
5. Adatszerkezetek

Egy A = (M,R,Adat) absztrakt adatszerkezet megvalósítása:
1. Konkrét memória allokálás az M-beli absztrakt memória cellák számára.
2. Az R szerkezeti kapcsolatok ábrázolása.
3. Alapműveletek algoritmusainak megadása.

Bels ő adatszerkezet
A cellákat a főtárban lefoglalt memóriamezők tárolják. Minden cellát a számara lefoglalt memóriamező kezdőcíme azonosít.

Küls ő adatszerkezet
A cellákat külső tárolón (lemez) fájl tárolja. Minden cellát egy (F, p) pár azonosít, ahol F a tároló fájl azonosítója és p az F fájlon
belüli rekordsorszám.

Elosztott adatszerkezet
Az egyes cellákat különböző számítógépeken tarolhatjuk. Egy cella azonosításához egy (G,F, p) hármast kell megadni, ahol G a
hálózatba kapcsolt számítógép (adott hálózati protokoll szerinti) azonosítója, F a fájl azonosítója és p a fájlon belüli rekordsorszám.
Endogén ábrázolás
Az adatot és a szerkezeti kapcsolatot ugyanaz a cella tartalmazza.

a4

a2

a3

a5

a1

1. ábra. Adatszerkezet endogén ábrázolása.

Exogén ábrázolás
Külön cella tartalmazza az adatot és a szerkezeti kapcsolatokat. A szerkezeti kapcsolatot tartalmazó cellában a megfelelő adatra
mutató hivatkozást tároljuk.
Objektum orientált programozási nyelv esetén az adatszerkezetek ábrázolása alapvetően exogén. Például a java esetén csak
akkor alkalmazható endogén ábrázolás, ha az adatok típusa elemi típus (int, long, float, double, char, boolean).

a1 a2 a3 a5a4

2. ábra. Adatszerkezet exogén ábrázolása.

1

Heterogén ábrázolás
Egyes cellák csak szerkezeti kapcsolatot tartalmaznak, mások tartalmazhatnak adatot és a szerkezeti kapcsolatokat.

a1 a2 a3 a4

a5 a6

a7 a8 a9

a0

3. ábra. Adatszerkezet heterogén ábrázolása.

Statikus ábrázolás
A memória lefoglalás statikus tömbbel történik. Minden cellát tömbbeli indexe azonosít. Hiányzó szomszédot a 0 (vagy -1) index
azonosítja. Statikus ábrázolás megvalósítása:

1

2 3

4 5 6 7

8 9 10

4. ábra. Minta fa.

Az algoritmus során az adatszerkezet új cellával bővülhet, illetve cellát törölhetünk is. Ezért mindig tudnunk kell, hogy a tömb mely
elemei szabadok, azaz melyek használhatók bővítéskor. Ez megoldható úgy, hogy az egyik szerkezeti kapcsolatot, esetünkben a
bal fiút arra használjuk, hogy a szabad cellákat egy láncba gyűjtsük. a Szabad mező tartalmazza mindig a lánc fejét.

public class BinFaS<E>{
private static class Cella<E>{

E elem;
int bal, jobb;

}
public Cella<E>[] Tar;
public int gyoker;
public int szabad;

BinFaS(int maxn){
Tar=(Cella<E>[])new Cella[maxn];
gyoker=-1;
szabad=0;
for (int i=0; i<maxn-1; i++)

Tar[i].bal=i+1;
Tar[maxn-1].bal=-1;

}
public int UjPont(){

if (szabad==-1)
return -1;

2

int p=szabad;
szabad=Tar[szabad].bal;
return p;

}
public void PontTorol(int p){

Tar[p].bal=szabad;
szabad=p;

}
}

Dinamikus ábrázolás
A cellák számára dinamikusan foglalunk memóriát, minden cellát pointer érték - memóriacím - azonosít. A hiányzó kapcsolatot a
null (nil) pointer érték ábrázolja. A szerkezeti kapcsolatot, mint pointer értéket a cellában tároljuk.
Szerkezeti kapcsolat számítása
A szerkezeti kapcsolat esetenként megadható számítási eljárással is, nincs szükség a szerkezeti kapcsolat tárolására. Minden x

1

2 3

4 5 6 7

8 9 10

5. ábra. Szerkezeti kapcsolat megadása számítási eljárással.

cellára és r szerkezeti kapcsolatra és adott i-re kiszámítható x-nek r-szerinti i-edik szomszédja. Például, az alábbi fa esetén, ha
M = {1, . . . ,n}, és az R= {bal, jobb} szerkezeti kapcsolat olyan, hogy

bal(i) =
{

2i ha 2i ≤ n
⊥ ha 2i > n

jobb(i) =
{

2i +1 ha 2i +1≤ n
⊥ ha 2i +1 > n.

A cellák számára statikus tömbbel foglalhatunk memóriát. Szerkezeti kapcsolat tárolása
A fenti fát megvalósíthatjuk a szerkezeti kapcsolatok tárolásával is. Ekkor minden cella tartalmazza a szerkezeti kapcsolat szerinti
szomszédait (és az adatot).

1

2 3

4 5 6 7

8 9 10

6. ábra. Szerkezeti kapcsolat tárolása.

5.1. Lánc

Lánc endogén ábrázolás
Pascal megvalósítás:

3

fej a4a1 a2 a3

7. ábra. Lánc endogén ábrázolása.

