
9. Megoldás keresése visszalépéssel (backtracking)

Probléma: n-királyn ő
Helyezzünk el az nxn-es sakktáblán n királynőt, hogy egyik se üsse a másikat!

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

1. ábra. Üres tábla

A megoldás megadható annak az n mezőnek a koordinátáival, amelyekre királynőket helyezzük: M = {(x1,y1), · · · ,(xn,yn)}.
Tehát az (xi ,yi) és (x j ,y j) mezőkre helyezett két királynő akkor és csak akkor nem üti egymást, ha

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8
x

y

x+y=7

x-y=-3

2. ábra. Az (x,y) mezőn lévő királynő ütési mezői.

1



xi 6= x j (1)

yi 6= y j (2)

xi −yi 6= x j −y j (3)

xi +yi 6= x j +y j (4)

Tehát egy ilyen M halmaz akkor és csak akkor megoldása a feladatnak, ha (∀i, j)(1≤ i < j ≤ n)teljesül a fenti 4 feltétel.
Minden sorban, minden oszlopban pontosan egy királynőnek kell lenni, továbbá minden főátlóban és minden mellékátlóban leg-
feljebb egy királynő lehet. Tehát minden megoldás megadható egy X = 〈x1, . . . ,xn〉 vektorral, ami azt jelenti, a királynőket az
{(x1,1), · · · ,(xn,n)} mezökre helyezünk királynőtket. Ekkor a megoldás feltétele:(∀i, j)(1≤ i < j ≤ n)

xi 6= x j (5)

xi − i 6= x j − j (6)

xi + i 6= x j + j (7)

9.1. Kimerít ő keresés (nyers er ő) módszere

Elvi algoritmus:
KIMERITOKERESES

∀X = 〈x1, . . . ,xn〉 ∈ [n]× . . .× [n] do
if Megoldás(X) then

KiIr(X)

A KIMERITOKERESES algoritmus megvalósítása:

Const
MaxN=100;

Type
Index=1..MaxN;
Vektor=Array[Index] of Index;

Var
N:Index;
X:Array[Index] of Index;

Function Megoldas(X:Vektor):Boolean;
Begin End;
Procedure KiIr(X:Vektor);
Begin End;

Procedure KimeritoKereses(k:Integer);
{Globál: X, N}
{A megoldásvektor <X[1],...,X[k-1]>komponenseit már beállítottuk}
Var
i:Index;

Begin{KimeritoKereses}
For i:=1 To N Do Begin

X[k]:=i;
If k=N Then Begin

If Megoldas(X) Then
KiIr(X)

End Else {k<N}
KimeritoKereses(k+1);

End{for i};
End{KimeritoKereses};

2



Begin
{Beolvasás}
KimeritoKereses(0);
End.

Nyilvánvaló, hogy ez a módszer sok vektort feleslegesen vizsgál, hiszen ha x1 = x2, akkor X biztosan nem lehet megoldás. Azaz,
elegendő lenne csak a permutációkat vizsgálni.
Ötlet: probáljuk a megoldást lépésenként előállítani úgy, hogy ha már elhelyeztünk a tábla első k−1 sorában királynőket úgy, hogy
egyik sem üti a másikat, akkor a következő lépésben a k-adik sorba próbáljunk rakni egy királynőt.
Megoldáskezdemény:
X = 〈x1, . . . ,xk〉, 0≤ k≤ n,1≤ xi ≤ n
X jó megoldáskezdemény, ha kezdőszelete lehet egy megoldásnak, tehát nem üti egymást a táblára már elhelyezett k darab
királynő, azaz:
(∀i, j)(1≤ i < j ≤ k)
(xi 6= x j)∧ (xi − i 6= x j − j)∧ (xi + i 6= x j + j)

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

3. ábra. Nem folytatható állás (megoldáskezdemény)

V = 〈1,4,2,5,3〉 jó megoldáskezdemény, de nem folytatható, mert a 6. sorba nem helyezhető királynő, hogy ne üsse a már
táblán lévők egyikét sem.
Visszalépést kell végezni: az 5. sorban lévőt más helyre kell rakni.
Ez az a pont, ahol ez a módszer különbözik a mohó stratégiáttól. Ott a megoldáskezdemény mindig folytatható volt, és meg tudtuk
mondani, hogy melyik lépéssel.
Itt azonban nem tudjuk megmondani, hogy egy megoldáskezdemény folytathaztó-e, és ha igen milyen lépéssel.

