Nil Then {P-nek nins bal fia }

If P = Apa^.bal Then
Apa^.bal := P^.jobb

Else If P = Apa^.jobb Then
Apa^.jobb := P^.jobb

Else F := P^.jobb

Else If P^.jobb = Nil Then{P-nek nics jobb fia }
If P = Apa^.bal Then

Apa^.bal := P^.bal
Else

If P = Apa^.jobb Then
Apa^.jobb := P^.bal

23

Else
F := P^.bal

Else Begin {P-nek ket fia van }
T := P^.jobb; Apa := T;
While T^.bal <> Nil Do Begin{legyen T a P kovetoje}

Apa := T; T := T^.bal
End;
(* P helyebe T kerül *)
P^.adat := T^.adat;
If T = Apa Then

P^.jobb := T^.jobb
Else

Apa^.bal := T^.jobb;
End;
Dispose(T)

End
End (* Torol *) ;

End (* BinKerFa *) .

A ELEME, BOVIT és TOROL műveletek futási ideje O(h(F)).
A Műveletek futási ideje n-elemű halmaz esetén:
ELEME: Tlr (n) = O(n), Ta(n) = O(lgn).
BOVIT: Tlr (n) = O(n), Ta(n) = O(lgn).
TOROL: Tlr (n) = O(n), Ta(n) = O(lgn).

24