Type
Elemtip = ???;
Pozicio = ^Cella;
Cella = Record

elem : Elemtip;
csat : Pozicio

End;
Lanc = Pozicio;

Exogén ábrázolás
Megvalósítás explicit pointer típussal (Pascal).

fej

a1 a2 a3 a4

8. ábra. Lánc exogén ábrázolása.

Type
Elemtip = ???;
AdatP = ^Elemtip;
Pozicio = ^Cella;
Cella = Record

adatra : AdatP;
csat : Pozicio

End;
Lanc = Pozicio;

Objektum orientált megvalósítás (java).

public class Lanc<E>{
public E elem;
public Lanc<E> csat;

Lanc(){};
Lanc(E x, Lanc<E> poz){

this.csat=poz;
this.elem=x;

}
}

Lánc alapműveletek:
Bővítés a p pozíció után x adattal:

p.csat = new Lanc<E>(x, p.csat);

Vagy

4

fej a4a1 a2 a3

p

xUjC

9. ábra. Lánc bővítése.

Lanc<E> UjC = new Lanc<E>();
UjC.elem = x;
UjC.csat = p.csat;
p.csat = UjC;

A p-t követő pozíciójú cella törlése:

fej a4a1 a2 a3

p

q

10. ábra. Cella törlése láncból.

p.csat = p.csat.csat;

Adott x adatot tartalmazó cella keresése:

p = fej; \\p az első cellára mutasson
while (p != null) && !x.equals(p.elem)
p = p.csat; \\továbblépés

Lánc ábrázolása őrszemmel.

fej

orszem

a4a1 a2 a3

11. ábra. Lánc ábrázolása őrszemmel.

public class LancO<E>{
public Lanc<E> fej;
public Lanc<E> orszem;

LancO(){
fej = new Lanc<E>();
orszem = fej;

}
}

5

fej a4a1 a2 a3

12. ábra. Körlánc ábrázolása.

5.2. Körlánc

public class Lanc<E>{
public E elem;
public Lanc<E> csat;

Lanc(){};
Lanc(E x, Lanc<E> poz){

this.csat=poz;
this.elem=x;

}
}

5.3. Kétirányú lánc

a4a1 a2 a3fej

orszem

13. ábra. Kétirányú lánc ábrázolása őrszemmel.

public class Lanc2<E>{
public class Cella2<E>{

public E elem;
public Cella2<E> elore, hatra;

}
public Cella2<E> fej, orszem;

Lanc2(){
this.fej = new Cella2<E>();
this.orszem = new Cella2<E>();
this.fej.elore = this.orszem;
this.orszem.hatra = this.fej;

}
}

5.4. Kétirányú körlánc

public class Lanc2kor<E>{
public class Cella2<E>{

public E elem;
public Cella2<E> elore, hatra;

}
public Cella2<E> fej;

6

a4a1 a2 a3fej

14. ábra. Kétirányú körlánc ábrázolása.

Lanc2kor(){
fej = new Cella2<E>();
fej.elore = fej;
fej.hatra = fej;

}
}

5.5. Tömb

Minden (nem assembly szintű) programozási nyelvben közvetlenül megvalósítható.

5.6. Fák
5.6.1. Kapcsolati tömb ábrázolás

a2 a4a3

a1

a5 a6 a7 a8 a9 a10 a11

a12 a13 a14 a15

2 2

2 1

000

0 0

3

3

010

0

15. ábra. Fa ábrázolása kapcsolati tömbbel.

public class FaPontT<E>{
public E elem;
public FaPontT<E>[] fiuk;

}

Az ábrázolás előnye:
Minden pont i-edik fia közvetlenül (konstans időben) elérhető.
Az ábrázolás hátránya:
Statikus, azaz nem lehet konstans időben bővíteni és törölni.

5.7. Bináris fák

Az F fát bináris fának nevezzük, ha (∀p ∈ F)(Fok(p) ≤ 2). Bináris fák ábrázolására a továbbiakban a következő megoldást
használjuk.

public class BinFaPont<E>{
public E elem;
public BinFaPont<E> bal;
public BinFaPont<E> jobb;

7

// public BinFaPont<E> apa;
}

5.7.1. Kapcsolati lánc ábrázolás

a2

a7 a9 a11

a12 a13 a14 a15

a10a5 a6 a8

a4a3

a1

16. ábra. Fa ábrázolása kapcsolati lánccal.

public class FaPontL<E>{
public E elem;
public Lanc<FaPontL<E>> fiuk;

}

Memóriaigény n pontú fára: n(|Elemtip|+4)+(n−1)∗8

5.7.2. Els őfiú-testvér ábrázolás

a2

a11

a12 a14 a15

a5

a4a3

a1

a6 a7 a8 a9 a10

a13

17. ábra. Fa ábrázolása elsőfiú-testvér kapcsolattal.

public class FaPont<E>{
public E elem;
public FaPont<E> elsofiu;
public FaPont<E> testver;

}

Memóriaigény n pontú fára: n(|Elemtip|+8)

8

a2

a11

a12 a14 a15

a5

a4a3

a1

a6 a7 a8 a9 a10

a13

18. ábra. Fa ábrázolása elsőfiú-testvér-apa kapcsolattal.

5.7.3. Els őfiú-testvér-apa ábrázolás
public class FaPont<E>{

public E elem;
public FaPont<E> elsofiu;
public FaPont<E> testver;
public FaPont<E> apa;

}

9