Program Kiralynokr; {Az N-királynő probléma rekurzív megoldása}
Const
N = 8 ;{ a tábla mérete }
N1 = N-1 ;{ a mellékátlok indexei -N1..N1 }
N2 = 2*N ;{ a főátlók indexei 2..N2 }

Type
Index = 1..N;
Vektor=Array[Index] of Index;

Var
X : Vektor;
Oszlop : Array [Index] Of Boolean;
Fatlo : Array [-N1..N1] Of Boolean;

3



1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

4. ábra. Az első megtalált megoldás

Matlo : Array [2..N2] Of Boolean;
i,j : Integer;

Procedure KiIr(V:Vektor);
Var i:Integer;
Begin
For i:=1 To N Do Write(V[i]:3);
WriteLn;
End;

Function Szabad(i,k : Index) : Boolean;
{Az (i,k) mezőre helyezhető-e királynő?}
Begin
If Oszlop[i] And

Fatlo[i-k] And
Matlo[i+k] Then

Begin {az elhelyezés bejegyzése}
Szabad := True;
Oszlop[i] := False; {i. oszlop foglalt}
Fatlo [i-k] := False;{i-k. főátló foglalt}
Matlo [i+k] := False {i+k. melléátló foglalt}

End Else
Szabad := False

End {Szabad};

Procedure Torol(i,k : Index); Begin
Oszlop[i] := True;
Fatlo [i-k] := True;
Matlo [i+k] := True

End{Torol};

Procedure Lepes(k : Index); {Global: X, N}
Var i : Integer;
Begin{<X[1],...,X[k-1]> jó megoldáskezdemény}
For i := 1 To N Do {miden lehetséges választásra ... }

4



If Szabad(i,k) Then Begin {rakható-e az (i,k) mezőre királynő?}
X[k]:=i; {a lépés bejegyzése}
If k = N Then {találtunk egy megoldás}
KiIr(X) {kiíratjuk}

Else Begin
Lepes(k+1); {továbblépés}
Torol(i,k) {visszalépés: a bejegyzés törlése}

End{else:k<N}
End{if}

End{Lepes};
Begin{program}
For i := 1 To N Do Begin {inicializálása}
Oszlop[i] := True; {minden oszlop szabad}
For j := 1 To N Do Begin

Fatlo[i-j] := True; {minden főátló szabad}
Matlo[i+j] := True {minden mellékátló szabad}

End{for j}
End{for i};
Lepes(1) {a keresés indítása}

End.

Nemrekurzív algoritmus

Program Kiralynokr;
{Az N-királynő probléma nemrekurzív megoldása}

Const
N = 8 ;{ a tábla mérete }
N1 = N-1 ;{ a mellékátlok indexei -N1..N1 }
N2 = 2*N ;{ a főátlók indexei 2..N2 }

Type
Index = 1..N;
Vektor=Array[Index] of Index;

Var
X : Vektor;
Oszlop : Array [Index] Of Boolean;
Fatlo : Array [-N1..N1] Of Boolean;
Matlo : Array [2..N2] Of Boolean;
i,j : Integer;

Procedure KiIr(V:Vektor);
Var i:Integer;
Begin
For i:=1 To N Do Write(V[i]:3);
WriteLn;
End;

Function Szabad(i,k : Index) : Boolean;
{Az (i,k) mezőre helyezhető-e királynő?}
Begin
If Oszlop[i] And

Fatlo[i-k] And
Matlo[i+k] Then

Begin {az elhelyezés bejegyzése}
Szabad := True;
Oszlop[i] := False; {i. oszlop foglalt}

5



Fatlo [i-k] := False;{i-k. főátló foglalt}
Matlo [i+k] := False {i+k. melléátló foglalt}

End Else
Szabad := False

End {Szabad};

Procedure Torol(i,k : Index); Begin
Oszlop[i] := True;
Fatlo [i-k] := True;
Matlo [i+k] := True

End{Torol};

Procedure Keres(Var X:Vektor; Var Van:Boolean); {Global: N}
Type Irany=(Ujpont, Tovabb, Vissza);
Var k : Integer; Merre:Irany;
Begin{Keres}
k:=1; X[1]:=1; Merre:=Ujpont; Van:=False;
While True Do

Case Merre of
Ujpont: If Szabad(X[k], k) Then Begin

If k=N Then Break; { megoldást találtunk, vége}
Inc(k); { átlépés a következő sorba}
X[k]:=1 { az első mezővel próbálkozunk}

End Else { X nem jó kezdemény }
Merre:=Vissza;

Tovabb: Begin { jó kezdeményről kell továbblépni}
Torol(X[k], k); { a bejegyzés törlése}
If X[k]<N Then Begin{ ha nem sorvégén vagyunk}

Inc(X[k]); { továbblépés a sorban }
Merre:=Ujpont

End Else If k>1 Then{ visszalépés az előző sorba}
Dec(k) { Merre nem változik}

Else
Exit { nem lehet visszalépni, vége}

End;

Vissza: If X[k]<N Then Begin { ha van sorvégén vagyunk}
Inc(X[k]); { továbblépés a sorban }
Merre:=Ujpont

End Else If k>1 Then Begin{ visszalépés az előző sorba}
Dec(k);
Merre:=Tovabb { X[1..k] jó kezdemény}

End Else { nem lehet visszalépni, vége}
Exit

End{case};
Van:=True;

End{Keres};
Var Van:Boolean; Begin
For i := 1 To N Do Begin {inicializálása}
Oszlop[i] := True;
For j := 1 To N Do Begin

Fatlo[i-j] := True;
Matlo[i+j] := True

End{for j}
End{for i};
Keres(X,Van);

6



If Van Then KiIr(X);
End.

