1. Alapfogalmak

1.1. Algoritmus

Az algoritmus olyan elemi miveletekb6l kompozicioés szabalyok szerint felépitett dsszetett mivelet, amelyet megadott feltételt tel-
jesité bemeneti adatra végrehajtva, a megkivant kimeneti adatot eredményezi.
Program = algoritmus leirdsa adott programozési nyelven.

1.2. Szamitasi probléma

A szamitasi probléma bemenet/kimenet feltételparral meghatarozott kdvetelmény. Azt irja el6, hogy a bemeneti feltételt teljesitd
adatra a kimeneti feltételt teljesitd adatot kell kiszamitani.

Probléma esete: egy olyan (esetleg dsszetett) adat, amely teljesiti a bemeneti feltételt.

Példaul, a rendezési probléma a kovetkez6t jelenti.

Bemenet: Azonos tipust adatok H = {ay, ...,a,} halmaza, amelyeken értelmezett egy < linearis rendezési relacio.

Kimenet: A H halmaz elemeinek egy < rendezéstarto felsorolasa, tehat olyan (by, .. .,bn) sorozat, amelyre by <bp <... <hp, és
H={b,...,bn}.

1.3. Specifikécio
{B}A{K}

B logikai formula, a bemeneti feltétel ,

K logikai formula, a kimeneti feltétel ,
A az algoritmus, amelyre az allitds vonatkozik.

Algoritmus helyessége. Az A algoritmus helyes a {B}A{K} specifikaciéra nézve, ha minden X bemeneti adatra, amelyre
teljesul a B bemeneti feltétel, az algoritmus végrehajtasa véges sok elemi mivelet végrehajtasa utan befejez6dik, és a keletkezett
kimeneti adatra teljesul a K kimeneti feltétel.

Példaul, a rendezési probléma specifikacidjaban a B bemeneti feltétel azt irja el6, hogy a bemeneti halmaz elemein értelmezett
a < lineéris rendezési relacio. A kimeneti feltétel pedig a kovetkezd formulaval adhaté meg:

(H={by,....ba)A(b <biig,i=1,....,n—1)

Megjegyzés.
1. Ugyanazon bemeneti adatra tébb olyan kimeneti adat is lehet, amelyre a specifikacié igaz.
2. A kimeneti feltételben hivatkozhatunk bemeneti adatra, illetve bemeneti adatot tartalmazé véltozora is. A kimeneti formulaban
az x valtozénak a miivelet el6tti értékére a Pre(x) kifejezéssel hivatkozunk. Pl. a CSERE mlivelet, amelytdl azt varjuk el, hogy az X
és y valtozo tartalmat kicserélje, a kovetkezd specifikacioval adhaté meg: {Igaz} Csere {x = Pre(y) Ay = Pre(x)}.

1.4. Algoritmusok futasi ideje

Legyen A az ey,- - ,€n elemi miveletekbdl felépitett algoritmus, és jeldlje tj az g mlivelet futasi idejét (konkrét, vagy hipotetikus
gépen). At futasi id6 fiigghet az g mivelet argumentumaitél. A tovabbiakban feltételezziik, hogy minden & elemi m(ivelet futasi
ideje ¢; konstans. Adott x bemenetre jeldlie T (A,X) az A algoritmus tényleges futasi idejét, ami az X bemeneti adatra ténylegesen
végrehajtott elemi miiveletek futasi idejének az Gsszege. Jeldlie x| az x bemeneti adat méretét. Ez a méret dsszetett adat (pl.
halmaz, vagy sorozat) esetén altalaban az adatok szama. Nem @sszetett adat esetén pedig altaldban az adat értéke.
Az g elemi m(iveletek t; futasi ideje és az |x| méret fliggvény egyuttesen adja a bonyolultsagi mértéket.
Algoritmusnak mas kéltsége is van, nevezetesen a memdriaigény, és elosztott algoritmusok esetén fontos a kommunikacids kéltség
is.
Legjobb eset

Tij (A,n) =min{T(A,x) : [x| =n}

Legrosszabb eset
Tir (A;n) = max{T(A,X) : |[X| =n}

Atlagos eset
Jeldlie Pr(x) annak valésziniségét, hogy X bemeneti adata lesz az A algoritmusnak.

