
1. Alapfogalmak

1.1. Algoritmus

Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt tel-
jesítő bemeneti adatra végrehajtva, a megkívánt kimeneti adatot eredményezi.
Program = algoritmus leírása adott programozási nyelven.

1.2. Számítási probléma

A számítási probléma bemenet/kimenet feltételpárral meghatározott követelmény. Azt írja elő, hogy a bemeneti feltételt teljesítő
adatra a kimeneti feltételt teljesítő adatot kell kiszámítani.
Probléma esete: egy olyan (esetleg összetett) adat, amely teljesíti a bemeneti feltételt.
Például, a rendezési probléma a következőt jelenti.
Bemenet: Azonos típusú adatok H = {a1, . . . ,an} halmaza, amelyeken értelmezett egy ≤ lineáris rendezési reláció.
Kimenet: A H halmaz elemeinek egy ≤ rendezéstartó felsorolása, tehát olyan 〈b1, . . . ,bn〉 sorozat, amelyre b1 ≤ b2 ≤ . . .≤ bn, és
H = {b1, . . . ,bn}.

1.3. Specifikáció

{B}A{K}

B logikai formula, a bemeneti feltétel ,
K logikai formula, a kimeneti feltétel ,
A az algoritmus, amelyre az állítás vonatkozik.

Algoritmus helyessége. Az A algoritmus helyes a {B}A{K} specifikációra nézve, ha minden X bemeneti adatra, amelyre
teljesül a B bemeneti feltétel, az algoritmus végrehajtása véges sok elemi művelet végrehajtása után befejeződik, és a keletkezett
kimeneti adatra teljesül a K kimeneti feltétel.

Például, a rendezési probléma specifikációjában a B bemeneti feltétel azt írja elő, hogy a bemeneti halmaz elemein értelmezett
a ≤ lineáris rendezési reláció. A kimeneti feltétel pedig a következő formulával adható meg:

(H = {b1, . . . ,bn})∧ (bi ≤ bi+1, i = 1, . . . ,n−1)

Megjegyzés.
1. Ugyanazon bemeneti adatra több olyan kimeneti adat is lehet, amelyre a specifikáció igaz.
2. A kimeneti feltételben hivatkozhatunk bemeneti adatra, illetve bemeneti adatot tartalmazó változóra is. A kimeneti formulában
az x változónak a művelet előtti értékére a Pre(x) kifejezéssel hivatkozunk. Pl. a CSERE művelet, amelytől azt várjuk el, hogy az x
és y változó tartalmát kicserélje, a következő specifikációval adható meg: {Igaz} CSERE {x = Pre(y)∧y = Pre(x)}.

1.4. Algoritmusok futási ideje

Legyen A az e1, · · · ,em elemi műveletekből felépített algoritmus, és jelölje ti az ei művelet futási idejét (konkrét, vagy hipotetikus
gépen). A ti futási idő függhet az ei művelet argumentumaitól. A továbbiakban feltételezzük, hogy minden ei elemi művelet futási
ideje ci konstans. Adott x bemenetre jelölje T(A,x) az A algoritmus tényleges futási idejét, ami az x bemeneti adatra ténylegesen
végrehajtott elemi műveletek futási idejének az összege. Jelölje |x| az x bemeneti adat méretét. Ez a méret összetett adat (pl.
halmaz, vagy sorozat) esetén általában az adatok száma. Nem összetett adat esetén pedig általában az adat értéke.
Az ei elemi műveletek ti futási ideje és az |x| méret függvény együttesen adja a bonyolultsági mértéket.
Algoritmusnak más költsége is van, nevezetesen a memóriaigény, és elosztott algoritmusok esetén fontos a kommunikációs költség
is.
Legjobb eset

Tl j (A,n) = min{T(A,x) : |x|= n}

Legrosszabb eset
Tlr (A,n) = max{T(A,x) : |x|= n}

1

Átlagos eset
Jelölje Pr(x) annak valószínűségét, hogy x bemeneti adata lesz az A algoritmusnak.