Vegyük észre, hogy a megoldáskezdemények fát alkotnak. Egy X = 〈x1, . . . ,xk〉 megoldáskezdemény lehetséges közvetlen
folytatásai, azaz X fiai az Y = 〈x1, . . . ,xk, i〉 i = 1, . . . ,n lehetséges megoldáskezdemények.
Tehát minden fabejáró algoritmus alkalmazható megoldás keresésére, azzal a módosítással, hogy ha az aktuális X pont (megol-
dáskezdemény) nem választható, azaz kizárt lesz, akkor X-et úgy kell tekinteni a bejárás során, mint ha levél pont lenne.
A megoldás keresését meg tudjuk fogalmazni olyan általános formában, hogy az algoritmus érdemi része, azaz a megoldástér
bejárása csak néhány problémaspecifikus műveletet alkalmaz.
Ezt módszert "application framework" módszernek is nevezik. Adott problémára nem kell újraírni az érdmi részt, csak a problémas-
pecifikus műveletek megvalósítását kell megadni.

���
�

���
�

���
�

���
�

��	
	



�
�

��




���
�

+

+

Érintetlen

Aktuális

Aktív

Bevégzett

Kizárt

Érintetlen-kizárt

5. ábra. A megoldástér pontjainak osztályozása visszalépéses keresésnél

6. ábra. A megoldástér sematikus képe visszalépéses keresésnél

{ Probléma-specifikus műveletek: }
Procedure UresX(Var X:MTer);Forward;

{ X az üres megoldáskezdemény lesz }

7



Function EFiu(Var X: MTer): Boolean; Forward;
{ Ha van X-nek fia, akkor X az első fiúra változik és a
függvényhívás értéke True, egyébként False és X nem változik. }

Function Testver(Var X: MTer): Boolean; Forward;
{ Ha van X-nek még benemjárt testvére, akkor X a következő testvér lesz
és a függvényhívás értéke True, egyébként False és X nem változik.}

Function Apa(Var X: MTer):Boolean; Forward;
{ Ha van X-nek apja, akkor X az apjára változik és a
függvényhívás értéke True, egyébként False és X nem változik. }

Procedure VisszaAllit(Var X:MTer);Forward;
{ Törli a az aktívvá tételkor tett bejegyzéseket,

felszabadítja az esetleg foglalt memóriát }

Function Megoldas (Var X: MTer): Boolean; Forward;
{ akkor és csak akkor ad True értéket, ha X megoldása a problémának.}

Function LehetMego(Var X: MTer): Boolean; Forward;
{ Ha LehetMego(X) hamis, akkor nincs megoldás az X gyökerű részfában. }
{ Ha LehetMego(X) igaz, abból nem következik, hogy van is megoldás. }
{ Olyan bejegyzéseket is tehet, amelyek a további LehetMego és Megoldás

műveletek gyorsabb elvégzését segítik. }

Procedure RKeres(X:MTer);
{Megoldás rekurziv keresése az X-gyökerű megoldástér részfában }
{Global: X0; egy megoldás, Van=True<=>talált megoldást }
{X biztosan jó megoldáskezdemény, LehetMego(X) igaz}
Begin{RKeres}
If Megoldas(X) Then Begin

X0:=X; { KiIr(X) ha az összes megoldást keressük}
Van:=True; Exit { egy megoldás keresése esetén}

End;
If Not EFiu(X) Then Exit; { átlépés az első fiúra, ha van}
Repeat { a fiúk bejárása }

If Not LehetMego(X) Then { X kizárt pont-e? }
Continue; { ha igen, kihagyjuk }

RKeres(X); { az X gyökerű részfa rekurzív bejárása}
VisszaAllit(X); { visszalépés: a bejegyzés törlése}
If Van Then { egy megoldás keresése esetén kilépés, ha}

Exit; { volt megoldás az X-gyökerű részfában }
Until Not Testver(X) { átlépés a következő testvérre, ha van }

End{RKeres};
{*************************************************************************}

Procedure Keres(Var X:MTer; Var Van:Boolean);
{ Bemenet: X a megoldástér fájának gyökere}
{ Kimenet: Van=True<=>ha van megoldás és X egy megoldás lesz}
Type
Paletta=(Feher, Kek, Piros);

Var
Szin: Paletta;
Begin{Keres}
Szin:=Feher; Van:=False;

While True Do
Case Szin of

Feher: If LehetMego(X) Then Begin { X jó megoldáskezdemény?}
If Megoldas(X) Then Break;{ egy megoldás keresése esetén}

8



If Not EFiu(X) Then { majd a testvérére kell átlépni}
Szin:=Kek { X még aktív marad}

End Else { X kizárt pont lett}
Szin:=Piros;

Kek: Begin
VisszaAllit(X); { a bejegyzések törlése}
If Testver(X) Then { átlépés a testvére}

Szin:=Feher
Else If Not Apa(X) Then { visszalépés az apára}

Exit { X a megoldástér gyökere, kész}
End; { egyébként X:=Apa(X) és marad Kék}

Piros: If Testver(X) Then { a testvér lesz az új akt.pont}
Szin:=Feher

Else If Apa(X) Then { visszalépés az apára, ha van}
Szin:=Kek { X apja mindig aktív}

Else { X a gyökér, vége a keresésnek}
Exit

End{case};
Van:=True;

End{Keres};

A probléma-specifikus műveletek megvalósítása az n-királyn ő problémához.

