9. Megoldas keresése visszalépéssel (backtracking)

Probléma: n-kirdlyn 6
Helyezziink el az nxnes sakktablan n kirdlyn6t, hogy egyik se Usse a masikat!

8
7
6
5
4
3
2
1
1 2 3 4 5 6 7 8
1. &bra. Ures tabla
A megoldas megadhaté annak az n mezének a koordinataival, amelyekre kiralyndket helyezzik: M = {(x1,y1), -, (X0, Yn) }-

Tehat az (X;,Vi) és (Xj,yj) mezdkre helyezett két kiralyn6 akkor és csak akkor nem (iti egymast, ha

X-y=-3

P N W b~ OO N

1 2 3 4 5 6 7 8
X+y=7

2. &bra. Az (X,y) mezdn |évé kirdlynd Utési mez6i.

X # Xj (1)

Yi #Yj (2
X —Yi # Xj —Yj (3)
Xi+Yi # Xj +Yj (4)

Tehat egy ilyen M halmaz akkor és csak akkor megoldasa a feladatnak, ha (Vi, j)(1 <i < j < n)teljesul a fenti 4 feltétel.
Minden sorban, minden oszlopban pontosan egy kiralynének kell lenni, tovabba minden féatléban és minden mellékatléban leg-
feliebb egy kiralyné lehet. Tehat minden megoldas megadhat6 egy X = (X1,...,Xy) vektorral, ami azt jelenti, a kiralynéket az
{(x1,1), -+, (Xn,n)} mezokre helyeziink kiralyn6tket. Ekkor a megoldas feltétele: (Vi, j)(1 <i< j<n)

X 7 X (5)
X —i#X—] ©)
X +17#Xj+] (7

9.1. Kimerit § keresés (nyers er 6) médszere

Elvi algoritmus:
KIMERITOKERESES

VX = (X1,...,%) € [n] X ... x [n] do
if Megoldas(X) then
Kilr(X)

A KIMERITOKERESES algoritmus megvalésitasa:

Const
MaxN=100;
Type
Index=1..MaxN;
Vektor=Array[Index] of Index;
Var
N:Index;
X:Array[Index] of Index;

Function Megoldas (X:Vektor) :Boolean;
Begin End;

Procedure KiIr (X:Vektor);

Begin End;

Procedure KimeritoKereses (k:Integer);
{Global: X, N}
{A megoldésvektor <X[1],...,X[k-1]>komponenseit mar bedllitottuk}
Var
i:Index;
Begin{KimeritoKereses}
For i:=1 To N Do Begin
X[k]:=1i;
If k=N Then Begin
If Megoldas (X) Then
Kilr (X)
End Else {k<N}
KimeritoKereses (k+1);
End{for i};
End{KimeritoKereses};

Begin

{Beolvasds}
KimeritoKereses (0);
End.

Nyilvanvald, hogy ez a médszer sok vektort feleslegesen vizsgal, hiszen ha X1 = X, akkor X biztosan nem lehet megoldas. Azaz,
elegend6 lenne csak a permutécidkat vizsgalni.

Otlet: probaljuk a megoldast Iépésenként elallitani tgy, hogy ha mar elhelyeztiink a tabla elsé k — 1 soraban kiralynéket tgy, hogy
egyik sem Uti a masikat, akkor a kévetkezd lépésben a k-adik sorba probaljunk rakni egy kiralynét.

Megoldaskezdemény:

X={Xg,..., %), 0<k<nl1<x<n

X j6 megoldaskezdemény, ha kezdészelete lehet egy megoldasnak, tehat nem iti egymast a tablara mar elhelyezett k darab
kirdlyné, azaz:

Vi,)(1<i<j<Kk)

(6 #X)A G —1# X —[)A X +i#X+])

R N W AN OO N
@

1 2 3 4 5 6 7 8

3. &bra. Nem folytathaté allas (megoldaskezdemény)

V = (1,4,2,5,3) jo megoldaskezdemény, de nem folytathat6, mert a 6. sorba nem helyezhet6 kiralynG, hogy ne tisse a mar
tablan 1évok egyikét sem.
Visszalépést kell végezni: az 5. sorban Iévét mas helyre kell rakni.