Ta(A,n) = ∑
|x|=n

Pr(x)T(A,x)

1.5. Függvények növekedési rendje, aszimptotikus jelölések

O-jelölés
O(g(n)) = { f (n) : (∃c,n0 ≥ 0)(∀n≥ n0)(0≤ f (n)≤ cg(n))}

„ f (n) = O(g(n))” jelentése: f (n) ∈O(g(n))

n0

f(n)

c g(n)

1. ábra. f (n) = O(g(n))

Ω-jelölés
Ω(g(n)) = { f (n) : (∃c,n0 ≥ 0)(∀n≥ n0)(0≤ cg(n)≤ f (n))}

Θ-jelölés

n0

f(n)

c g(n)

2. ábra. f (n) = Ω(g(n))

Θ(g(n)) = { f (n) : (∃c1,c2,n0 ≥ 0)(∀n≥ n0)(0≤ c1g(n)≤ f (n)≤ c2g(n))}

2

n0

f(n)

c2 g(n)

c1 g(n)

3. ábra. f (n) = Θ(g(n))

Algoritmusok futási idejének elemzésénél előforduló legfontosabb függvényosztályok:
Logaritmikus - O(lgn)
Lineáris - O(n)
n-log-n - O(n lgn)
Négyzetes - O(n2)
Köbös - O(n3)
Polinomiális - O(∑k

i=0aini)(ak > 0)
Exponenciális - O(2n)

Minden f (n) és g(n) függvényre f (n) = Θ(g(n)) akkor és csak akkor ha f (n) = O(g(n)) és
f (n) = Ω(g(n)).
o-jelölés

o(g(n)) = { f (n) : (∀c > 0)(∃n0 > 0)(∀n≥ n0)(0≤ f (n) < cg(n))}.

Következmény:

lim
n→∞

f (n)
g(n)

= 0 .

Például, 2n = o(n2), de 2n2 6= o(n2).
ω-jelölés

ω(g(n)) = { f (n) : (∀c > 0)(∃n0 > 0)(∀n≥ n0)(0≤ cg(n) < f (n))}

Például, n2/2 = ω(n), de n2/2 6= ω(n2).

Az f (n) = ω(g(n)) relációból következik, hogy

lim
n→∞

f (n)
g(n)

= ∞

1.6. Aszimptotikus egyenl őségek és egyenl őtlenségek

Tranzitivitás:
f (n) = Θ(g(n)) és g(n) = Θ(h(n)) akkor f (n) = Θ(h(n)),
f (n) = O(g(n)) és g(n) = O(h(n)) akkor f (n) = O(h(n)),
f (n) = Ω(g(n)) és g(n) = Ω(h(n)) akkor f (n) = Ω(h(n)) ,
f (n) = o(g(n)) és g(n) = o(h(n)) akkor f (n) = o(h(n)),
f (n) = ω(g(n)) és g(n) = ω(h(n)) akkor f (n) = ω(h(n)).

3

Reflexivitás:
f (n) = Θ(f (n)),
f (n) = O(f (n)),
f (n) = Ω(f (n)).

Szimmetria:
f (n) = Θ(g(n)) akkor és csak akkor ha g(n) = Θ(f (n)).

Antiszimmetria:
f (n) = O(g(n)) akkor és csak akkor ha g(n) = Ω(f (n)),
f (n) = o(g(n)) akkor és csak akkor ha g(n) = ω(f (n)).

Példa algoritmus futási idejének számítására.
Probléma : Keresés véges halmazból származó, egész számokból álló rendezetlen sorozatban.
Bemenet: 〈a0, . . . ,an−1〉 sorozat és x keresett elem.
Kimenet: Olyan i hogy 0≤ i < n és x = ai vagy i = n és akkor (∀i)(0≤ i < n⇒ x 6= ai)

public static int Keres(int[] A, int x){
int i=0; //c1
while (i<A.length && A[i]!=x){ //c2

i++; //c3
}
return i; //c4

}

Legyen Bi = {(A,n,x) : A[i] = x∧ (∀ j)(0≤ j < i ⇒ A[j] 6= x)} i = 0, . . . ,n−1, és
legyen Bn = {(A,n,x) : (∀ j)(0≤ j < n⇒ A[j] 6= x)}
Minden (A,n,x) bemeneti adat pontosan egy Bi halmazba esik (i = 0, . . . ,n).
Ha (A,n,x) ∈ Bi , akkor KERES(A,n,x) futási ideje

c1 +(i +1)c2 + i c3 +c4

Legjobb eset: Ha (A,n,x) ∈ B0, tehát
Tl j (n) = c1 +c2 +c4 = O(1)
Legrosszabb eset: Ha (A,n,x) ∈ Bn, tehát
Tlr (n) = c1 +(n+1)c2 +nc3 +c4 = (c2 +c3)n+c1 +c2 +c4 = O(n). Átlagos eset:
Legyen D az Integer típus elemeinek a száma. Tegyük fel, hogy minden bemenet egyformán valószínű, azaz annak valószínűsége,
hogy x = a valamely adott a egész számra 1

D .
Vezessük be a p = 1

D és q = 1− 1
D jelöléseket (Nyilvánvaló, hogy p < 1 és q < 1).