Const MaxN=32; Type
Index = 1..MaxN;
Vektor=Array[Index] of 0..MaxN;
MTer=Record {a megoldástér pontjainak ábrázolása}

N:Index;
V:Vektor;
k:Integer;
Oszlop : Array [Index] Of Boolean;
Fatlo : Array [-(MaxN-1)..MaxN-1] Of Boolean;
Matlo : Array [2..2+MaxN] Of Boolean;

End;
Procedure UresX(Var X:MTer); Var i,j:Integer;
Begin
With X Do Begin
k:=0;
For j:=1 To N Do {a tabla inicializalasa }

Oszlop[j]:=True; {minden sor szabad}
For j:=-(N-1) To N-1 Do {minden foatlo szabad}

Fatlo[j]:=True;
For j:=2 To 2*N Do {minden mellekatlo szabad}

Matlo[j]:=True;
End;

End{UresX};

Function EFiu(Var X: MTer): Boolean;
Begin
If X.k<X.N Then Begin

Inc(X.k);
X.V[X.k]:=1;
EFiu:=True

End Else
EFiu:=False;

End{EFiu};

9



Function Testver(Var X: MTer): Boolean;
Begin
If (X.k>0)And(X.V[X.k]<X.N) Then Begin

Testver:=True;
Inc(X.V[X.k]);

End Else
Testver:=False;

End{Testver};

Function Apa(Var X: MTer):Boolean;
Begin
If X.k>0 Then Begin

Apa:=True;
Dec(X.k);

End Else
Apa:=False;

End{Apa};

Procedure VisszaAllit(Var X:MTer); Begin
With X Do Begin
If k=0 Then Exit;
Oszlop[V[k]] := True;
Fatlo [V[k]-k]:= True;
Matlo [V[k]+k]:= True

End;
End{VisszaAllit};

Function LehetMego(Var X:MTer) : Boolean; Begin
LehetMego:= True;
With X Do Begin

If k=0 Then Exit;
If Oszlop[V[k]] And

Fatlo[V[k]-k] And
Matlo[V[k]+k] Then

Begin
Oszlop[V[k]] := False;
Fatlo [V[k]-k] := False;
Matlo [V[k]+k] := False

End Else
LehetMego:= False

End
End {LehetMego};

Function Megoldas(Var X: MTer): Boolean; Begin
Megoldas:=X.k=X.N

End{Megoldas};

9.2. A visszalépéses keresés alkalmazása a pénzváltás problémára.

Probléma: Pénzváltás
Bemenet: P = {p1, ..., pn} pozitív egészek halmaza, és E pozitív egész szám.
Kimenet: Olyan S⊆ P, hogy E = ∑p∈S

A megoldást kifejezhetjük és kereshetjük bitvektor formában, tehát olyan X = 〈x1, . . . ,xn〉 vektort keresünk, amelyre

E =
n

∑
i=1

xi pi

10



Ekkor a megoldástér fája bináris fa lesz. A megoldást kifejezhetjük és kereshetjük mint a pénzek indexeinek olyan S⊆ {1, . . . ,n}

0 1

0

0

0 0 0 0 0 0 0 0

000

01

1

1 1 1 1 1 1 1

111

1

7. ábra. Bináris megoldástér a pénzváltás probléma n = 4 esetében

halmazának X = 〈ik, . . . , im〉 növekvő felsorolásáként is, azaz i1 < i2 < .. . < im, hogy .

E =
m

∑
k=1

pik

Ekkor a megoldástér formája a 8. ábrán látható n = 5 esetére. A pénzváltás probléma megoldásához elegendő megadni a

5

5

3

4 5

5

5

5

4 5 5

3 4 5 4 5 5

2 3 4 51

2 54

4 53

54

8. ábra. Nem bináris megoldástér a pénzváltás probléma n = 5 esetében

probléma-specifikus URESX, EFIU, TESTVER, (APA,) VISSZAALLIT, LEHETMEGO, MEGOLDAS műveletek megvalósítását, és az
RKERES (KERES ) eljárás változtatás nélkül alkalmazhaztó egy megoldás előállítására.
(Az APA művelet csak a nemrekurzív keresés esetén kell.)
Legyen X = 〈ik, . . . , im〉 tetszőleges megoldáskezdemény.
EFIU(X) = 〈i1, . . . , im, im+1〉, ha im < n
TESTVER(X) = 〈i1, . . . , im−1, im+1〉, ha im < n
APA(X) = 〈i1, . . . , im−1〉, ha m> 0
LEHETMEGO(X) akkor és csak akkor adjon igaz értéket, ha

m

∑
k=1

pik ≤ E∧
m

∑
k=1

pik +
n

∑
j=im+1

p j ≥ E

MEGOLDAS(X) akkor és csak akkor adjon igaz értéket, ha

E =
m

∑
k=1

pik

11



k

k+1 n

. . .