Ez az a pont, ahol ez a médszer killénbozik a mohé stratégiattdl. Ott a megoldaskezdemény mindig folytathato volt, és meg tudtuk
mondani, hogy melyik Iépéssel.

Itt azonban nem tudjuk megmondani, hogy egy megoldaskezdemény folytathazt6-e, és ha igen milyen lépéssel.

Program Kiralynokr; {Az N-kirdlynd probléma rekurziv megoldisa}

Const
N =28 ;{ a tédbla mérete }
N1 = N-1 ;{ a mellékdtlok indexei -N1..N1 }
N2 = 2*N ;{ a féatldk indexei 2..N2 }

Type

Index = 1..N;
Vektor=Array[Index] of Index;
Var
X : Vektor;
Oszlop : Array [Index] Of Boolean;
Fatlo : Array [-N1..N1] Of Boolean;

L N W DM 01 OO N

1 2 3

4

5

6

7

4. dbra. Az els6 megtalalt megoldas

Matlo : Array [2..N2] Of Boolean;
i,J : Integer;

Procedure KiIr (V:Vektor);
Var i:Integer;
Begin
For i:=1 To N Do Write(V[i]:3);
Writeln;
End;

Function Szabad(i,k : Index) : Boolean;
{Az (i,k) mezbre helyezhetd-e kirdlyné?}
Begin
If Oszlop[i] And
Fatlo[i-k] And
Matlo[i+k] Then
Begin {az elhelyezés bejegyzése}

Szabad := True;

Oszlop[i] := False; {i. oszlop foglalt}

Fatlo [i-k] := False;{i-k. f64tld foglalt}

Matlo [i+k] := False {itk. mellédtld foglalt}
End Else

Szabad := False
End {Szabad};

Procedure Torol(i,k : Index); Begin

Oszlop[i] := True;
Fatlo [i-k] := True;
Matlo [i+k] := True

End{Torol};

Procedure Lepes(k : Index); {Global: X, N}

Var i : Integer;

Begin{<X[1],...,X[k-1]> jé megolddskezdemény}
For i := 1 To N Do

{miden lehetséges valasztésra ...

If Szabad(i,k) Then Begin

X[k]:=1i;
If k = N Then
Kilr (X)
Else Begin
Lepes (k+1);
Torol (i, k)
End{else:k<N}
End{if}
End{Lepes};
Begin{program}
For 1 := 1 To N Do Begin

Oszlop[i] := True;

For j := 1 To N Do Begin
Fatlo[i-]] := True;
Matlo[i+j] := True

End{for j}

End{for 1i};
Lepes (1)
End.

Nemrekurziv algoritmus

Program Kiralynokr;

{rakhaté-e az (i,k) mezbre kirdlynd?}
{a 1épés bejegyzése}

{taldltunk egy megoldéas}

{kiiratjuk}

{tovabblépés}
{visszalépés: a bejegyzés torlése}

{inicializ&lasa}
{minden oszlop szabad}

{minden f6atld szabad}
{minden mellékatld szabad}

{a keresés inditéasa}

{Az N-kirdlynd probléma nemrekurziv megoldésa}

Const
N =28 ;{ a tédbla mérete }
N1 = N-1 ;{ a mellékdtlok indexei -N1..N1 }
N2 = 2*N ;{ a féatldk indexei 2..N2 }

Type

Index = 1..N;

Vektor=Array[Index] of Index;

0f Boolean;

Var
X : Vektor;
Oszlop : Array [Index] Of Boolean;
Fatlo : Array [-N1..N1]
Matlo : Array [2..N2] Of Boolean;

i,J : Integer;

Procedure KilIr(V:Vektor);
Var i:Integer;

Begin

For i:=1 To N Do Write(V[i]
WriteLn;

End;

Function Szabad(i,k : Index)

:3);

: Boolean;

{Az (i,k) mezbre helyezhetd-e kirdlyné?}

Begin
If Oszlop[i] And
Fatlo[i-k] And
Matlo[i+k] Then

Begin {az elhelyezés bejegyzése}

Szabad := True;

Oszlop[i] := False; {1i.

oszlop foglalt}

Fatlo
Matlo
End Else
Szabad :=

End {Szabad};

[i-k] :=
[itk] :=

False

Procedure Torol(i,k :