Jelölje Pr((A,n,x) ∈ Bi) annak valószínűségét, hogy az (A,n,x) bemenet a Bi halmazba esik.
Pr((A,n,x) ∈ Bi) = qi p, i = 0, . . . ,n−1, és
Pr((A,n,x) ∈ Bn) = qn

Tehát a KERES algoritmus átlagos futási ideje:

Ta(n) =
n

∑
i=0

Pr((A,n,x) ∈ Bi)(c1 +(i +1)c2 + i c3 +c4)

=
n−1

∑
i=0

qi p(c1 +(i +1)c2 + i c3 +c4)+qn(c1 +(n+1)c2 +nc3 +c4)

≤ (c1 +n(c2 +c3)+c4)p
n−1

∑
i=0

qi +(c1 +(n+1)c2 +nc3 +c4)

= (c1 +n(c2 +c3)+c4)p
qn−1
q−1

+(c1 +(n+1)c2 +nc3 +c4)

= (c1 +n(c2 +c3)+c4)(1−qn)+(c1 +(n+1)c2 +nc3 +c4)

≤ (c1 +n(c2 +c3)+c4)+(c1 +(n+1)c2 +nc3 +c4)

= (2c2 +2c3)n+2c1 +c2 +2c4

4

Tehát Ta(n) = O(n).
Ha algoritmus futási idejének nagyságrendjét (O,Ω,Θ) akarjuk kifejezni, akkor a számítást egyszerűsíthetjük:

1. Minden elemi művelet költségét 1-nek vehetjük.

2. Elhagyhatjuk azokat az elemi műveleteket, amelyek végrehajtási száma konstans, azaz nem függ a bemeneti adattól.

1.7. Bizonyítási (következtetési) szabályok

H1, · · · ,Hk

H

Ha H1, · · · ,Hk igaz állítások (specifikációk), azaz vagy axiómák, vagy már bizonyított állítások, akkor H is igaz állítás.

1.7.1. Kezdőfeltételes ismétléses vezérlés.

M

F

P

P

i

h

F P

F P

4. ábra. while ciklus bizonyítási szabálya

{F ∧P}M {P}
{P}while (F) M {¬F ∧P}

A P logikai formulát ciklusinvariánsnak nevezzük.

1.7.2. Végfeltételes ismétléses vezérlés.

P

M

F

Q

Q

Q F

i

h

F

5. ábra. repeat ciklus bizonyítási szabálya

{P}M {Q}, Q∧F ⇒ P
{P}do M; while (F){Q∧¬F}

5

1.8. A K ERES algoritmus helyességének bizonyítása

public static int Keres(int[] A, int x){
int i=0; //c1
while (i<A.length && A[i]!=x){ //c2

i++; //c3
}
return i; //c4

}

Jelölje F az ismétlési feltételt, F = (i < n)∧ (A[i] 6= x).
1. Megmutatjuk, hogy a P = (∀ j)(1≤ j < i ⇒ A[i] 6= x) formula ciklusinvariáns lesz.
Nyilvánvaló, hogy ha a while ciklus magja, az i++ értékadás előtt teljesül az F ∧P formula, akkor az értékadás után teljesül P.
2. Meg kell mutatni, hogy a while ciklus előtt, azaz az i=0; értékadás után teljesül a P formula. Ez azért igaz, mert nincs olyan j ,
hogy 0≤ j < i = 0.
A while ciklus biztosan terminál, mert a ciklusmag minden végrehajtása 1-el növeli az i változó értékét. A kezdőfeltételes ismétlés
bizonyítási szabálya szerint a while ciklus után ¬F ∧P teljesül.
¬F = (i ≥ n)∨ (A[i] = x). Ha i ≥ n teljesül, az azt jelenti, hogy a keresett x nem eleme a sorozatnak, hisz P is teljesül. Ha a
terminálás után i < n, akkor A[i] = x és mivel P is teljesül, i a legkisebb olyan index, hogy A[i] = x.

6