X

9. ábra. A fa pontjai

A VISSZAALLIT művelet megvalósítása előtt dönteni kell, hogy milyen segéd információt tárolunk egy megoldástérpontban. Cél-
szerű tárolni a

Resz=
m

∑
k=1

pik

Maradt =
n

∑
j=im+1

p j

összegeket, hogy a LEHETMEGO(X) és MEGOLDAS(X) műveleteket konstans időben ki tudjuk számítani.

Const
MaxN=100; {a pénzek max. száma}

Type
Index = 1..MaxN;
MTer=Record

E:Longint;
P:Array[Index] of Word; {a pénzek}
N:Index; {az összes pénz száma}
V:Array[0..MaxN] of Word; {a megoldáskezdemény}
k:Integer; {a megoldáskezdemény pénzeinek száma}
Resz:Longint; {a megoldáskezdemény pénzeinek összege}
Maradt:Longint;{a még választható pénzek összege}

End;

Procedure UresX(Var X:MTer);
Var i,j:Integer;
Begin
With X Do Begin

k:=0;
V[0]:=0;
Maradt:=0;
Resz:=0;
For i:=1 To N Do Maradt:=Maradt+P[i];

End;
End;

Function EFiu(Var X: MTer): Boolean;
Begin
If X.V[X.k]<X.N Then Begin

Inc(X.k);
X.V[X.k]:=X.V[X.k-1]+1;

12



EFiu:=True
End Else
EFiu:=False;

End;

Function Testver(Var X: MTer): Boolean;
Begin
If (X.k>0)And(X.V[X.k]<X.N) Then Begin

Testver:=True;
Inc(X.V[X.k]);

End Else
Testver:=False;

End;

Function Apa(Var X: MTer):Boolean;
Begin
If X.k>0 Then Begin
Apa:=True;
Dec(X.k);

End Else
Apa:=False;

End;
Procedure VisszaAllit(Var X:MTer);
Begin
With X Do Begin
If k=0 Then Exit;
Resz := Resz-P[V[k]];
Maradt := Maradt+P[V[k]];

End;
End{VisszaAllit};

Function LehetMego(Var X:MTer) : Boolean;
Begin
LehetMego:= True;
With X Do Begin

If k=0 Then Exit;
If (Resz+V[k] <= E) And (Resz+Maradt>=E)
Then Begin

Resz:=Resz+P[V[k]];
Maradt:=Maradt-P[V[k]];

End Else
LehetMego:= False

End
End {LehetMego};

Function Megoldas (Var X: MTer): Boolean;
Begin
Megoldas:=X.Resz=X.E

End;

Visszalépésses keresési algoritmusok futási ideje
Legrosszabb esetben a kersés a megoldástér-fa minden pontját bejárja, ami exponenciális. Visszalépésses keresési algoritmu-
sok tárigénye
A rekurzív megvalósítás során minden aktív pont tárolódik.
Nemrekurzív megvalósítás során elég csak csak az aktuális pontot tárolni.
A visszalépéses keresés alkamazható optimális megoldás előállítására is.

13



Legyen C(X) a célfüggvény, tehát olyan X-et keresünk, amelyre: MEGOLDAS(X) és C(X) minimális.

If Megoldas(X) and (C(X)<OptC) Then Begin
X0:=X;
OptC:=C(X)

End

10. Elágazás-korlátozás módszere (branch and bound)

{ Megoldás keresése a megoldástér adagolóval történő bejárásával }
Type

MTer = ???; (* a megoldástér típusa *)
Adagolo= ???; (* az adagoló típusa *)

{------------------------ Adagoló műveletek: --------------------------------}
Procedure Letesit(Var A:Adagolo);
Begin End;

Procedure BeTesz(Var A:Adagolo; X:MTer);
(* {} Be(A,X) {A=Pre(A) U {X}} *)
Begin End{BeTesz};

Procedure KiVesz(Var A:Adagolo; Var X:MTer);
(* {Not Ures(A)} Ki(A,X) {Pre(A)=A U {X}} *)
Begin End{Kivesz};

Function Ures(A:Adagolo):Boolean;
Begin End{Ures};

Procedure Megszuntet(Var A:Adagolo);
Begin End{Megszuntet};

{--------------------- Probléma-specifikus műveletek:------------------------}
{ A megoldástér bejarásához használt műveletek:}
Procedure UresX(Var X:MTer);Forward;

{ X az üres megoldáskezdemény lesz }
Function EFiu(Var X: MTer): Boolean; Forward;
{ Ha van X-nek fia, akkor X az első fiúra változik és a
függvényhívás értéke True, egyébként False és X nem változik. }

Function Testver(Var X: MTer): Boolean; Forward;
{ Ha van X-nek még benemjárt testvére, akkor X a következő testvér lesz
és a függvényhívás értéke True, egyébként False és X nem változik.}

Function Megoldas (Var X: MTer): Boolean; Forward;
{ akkor és csak akkor ad True értéket, ha X megoldása a problémának.}

Function LehetMego(Var X: MTer): Boolean; Forward;
{ Ha LehetMego(X) hamis, akkor nincs megoldás az X gyökerű részfában. }
{ Ha LehetMego(X) igaz, abból nem következik, hogy van is megoldás. }

Function C(Var X: MTer): Real; Forward;
{ Ha Megoldas(X) akkor C(X) az X megoldás célfüggvény értéke }