Oszlop[i] := True;
Fatlo [i-k] := True;
Matlo [i+k] := True

End{Torol};

Procedure Keres(Var X:Vektor; Var Van:Boolean);

Index); Begin

Type Irany=(Ujpont, Tovabb, Vissza);

Var k
Begin{Keres}

Integer; Merre:Irany;

False; {i-k. f64tld foglalt}
False {itk. mellédtld foglalt}

{Global: N}

k:=1; X[1]:=1; Merre:=Ujpont; Van:=False;

While True Do
Case Merre of

Ujpont: If Szabad(X[k], k) Then

If k=N Then Break;
Inc(k);
X[k]:=1
End Else
Merre:=Vissza;
Tovabb: Begin

Torol (X[k], k);

If X[k]<N Then Begin

Inc(X[k]);
Merre:=Ujpont

{

{
{
{

{
{
{
{

End Else If k>1 Then({

Dec (k)
Else
Exit
End;

Vissza:
Inc(X[k]);
Merre:=Ujpont

{

If X[k]<N Then Begin {

{

Begin

megoldast taldltunk, vége}
dtlépés a kovetkezd sorba}

az elsé mezbvel proébalkozunk}
X nem jé kezdemény }

jé kezdeményrdl kell tovabblépni}
a bejegyzés torlése}

ha nem sorvégén vagyunk}
tovdbblépés a sorban }

visszalépés az eldzd sorba}l
Merre nem valtozik}

nem lehet visszalépni, vége}

ha van sorvégén vagyunk}
tovdbblépés a sorban }

End Else If k>1 Then Begin{ visszalépés az el6z6 sorba}

Dec (k) ;
Merre:=Tovabb
End Else
Exit
End{case};
Van:=True;
End{Keres};
Var Van:Boolean; Begin

For 1 := 1 To N Do Begin

Oszlop[i] := True;

For j := 1 To N Do Begin
Fatlo[i-3j] := True;
Matlo[i+3j] := True

End{for j}

End{for 1i};
Keres (X, Van) ;

{
{

X[1..k] jé kezdemény}
nem lehet visszalépni, vége}

{inicializéalésa}

If Van Then KilIr(X);
End.

Vegyik észre, hogy a megoldaskezdemények fat alkotnak. Egy X = (Xi,...,Xk) megoldaskezdemény lehetséges kozvetlen
folytatasai, azaz X fiai az Y = (Xq,...,X,i) i = 1,...,nlehetséges megoldaskezdemények.
Tehat minden fabejaré algoritmus alkalmazhatdé megoldas keresésére, azzal a modositassal, hogy ha az aktualis X pont (megol-
daskezdemény) nem véalaszthato, azaz kizart lesz, akkor X-et ugy kell tekinteni a bejaras soran, mint ha levél pont lenne.
A megoldas keresését meg tudjuk fogalmazni olyan altalanos formaban, hogy az algoritmus érdemi része, azaz a megoldastér
bejarasa csak néhany problémaspecifikus miiveletet alkalmaz.
Ezt mddszert "application framework" médszernek is nevezik. Adott problémara nem kell Gjrairni az érdmi részt, csak a problémas-
pecifikus miveletek megvaldsitasat kell megadni.

/
./ \Q
AT

J\l

O Erintetlen
O+ Aktualis
® Aktiv

® Bevégzett
@® Kizart

@ Erintetlen-kizart

5. dbra. A megoldastér pontjainak osztalyozasa visszalépéses keresésnél

@

6. abra. A megoldastér sematikus képe visszalépéses keresésnél

{ Probléma-specifikus miiveletek: }
Procedure UresX (Var X:MTer);Forward;
{ X az Ures megolddskezdemény lesz }

Function EFiu(Var X: MTer): Boolean; Forward;
{ Ha van X-nek fia, akkor X az elsd fiura valtozik és a
fliggvényhivéds értéke True, egyébként False és X nem valtozik. }
Function Testver (Var X: MTer): Boolean; Forward;
{ Ha van X-nek még benemjart testvére, akkor X a kovetkezd testvér lesz
és a fliggvényhivéds értéke True, egyébként False és X nem valtozik.}
Function Apa(Var X: MTer) :Boolean; Forward;
{ Ha van X-nek apja, akkor X az apjdra valtozik és a
fliggvényhivads értéke True, egyébként False és X nem valtozik. }
Procedure VisszaAllit (Var X:MTer);Forward;
{ Torli a az aktivvd tételkor tett bejegyzéseket,
felszabaditja az esetleg foglalt meméridt }