Ta(An) = Z Pr(x) T (A,X)

IX[=n

1.5. Flggvények névekedési rendje, aszimptotikus jellések

O-jelolés
O(g(n)) = {f(n) : (3c,no = 0)(Vn > no)(0 < f(n) < cg(n))}
.T(n)=0(g(n))” jelentése: f (n) € O(g(n))

A

Y

Q-jelolés
Q(g(n)) = {f(n): (3c,no = 0)(Vn = no)(0 < cg(n) < f(n))}

O-jelolés

f(n)

cg(n

2. &bra. f(n) =Q(g(n))

©(g(n)) = {f(n) : (Fe1,¢2,n0 > 0)(Vn = no) (0 < 19(n) < f(n) < co9(n))}

c2g(n)
f(n)

clg(n)

Y

n0

3. abra. f(n) =0©(g(n))

Algoritmusok futasi idejének elemzésénél el6fordulé legfontosabb fliggvényosztalyok:
Logaritmikus - O(Ign)
Linearis - O(n)
n-log-n - O(nlgn)
Négyzetes - O(?)
Kobos - O(n®)
Polinomialis - O(SK yan') (ax > 0)
Exponencidlis - O(2")

Minden f(n) és g(n) figgvényre f(n) = ©(g(n)) akkor és csak akkor ha f(n) = O(g(n)) és
f(n) = Q(g(n)).

O-jeldlés
o(g(n)) = {f(n) : (Ve > 0)(Ino > 0)(Vn = no)(0 < f(n) < cg(n))}.
Kovetkezmény:
f(n)
lim —==0.
n—e g(n)

Példaul, 2n = o(n?), de 2n? # o(n?).
wHjelodlés

w(g(n)) ={f(n): (¥c> 0)(Ing > 0)(Vn > ng)(0 < cg(n) < f(n))}
Példaul, /2 = w(n), de n?/2 # w(n?).

Az f(n) = w(g(n)) relaciobol kovetkezik, hogy

f(n)

im —= =0
= g(n)

1.6. Aszimptotikus egyenl 6ségek és egyenl 6tlenségek

Tranzitivitas:

f(n) = ©(g(n)esgn) = O(h(n)akkor f(n) = ©O(h(n)),
f(n) = O(g(n))eésg(n) = O(h(n)) akkor f(n) = O(h(n)),
) = Qgm)ésgn) = Q(h(n)akkor f(n) = Q(h(n)),
f(n) = o(g(n))ésg(n) = o(h(n))akkor f(n) = o(h(n)),
f(n) = w(g(n))ésgn) = w(h(n))akkor f(n) = w(h(n)).

Reflexivitas:

—
—
=]
=
Il
o
—~

N
—~
=)
=
¥

Szimmetria:
f(n) =0O(g(n)) akkor és csak akkor ha g(n) = ©(f(n)).

Antiszimmetria:

|
Qo
—
—h
—~
=)
=
Nt

f(n) = O(g(n)) akkor és csak akkorha g(n)
o(g(n)) akkor és csak akkor ha g(n) = w(f(n)).

Példa algoritmus futasi idejének szamitasara.

Probléma : Keresés véges halmazbdl szarmazo, egész szamokbdl allé rendezetlen sorozatban.
Bemenet: (ap,...,an_1) sorozat és X keresett elem.

Kimenet: Olyanihogy 0<i<nésx=g vagyi=nésakkor (Vi)(0<i<n=Xx#g)

public static int Keres(int[] A, int x){

int 1=0; //cl

while (i<A.length && A[i]!=x) { //c2
it++; //c3

}

return 1i; //c4

Legyen Bi = {(A,n,x) : Ali] =xA(V]))(0< j<i=A[j] #X)}i=0,...,n—1, és
legyen Bp = {(A,n,X) : (V[)(0< j<n=A[j] #X)}
Minden (A, n,X) bemeneti adat pontosan egy B; halmazba esik (i =0,...,n).
Ha (A, n,Xx) € Bj, akkor KERES(A, n,X) futasi ideje

cit+(i+1l)cptics+ca

Legjobb eset: Ha (A, n,X) € By, tehat

Tij(n) =c1+c2+cs=0(1)

Legrosszabb eset: Ha (A, n,Xx) € By, tehat
Tr(n)=c1+(n+1)ca+ncg+c4=(Cr+C3)N+C1+C+Cq = O(N). Atlagos eset:
Legyen D az Integer tipus elemeinek a szama. Tegytk fel, hogy minden bemenet egyforman valészin(, azaz annak valészin(isége,
hogy X = a valamely adott a egész szamra %.