{****************************************************************************}

Procedure AKeres(X:MTer; Var OptC:Real; Var X0:MTer);
{ A megoldás keresése az X gyökerű megoldástér-fában }
{ A megoldástér bejárása adagolóval }
Var

A:Adagolo;
Begin (* Keres *)
If Not LehetMego(X) Then

Exit; { nem létezik megoldás }

14



OptC:=Inf;
Letesit(A); { üres adagoló létesítése}
BeTesz(A,X); { az A adagolóban csak az X pont van }
While Not Ures(A) Do Begin { amíg van aktív pont az adagolóban }

KiVesz(A,X); { egy aktív pontot kiveszünk az adagolóból }
If Megoldas(X) And (C(X)<OptC) Then Begin { jobb megoldást talaltunk }
OptC:=C(X);
X0:=X; { a megoldás feljegyzése }

End;
If EFiu(X) Then { átlépés az első fiúra, ha van; }
Repeat { X összes fiának kigenerálása }

If LehetMego(X) Then { X kizárt pont-e? }
BeTesz(A,X); { X-et betesszük az aktív pontok közé }

Until Not Testver(X); { átlépés a következő testvérre, ha van }
End{while};

End (* AKeres *);

Érintetlen

Aktuális

Aktív

Kizárt

Bevégzett

Érintetlen-kizárt

10. ábra. A megoldástér pontjainak osztályozása adagolóval történő keresés esetén

Adagolós keresés esetén mindig teljesül, hogy bármely Y érintetlen ponthoz pontosan egy olyan X aktív (vagy aktuális) pont
van, hogy Y leszármazottja X-nek.
Ez a feltétel ciklusinvariáns, tehát az algortimus helyes.
Az algoritmus futási ideje sok esetben erősen függ az aktuális pont választásától. Ezen kívül további kizárásokat is tehetünk.
Tegyük fel, hogy a célfüggvényre meg tudunk fogalmazni olyan AK(X) alsókorlát és FK(X) felsőkorlát függvényeket, amelyekre
teljesülnek az alábbi egyenlőtlenségek.
Bármely X megoldáskezdeményre és minden olyan Y megoldásra, amely leszármazottja X-nek:

AK(X)≤C(Y)≤ FK(X)

Ekkor az adagoló lehet olyan prioritási sor, amely akár az AK alsó korlát, akár az FK felső korlát szerinti minimumos prioritási sor.
Tekintsük először azt az esetet, amikor az adagoló AK szerinti minimumos prioritási sor.

15



Érintetlen

Aktuális

Aktív

Kizárt

Bevégzett

Érintetlen-kizárt

11. ábra. A megoldástér pontjainak sematikus ábrázolása adagolós keresés esetén

Const
Inf=10.0E10; (* a végtelen reprezentánsa *)

Type
MTer = ???;(* a megoldástér típusa *)
PriSor= ???;(* a minimumos prioritási sor típusa *)

{---------------------------- Prioritási sor műveletek: ---------------------}
Procedure Letesit(Var S:PriSor);

Begin End{Letesit};
Procedure SorBa(Var S:PriSor; X:MTer);

Begin End{SorBa};
Procedure SorBol(Var S:PriSor; Var X:MTer);

Begin End{SorBol};
Procedure Megszuntet(Var S:PriSor);

Begin End{Megszuntet};
Function Elemszam(S:PriSor):Word;

Begin End{Elemszam};

{--------------------- Probléma-specifikus műveletek:------------------------}
{ A megoldástér bejarásához használt műveletek:}
Procedure UresX(Var X:MTer);Forward;

{ X az üres megoldáskezdemény lesz }
Function EFiu(Var X: MTer): Boolean; Forward;

{ Ha van X-nek fia, akkor X az első fiúra változik és a
függvényhívás értéke True, egyébként False és X nem változik. }

Function Testver(Var X: MTer): Boolean; Forward;
{ Ha van X-nek még benemjárt testvére, akkor X a következő testvér lesz
és a függvényhívás értéke True, egyébként False és X nem változik.}

16



Function Megoldas (Var X: MTer): Boolean; Forward;
{ akkor és csak akkor ad True értéket, ha X megoldása a problémának.}

Function LehetMego(Var X: MTer): Boolean; Forward;
{ Ha LehetMego(X) hamis, akkor nincs megoldás az X gyökerű részfában. }
{ Ha LehetMego(X) igaz, abból nem következik, hogy van is megoldás. }

Function C(Var X: MTer): Real; Forward;
{ Ha Megoldas(X) akkor C(X) az X megoldás célfüggvény értéke }
Function AK(Const X: MTer): Real;
{ - Az X gyökerű részfában minden Y-ra, ha Megoldas(Y) akkor AK(X)<=C(Y).}

Begin End;
Function FK(Const X: MTer): Real;
{ Az X gyökerű részfaban minden Y-ra, ha Megoldas(Y) akkor C(Y)<=FK(X) }
{ Megjegyzés: FK(X)<Inf-bol nem következik, hogy egyáltalan létezik

megoldás az X-gyökerű részfában!}
Begin End;