Function Megoldas (Var X: MTer): Boolean; Forward;
{ akkor és csak akkor ad True értéket, ha X megolddsa a probléménak.}
Function LehetMego (Var X: MTer): Boolean; Forward;
{ Ha LehetMego (X) hamis, akkor nincs megoldéds az X gyoker(részfédban. }
{ Ha LehetMego(X) igaz, abbdél nem kévetkezik, hogy van is megoldés. }
{ Olyan bejegyzéseket is tehet, amelyek a tovdbbi LehetMego és Megoldés
miiveletek gyorsabb elvégzését segitik. }

Procedure RKeres (X:MTer);
{Megoldds rekurziv keresése az X-gybdkerll megoldastér részfdban }
{Global: X0; egy megoldds, Van=True<=>taldlt megoldast }
{X biztosan jé megolddskezdemény, LehetMego (X) igaz}

Begin{RKeres}
If Megoldas(X) Then Begin
X0:=X; { KiIr(X) ha az 0Osszes megoldast keressiik}
Van:=True; Exit { egy megoldas keresése esetén}
End;
If Not EFiu(X) Then Exit; { &tlépés az elsd6 fitra, ha van}
Repeat { a fitk bejarésa }
If Not LehetMego(X) Then { X kizart pont-e? }
Continue; { ha igen, kihagyjuk }
RKeres (X) ; { az X gyOkerl részfa rekurziv bejdrisa}
VisszaAllit (X); { visszalépés: a bejegyzés torlése}
If Van Then { egy megoldads keresése esetén kilépés, ha}
Exit; { volt megoldads az X-gyoker(részféban }
{

Until Not Testver (X)
End{RKeres};

{***}

atlépés a kovetkezd testvérre, ha van }

Procedure Keres (Var X:MTer; Var Van:Boolean);
{ Bemenet: X a megolddstér fdjanak gydkere}
{ Kimenet: Van=True<=>ha van megoldas és X egy megoldas lesz}
Type
Paletta=(Feher, Kek, Piros);
Var
Szin: Paletta;
Begin{Keres}
Szin:=Feher; Van:=False;

While True Do
Case Szin of
Feher: If LehetMego(X) Then Begin { X jé megoldiskezdemény?}
If Megoldas(X) Then Break;{ egy megoldds keresése esetén}

If Not EFiu(X) Then { majd a testvérére kell atlépni}
Szin:=Kek { X még aktiv marad}
End Else { X kizart pont lett}
Szin:=Piros;
Kek: Begin
VisszaAllit (X); { a bejegyzések térlése}
If Testver(X) Then { &tlépés a testvére}
Szin:=Feher
Else If Not Apa(X) Then
Exit
End;
Piros: If Testver(X) Then
Szin:=Feher

visszalépés az apdra}

X a megolddstér gyodkere, kész}
egyébként X:=Apa(X) és marad Kék}
a testvér lesz az uj akt.pont}

e e e

Else If Apa(X) Then { visszalépés az apara, ha van}
Szin:=Kek { X apja mindig aktiv}

Else { X a gyokér, vége a keresésnek}
Exit

End{case};
Van:=True;
End{Keres};

A probléma-specifikus m(iveletek megvalésitasa az n-kiralyn 6 problémahoz.

Const MaxN=32; Type

Index = 1..MaxN;

Vektor=Array[Index] of 0..MaxN;

MTer=Record {a megoldidstér pontjainak dbrizoldsa}
N:Index;
V:Vektor;
k:Integer;
Oszlop : Array [Index] Of Boolean;
Fatlo : Array [-(MaxN-1)..MaxN-1] Of Boolean;
Matlo : Array [2..2+MaxN] Of Boolean;