Vezessik be a p= % ésq=1—- % jeloléseket (Nyilvanvalo, hogy p<1ésqg< 1).

Jeldlie Pr((A,n,x) € B;) annak val6szinliségét, hogy az (A, n,x) bemenet a B; halmazba esik.
Pr((A,n,x) €B)=qp,i=0,....,n—1, és

Pr((A;,n,x) €Bp) =q"

Tehat a KERES algoritmus atlagos futasi ideje:

Ta(n) = _iPr((A,n,X)eBi)(c1+(i+1)cz+iC3+c4)

n-1
= qu'p(cﬁ—(i+1)cz+iC3+c4)+q”(cl+(n+1)cz+n03+c4)
i=

n-1
(c1+n(c2+c3)+ca)p EOq'+(01+(n+l)Cz+n03+C4)
i=l

IN

n—1
C1+n(Cz+C3)+C4)pC;_1 +(c1+(n+1)c,+Nnc3+cy)
c1+n(ca+¢3)+¢a)(L—g")+(ca+(n+1)ca+Nncz+Cq)
C1+Nn(C2+C3)+Ca)+(C1+(N+1)Co+NC3+Caq)

2Cy+2c3)N+2¢1 +Co + 2¢C4

IA
—_~ o~~~

Tehat Ta(n) = O(n).
Ha algoritmus futasi idejének nagysagrendjét (O, Q, ©) akarjuk kifejezni, akkor a szamitast egyszerisithetjik:

1. Minden elemi miivelet kdltségét 1-nek vehetjik.

2. Elhagyhatjuk azokat az elemi miveleteket, amelyek végrehajtasi szama konstans, azaz nem fligg a bemeneti adattol.

1.7. Bizonyitasi (kbvetkeztetési) szabalyok

Ha Hgq,--- ,Hy igaz allitdsok (specifikaciok), azaz vagy axiomak, vagy mar bizonyitott allitAsok, akkor H is igaz allitas.

1.7.1. Kezdd6feltételes ismétléses vezérlés.

-~ —FAp

4. abra. while ciklus bizonyitasi szabalya
{FAP}M{P}
{P}while (F) M{=F AP}

A P logikai formulat ciklusinvaridnsnak nevezzik.

1.7.2. Végfeltételes ismétléses vezérlés.

P
M
Q/NF Q
i
F
h
QA TF

5. &bra. repeat ciklus bizonyitasi szabalya

{P}M{Q}, QAF =P
{P}do M; while (F){QA—-F}

1.8. A KERES algoritmus helyességének bizonyitasa

public static int Keres(int[] A, int x){

int i=0; //cl

while (i<A.length && A[i]!=x) { //c2
it+; //c3

}

return i; //c4

}

Jeldlie F az ismétlési feltételt, F = (i < n) A (Ali] # X).

1. Megmutatjuk, hogy a P = (Vj)(1 < j < i = Ai] # x) formula ciklusinvarians lesz.

Nyilvanvalé, hogy ha a while ciklus magja, az i++ értékadas el6tt teljestl az F A P formula, akkor az értékadas utan teljesul P.

2. Meg kell mutatni, hogy a while ciklus el6tt, azaz az i=0; értékadas utan teljesul a P formula. Ez azért igaz, mert nincs olyan |,
hogy0< j<i=0.

A while ciklus biztosan terminal, mert a ciklusmag minden végrehajtasa 1-el néveli az i valtozo értékét. A kezddfeltételes ismétlés
bizonyitasi szabalya szerint a while ciklus utan —=F A P teljesul.

-F = (i >n)V (Ali] =x). Hai > n teljestl, az azt jelenti, hogy a keresett X nem eleme a sorozatnak, hisz P is teljesil. Ha a
terminalas utan i < n, akkor Afi] = X és mivel P is teljestl, i a legkisebb olyan index, hogy Ali] = X.