Procedure Keres11(X:MTer; Var X0:MTer);
{ Optimalis megoldás keresése az X gyökerű megoldástér-fában. }
{ Ha az Y megoldás folytatasa X-nek, akkor AK(X)<=C(Y),

de nem biztos, hogy AK(X)=C(X) ha X megoldás }
{ Aktiv pont választása a also korlát szerinti mini. prioritási sorral }

Var
S:PriSor; { AK-szerinti minimumos prioritási sor }
G_F_K:Real;{ Globalis felső korlát: az eddigi legjobb Y megoldás,

C(Y) célfüggvény értéke }

Begin (* Keres11 *)
UresX(X0);
G_F_K:=Inf; { még nincs megoldásunk}
If Not LehetMego(X) Then Exit; { nem létezik megoldás}
Letesit(S); { az S prisor létesítése}
SorBa(S,X); { X az első aktiv pont}
While Elemszam(S)>0 Do Begin { amíg van aktiv pont S-ben}

SorBol(S,X); { új aktív pontot a prisorbol}
If G_F_K<=AK(X) Then Exit; { egyetlen aktiv pontbol sem

kapható jobb megoldás}
If EFiu(X) Then { átlépés X első fiára, ha van,}
Repeat { X összes fiának kigenerálása}

If Not LehetMego(X) Then { X kizárt pont lett}
Continue;

If AK(X)>=G_F_K Then Continue;{ X-nek nincs jobb folytátasa}
If Megoldas(X) And { új megoldást találtunk }

(C(X)<G_F_K) Then Begin { az új megoldás az eddigi}
G_F_K:=C(X); { legjobb:G_F_K aktualizálása }
X0:=X; { feljegyezzük a jobb megoldást}

End;
SorBa(S,X); { X-et be az aktív pontok közé}

Until Not Testver(X); { átlépés a következő fiúra, ha van }
End{while};

End (* Keres11 *);

Az adagoló a felső korlát szerinti minimumos prioritási sor.

Procedure Keres12(X:MTer; Var X0:MTer);
{ Optimális megoldás keresese az X gyökerű megoldástér-fában. }

17



{ Ha az Y megoldás folytatasa X-nek, akkor AK(X)<=C(Y)<=FK(X),
de nem biztos, hogy AK(X)=C(X) ha X megoldás }

{ Aktiv pont választása a felső korlát szerinti mini. prioritási sorral }
Var
S:PriSor; { FK-szerinti minimumos prioritási sor }
G_F_K:Real;{ Globalis felső korlat: az eddigi legjobb Y megoldás,

C(Y) célfüggvény értéke }

Begin (* Keres12 *)
UresX(X0);
G_F_K:=Inf; { még nincs megoldásunk }
If Not LehetMego(X) Then Exit; { nem léetezik megoldás }
Letesit(S); { az S prisor létesítése }
SorBa(S,X); { X az első aktív pont }
While Elemszam(S)>0 Do Begin { amíg van aktiív pont S-ben }

SorBol(S,X); { uj aktiv pontot a prisorbol }

If EFiu(X) Then { átlépés X első fiára, ha van, }
Repeat { X összes fiának kigenerálása }

If Not LehetMego(X) Then { X kizárt pont lett}
Continue;

If AK(X)>=G_F_K Then Continue;{ X-nek nincs jobb folytátasa }
If Megoldas(X) And { új megoldást találtunk }

(C(X)<G_F_K) Then Begin { az új megoldás az eddigi legjobb:}
G_F_K:=C(X); { G_F_K aktualizálása }
X0:=X; { feljegyezzük a jobb megoldást }

End;
SorBa(S,X); { X-et be az aktív pontok közé }

Until Not Testver(X); { átlépés a következő fiúra}
End{while};

End (* Keres12 *);

Az elágazás-korlátozás módszer alkalmazása az optimális pénzváltás probléma megoldására.
Probléma: Optimális pénzváltás
Bemenet: P = {p1, ..., pn} pozitív egészek halmaza, és E pozitív egész szám.
Kimenet: Olyan S⊆ P, hogy ∑p∈S = E és |S| → minimális.
Tegyük fel, hogy a pénzek nagyság szerint nemcsökkenő sorrendbe rendezettek: p1 ≥ . . . ≥ pn. A megoldást keressük X =
〈i1, . . . , im〉, i1 < i2 < .. . < im alakú vektor formában. jelölje Resz= ∑m

k=1 pik és Maradt = ∑n
j=im+1 p j összegeket.