End;
Procedure UresX (Var X:MTer); Var i, j:Integer;
Begin
With X Do Begin
k:=0;
For j:=1 To N Do {a tabla inicializalasa }
Oszlop[]j]:=True; {minden sor szabad}
For j:=-(N-1) To N-1 Do {minden foatlo szabad}
Fatlo[j]:=True;
For j:=2 To 2*N Do {minden mellekatlo szabad}
Matlo[j]:=True;
End;
End{UresX};

Function EFiu(Var X: MTer): Boolean;
Begin
If X.k<X.N Then Begin
Inc(X.k);
X.V[X.k]:=1;
EFiu:=True
End Else
EFiu:=False;
End{EFiu};

Function Testver (Var X: MTer): Boolean;
Begin
If (X.k>0)And(X.V[X.k]<X.N) Then Begin
Testver:=True;
Inc(X.V[X.k]);
End Else
Testver:=False;
End{Testver};

Function Apa(Var X: MTer) :Boolean;
Begin
If X.k>0 Then Begin
Apa:=True;
Dec (X.k);
End Else
Apa:=False;
End{Apa};

Procedure VisszaAllit (Var X:MTer); Begin
With X Do Begin
If k=0 Then Exit;
Oszlop[VI[k]] True;
Fatlo [V[k]-k]:= True;
Matlo [V[k]+k]:= True
End;
End{VisszaAllit};

Function LehetMego (Var X:MTer) : Boolean; Begin
LehetMego:= True;
With X Do Begin
If k=0 Then Exit;
If Oszlop[V[k]] And
Fatlo[V[k]-k] And
Matlo[V[k]+k] Then

Begin
Oszlop[V[k]] := False;
Fatlo [V[k]-k] := False;
Matlo [V[k]+k] := False
End Else
LehetMego:= False
End

End {LehetMego};

Function Megoldas(Var X: MTer): Boolean; Begin
Megoldas:=X.k=X.N
End{Megoldas};

9.2. A visszalépéses keresés alkalmazasa a pénzvaltas problémara.

Probléma: Pénzvaltas

Bemenet: P ={pi,..., pn} pozitiv egészek halmaza, és E pozitiv egész szam.

Kimenet: Olyan SC P, hogy E =} s

A megoldast kifejezhetjiik és kereshetjuk bitvektor formaban, tehat olyan X = (Xa,...,Xn) vektort kerestink, amelyre

E n
= i;Xi P

10

Ekkor a megoldastér faja binaris fa lesz. A megoldast kifejezhetjiik és kereshetjik mint a pénzek indexeinek olyan SC {1,...,n}

0 1 1
0 ﬁl <{3\1 1 o; 21
O O OO0 O OO

7. dbra. Binaris megoldastér a pénzvaltas probléma n = 4 esetében

halmazanak X = (i, ...,im) ndvekvé felsorolaséként is, azaz iy < iz < ... < ip, hogy .

m
E= pi
25

Ekkor a megoldastér formaja a 8. &bran lathatdé n =5 esetére. A pénzvaltas probléma megoldasahoz elegendé megadni a

8. dbra. Nem binaris megoldastér a pénzvaltas probléma n = 5 esetében

probléma-specifikus URESX, EFIU, TESTVER, (APA,) VISSZAALLIT, LEHETMEGO, MEGOLDAS miveletek megvalositasat, és az
RKERES (KERES) eljaras valtoztatas nélkil alkalmazhazté egy megoldas eléallitasara.

(Az Apa miivelet csak a nemrekurziv keresés esetén kell.)

Legyen X = (i, . ..,im) tetsz6leges megoldaskezdemény.

EFIU(X) = (i1,-..,im,im+1), haip<n

TESTVER(X) = (i1,...,im-1,im+ 1), hain<n

APA(X) = (i1,...,im-1), ham>0

LEHETMEGO(X) akkor és csak akkor adjon igaz értéket, ha

n

m m
W <EA .+ i > E
kZl Pi kzl Pi j:%+1 Pi

MEGOLDAS(X) akkor és csak akkor adjon igaz értéket, ha

m
E=35 p
&

11

9. dbra. A fa pontjai

A VisszAALLIT mivelet megvalésitasa el6tt donteni kell, hogy milyen segéd informéaciot tarolunk egy megoldastérpontban. Cél-
szer(tarolni a

m
Resz= Z Piy
K=1

n
Maradt= P;
j:%+1

0sszegeket, hogy a LEHETMEGO(X) és MEGOLDAS(X) mliveleteket konstans id6ben ki tudjuk szamitani.

Const

MaxN=100; {a pénzek max. széma}
Type

Index = 1..MaxN;

MTer=Record

E:Longint;
P:Array[Index] of Word; {a pénzek}
N:Index; az Osszes pénz széma}

{
V:Array[0..MaxN] of Word; {a megoldaskezdemény}

k: Integer, {a megoldaskezdemény pénzeinek szdama}
Resz:Longint; {a megoldadskezdemény pénzeinek &6sszege}
Maradt:Longint; {a még vdlaszthatd pénzek Osszege}

End;

Procedure UresX (Var X:MTer);
Var 1i,j:Integer;
Begin
With X Do Begin
k:=0;
VI[0]:=0;
Maradt:=0;
Resz:=0;
For i:=1 To N Do Maradt:=Maradt+P[i];
End;
End;

Function EFiu(Var X: MTer): Boolean;
Begin
If X.V[X.k]<X.N Then Begin
Inc(X.k);
X.V[X.k]:=X.V[X.k-1]+1;

12

EFiu:=True
End Else
EFiu:=False;
End;

Function Testver (Var X: MTer): Boolean;
Begin
If (X.k>0)And(X.V[X.k]<X.N) Then Begin
Testver:=True;
Inc(X.V[X.k]);
End Else
Testver:=False;
End;

Function Apa(Var X: MTer) :Boolean;
Begin
If X.k>0 Then Begin
Apa:=True;
Dec (X.k);
End Else
Apa:=False;
End;
Procedure VisszaAllit (Var X:MTer);
Begin
With X Do Begin
If k=0 Then Exit;
Resz := Resz-P[V[k]];
Maradt := Maradt+P[V[k]];
End;
End{VisszaAllit};

Function LehetMego (Var X:MTer) : Boolean;
Begin
LehetMego:= True;
With X Do Begin
If k=0 Then Exit;
If (Resz+V[k] <= E) And (Resz+Maradt>=E)
Then Begin
Resz:=Resz+P[V[k]];
Maradt:=Maradt-P[V[k]];
End Else
LehetMego:= False
End
End {LehetMego};

Function Megoldas (Var X: MTer): Boolean;
Begin

Megoldas:=X.Resz=X.E
End;

Visszalépésses keresési algoritmusok futasi ideje

Legrosszabb esethen a kersés a megoldastér-fa minden pontjat bejarja, ami exponencidlis. Visszalépésses keresési algoritmu-
sok tarigénye

A rekurziv megvalositas soran minden aktiv pont taroladik.

Nemrekurziv megvalositas soran elég csak csak az aktudlis pontot tarolni.

A visszalépéses keresés alkamazhat6 optimalis megoldéas elballitasara is.

13

Legyen C(X) a célfiiggvény, tehat olyan X-et keresiink, amelyre: MEGOLDAS(X) és C(X) minimalis.

If Megoldas(X) and (C(X)<OptC) Then Begin
X0:=X;
OptC:=C (X)

End

10. Elagazas-korlatozas moédszere (branch and bound)

{ Megoldéds keresése a megoldastér adagoldval tdrténd bejdrasaval }

Type
MTer = ???; (* a megoldéstér tipusa *)
Adagolo= ??7?; (* az adagold tipusa *)
{(------——- = Adagold mlveletek: ——————————————mmmmm }
Procedure Letesit (Var A:Adagolo);
Begin End;

Procedure BeTesz (Var A:Adagolo; X:MTer);
(* {} Be(A,X) {A=Pre(A) U {X}} *)
Begin End{BeTesz};
Procedure KiVesz (Var A:Adagolo; Var X:MTer);
(* {Not Ures(A)} Ki(A,X) {Pre(A)=A U {X}} *)
Begin End{Kivesz};
Function Ures (A:Adagolo) :Boolean;
Begin End{Ures};
Procedure Megszuntet (Var A:Adagolo);
Begin End{Megszuntet};