AK(X) = m+ d(E−Resz)/pim+1e

FK(X) = m+ d(E−Resz)/pne

10.1. Erős fels ő korlát

Az FK(X) felső korlátot erős felső korlátnak nevezzük, ha bármely X megoldáslezdeményre:

FK(X) < ∞⇒ (∃Y)(YEX∧MEGOLDAS(Y)∧C(Y)≤ FK(X))

Procedure Keres21(X:MTer; Var X0:MTer; Var C0:Real);
{ Optimalis megoldás keresése az X gyökerű megoldástér-fában. }
{ Aktiv pont választása a also korlát szerinti mini. prioritási sorral }

Var
S:PriSor; { AK-szerinti minimumos prioritási sor }
G_F_K:Real;{ Létexik olyan X megoldás, hogy C(X)<=G_F_K }

18



Begin (* Keres21 *)
UresX(X0); G_F_K:=FK(X);C0:=G_F_K;
If Not LehetMego(X) Then Exit; { Nincs megoldás }
Letesit(S); SorBa(S,X); { üres prisor létesítése }
While Elemszam(S)>0 Do Begin { amíg van aktív pont }

SorBol(S,X); { új aktív pontot a prisorból}
If AK(X)>G_F_K Then Begin { egyetlen aktiv pontbol sem}

Megszuntet(S); Exit { kapható már jobb megoldás!}
End; { vége a keresésnek}
If EFiu(X) Then Repeat { átlépés az első fiúra, ha van }
If Not LehetMego(X) Then Continue;{ X kizárt pont lett}
If G_F_K<AK(X) Then Continue;{ X-nek nincs jobb folytatása }
If Megoldas(X) And (C(X)<=G_F_K)
Then Begin { új, jobb megoldást kaptunk,}
X0:=X; { feljegyezzük }
G_F_K:=C(X) { G_F_K aktualizálása }

End Else If FK(X)<G_F_K Then
G_F_K:=FK(X); { G_F_K aktualizálása }

SorBa(S,X); { X-et be az aktív pontok közé}
Until Not Testver(X); { átlépés a követ. testvérre}

End{while};
C0:=G_F_K;

End (* Keres21 *);

Procedure Keres22(X:MTer; Var X0:Mter; Var C0:Real);
{ Aktív pont választasa a első korlat szerinti minimumos
prioritási sorral, FK erős felső korlát }

Var S:PriSor; { FK-szerinti minimumos prioritási sor }
G_F_K:Real; { létezik olyan X: C(X)<=G_F_K}

Begin (* Keres22 *)
C0:=Inf;
If Not LehetMego(X) Then Exit; {nincs megoldás}
G_F_K:=FK(X); {inicializálás}
Letesit(S); {üres prisor létesítése}
SorBa(S,X);
While Elemszam(S)>0 Do Begin {amíg van aktív pont}

SorBol(S,X); {új aktiv pontot a prisorból}
If G_F_K<AK(X) Then {X-nek nincs jobb folytatása,}

Continue; {kizárt pont lesz}
If EFiu(X) Then {átlépés az első fiúra}
Repeat {X összes fiának kigenerálása}

If Not LehetMego(X) Then Continue;{ X kizárt lett}
If G_F_K<AK(X) Then Continue; {X-nek nincs jobb folytatása}
If Megoldas(X) And (C(X)<=G_F_K) Then Begin

X0:=X; {új, jobb megoldást kaptunk}
G_F_K:=C(X); {G_F_K aktualizálása}

End Else If FK(X)<G_F_K Then {létezik jobb megoldás, amely}
G_F_K:=FK(X); {folytatása X-nek }

SorBa(S,X); {X-et be az aktív pontok közé}
Until Not Testver(X); {átlépés a következő testvérre}

End{while};
C0:=G_F_K;

End (* Keres22 *);

19



10.2. Ütemezési probléma

Bemenet:
M = {m1, . . . ,mn} munkák halmaza
m[i].idotartam≥ 0 egész
m[i].hatarido≥ 0 egész
m[i].haszon≥ 0 valós
Kimenet:
H ⊆ 1..n
1. A H-beli munkák beoszthatók határidőt nem sértő módon.
2.

C(H) = ∑
i∈H

m[i].haszon→maxi (8)

H elemeinek egy 〈i1, . . . , ik〉 felsorolása határidőt nem sértő, ha ∀1≤ j ≤ k

j

∑
u=1

m[iu].idotartam≤m[i j ].hatarido (9)

Állítás: H-nak akkor és csak akkor van határidőt nem sértő beosztása, ha elemeinek határidő szerinti felsorolása határidőt nem
sértő.
⇐ trivi.
⇒ Tfh. H-nak van határidőt nem sértő beosztása, de ebben van olyan egymást követő u és u+ 1, hogy m[iu].hatarido>

m[iu+1].hatarido. Ekkor u és u+1 felcserélhető a sorban.
Visszavezetés minimalizációs feladatra.

C(H) = ∑
i /∈H

m[i].haszon

=
n

∑
i=1

m[i].haszon−C(H)→mini

C(H)→maxi⇔C(H)→mini
Tegyük fel, hogy a munkák határidő szerint nemcsökkenő sorrendben vannak felsorolva. Ekkor a megoldás kifejezhető
X = 〈i1, . . . , ik〉 vektorral, ahol i1 < i2 < · · ·< ik
Minden X megoldáskezdeményre def. a problémaspecifikus műveleteket.
LehetMego(X) = igaz⇔ ha a felsorolás határidőt nem sértő.
Megoldas(X) = LehetMego(X)

AK(X) = ∑
j<ik, j /∈X

m[ j].haszon (10)

FK(X) = ∑
j /∈X

m[ j].haszon (11)

Tehát, ha LehetMego(X), akkor Megoldas(X) és C(X) = FK(X), ezért FK erős felső korlát.

20