(- Probléma-specifikus miveletek:-—-------------r——- }
{ A megoldastér bejardsahoz hasznadlt mlveletek:}
Procedure UresX (Var X:MTer);Forward;
{ X az lres megoldaskezdemény lesz }
Function EFiu(Var X: MTer): Boolean; Forward;
{ Ha van X-nek fia, akkor X az elsd fiura valtozik és a
fliggvényhivéds értéke True, egyébként False és X nem valtozik. }
Function Testver (Var X: MTer): Boolean; Forward;
{ Ha van X-nek még benemjart testvére, akkor X a kovetkezd testvér lesz
és a fliggvényhivéds értéke True, egyébként False és X nem valtozik.}

Function Megoldas (Var X: MTer): Boolean; Forward;

{ akkor és csak akkor ad True értéket, ha X megolddsa a probléménak.}
Function LehetMego (Var X: MTer): Boolean; Forward;

{ Ha LehetMego(X) hamis, akkor nincs megoldds az X gyoker(részfdban. }

{ Ha LehetMego(X) igaz, abbdl nem kévetkezik, hogy van is megoldés. }
Function C(Var X: MTer): Real; Forward;

{ Ha Megoldas(X) akkor C(X) az X megoldéds célfiiggvény értéke }

{**}

Procedure AKeres (X:MTer; Var OptC:Real; Var X0:MTer);

{ A megoldéds keresése az X gyokerl megoldastér-faban }
{ A megoldéstér bejarédsa adagoléval }
Var

A:Adagolo;
Begin (* Keres *)

If Not LehetMego (X) Then

Exit; { nem létezik megoldés }

14

OptC:=Inf;

Letesit (A); { lres adagold létesitése}
BeTesz (A, X); { az A adagoldéban csak az X pont van }
While Not Ures(A) Do Begin { amig van aktiv pont az adagoldban }
KiVesz (A, X); { egy aktiv pontot kivesziink az adagolébdl }
If Megoldas(X) And (C(X)<OptC) Then Begin { jobb megoldast talaltunk }
OptC:=C (X);
X0:=X; { a megoldas feljegyzése }
End;
If EFiu(X) Then dtlépés az elsd fiura, ha van; }
Repeat X Osszes fidnak kigeneralasa }

If LehetMego (X) Then
BeTesz (A, X);
Until Not Testver (X);
End{while};
End (* AKeres *);

X kiz4rt pont-e? }
X-et betesszilk az aktiv pontok k&zé }
dtlépés a kovetkezd testvérre, ha van }

—— e -

Y
/
L

Q/ o O g Q/ \O \O E
(O Erintetlen

@ Akwalis

@ Aktiv

@ Kizart

@ Bevégzett

O

Erintetlen-kizart

10. &bra. A megoldastér pontjainak osztalyozasa adagoldval térténd keresés esetén

Adagolds keresés esetén mindig teljesil, hogy barmely Y érintetlen ponthoz pontosan egy olyan X aktiv (vagy aktudlis) pont
van, hogy Y leszarmazottja X-nek.

Ez a feltétel ciklusinvarians, tehat az algortimus helyes.
Az algoritmus futasi ideje sok esetben erésen fligg az aktualis pont valasztasatél. Ezen kivil tovabbi kizarasokat is tehettink.

Tegyuk fel, hogy a célfuggvényre meg tudunk fogalmazni olyan AK(X) alsokorlat és FK(X) felsGkorlat figgvényeket, amelyekre
teljesulnek az alabbi egyenl&tlenségek.

Barmely X megoldaskezdeményre és minden olyan Y megoldasra, amely leszarmazottja X-nek:
AK(X) < C(Y) < FK(X)

Ekkor az adagol6 lehet olyan prioritasi sor, amely akar az AK alsé korlat, akar az FK fels6 korlat szerinti minimumos prioritasi sor.
Tekintsiik el6szor azt az esetet, amikor az adagolé AK szerinti minimumos prioritasi sor.

15

O Erintetlen
@ Aktualis
@ Aktiv
@ Kizart

@ Bevégzett
O Erintetlen-kizart

11. dbra. A megoldastér pontjainak sematikus abrazolasa adagol6s keresés esetén

Const

Inf=10.0E10; (* a végtelen reprezenténsa *)
Type

MTer = ???; (* a megoldastér tipusa *)

PriSor= ??2?; (* a minimumos prioritdsi sor tipusa *)

———————————————————————————— Prioritédsi sor miveletek:

Procedure Letesit (Var S:PriSor);
Begin End{Letesit};

Procedure SorBa(Var S:PriSor; X:MTer);
Begin End{SorBa};

Procedure SorBol (Var S:PriSor; Var X:MTer);
Begin End{SorBol};

Procedure Megszuntet (Var S:PriSor);
Begin End{Megszuntet};

Function Elemszam(S:PriSor) :Word;
Begin End{Elemszam};

Sttt Probléma-specifikus milveletek:---

{ A megoldadstér bejardsdhoz haszndlt miveletek:}
Procedure UresX (Var X:MTer);Forward;

{ X az lires megoldaskezdemény lesz }
Function EFiu(Var X: MTer): Boolean; Forward;

{ Ha van X-nek fia, akkor X az elsdé filra valtozik és a
fliggvényhivads értéke True, egyébként False és X nem valtozik. }

Function Testver (Var X: MTer): Boolean; Forward;

{ Ha van X-nek még benemjédrt testvére, akkor X a kovetkezd testvér lesz
és a fliggvényhivas értéke True, egyébként False és X nem valtozik.}

16

Function Megoldas (Var X: MTer): Boolean; Forward;
{ akkor és csak akkor ad True értéket, ha X megolddsa a probléménak.}
Function LehetMego (Var X: MTer): Boolean; Forward;
{ Ha LehetMego(X) hamis, akkor nincs megoldéds az X gydker(részfdban. }
{ Ha LehetMego(X) igaz, abbdl nem kévetkezik, hogy van is megoldés. }
Function C(Var X: MTer): Real; Forward;
{ Ha Megoldas (X) akkor C(X) az X megoldéds célfliggvény értéke }
Function AK(Const X: MTer): Real;
{ - Az X gyOker(i részfdban minden Y-ra, ha Megoldas(Y) akkor AK(X)<=C(Y).}
Begin End;
Function FK(Const X: MTer): Real;
{ Az X gydkerl részfaban minden Y-ra, ha Megoldas(Y) akkor C(Y)<=FK(X) }
{ Megjegyzés: FK(X)<Inf-bol nem kovetkezik, hogy egydltalan létezik
megoldds az X-gyokerl részfaban!}
Begin End;

Procedure Keresll (X:MTer; Var X0:MTer);

{ Optimalis megoldas keresése az X gySkeri megoldastér-féban. }

{ Ha az Y megoldas folytatasa X-nek, akkor AK(X)<=C(Y),

de nem biztos, hogy AK(X)=C(X) ha X megoldéds }

{ Aktiv pont valasztédsa a also korlat szerinti mini. prioritédsi sorral }
Var

S:PriSor; { AK-szerinti minimumos prioritési sor }

G_F_K:Real;{ Globalis felsd korlédt: az eddigi legjobb Y megoldds,

C(Y) célfiiggvény értéke }

Begin (* Keresll *)

UresX (X0) ;

G_F_K:=Inf; még nincs megoldasunk}
If Not LehetMego(X) Then Exit; nem létezik megoldds}
Letesit (S); az S prisor létesitése}
SorBa (S, X) ; X az els6é aktiv pont}

While Elemszam(S)>0 Do Begin
SorBol (S, X);
If G_F_K<=AK(X) Then Exit;

amig van aktiv pont S-ben}
0j aktiv pontot a prisorbol}
egyetlen aktiv pontbol sem
kaphaté jobb megoldés}

If EFiu(X) Then { &tlépés X els6d fidra, ha van,}
Repeat { X &sszes fidnak kigenerdlésa}
If Not LehetMego (X) Then { X kizart pont lett}
Continue;

If AK(X)>=G_F_K Then Continue;
If Megoldas (X) And
(C(X)<G_F_K) Then Begin

X-nek nincs jobb folytatasa}
0j megoldast taldltunk }
az uj megoldds az eddigi}

—— e e e

G_F_K:=C(X); legjobb:G_F_K aktualizédlédsa }
X0:=X; feljegyezziik a jobb megoldéast}
End;
SorBa (S, X) ; { X-et be az aktiv pontok ko&zé}
Until Not Testver (X); { a4tlépés a kovetkezd fitra, ha van }
End{while};

End (* Keresll *);

Az adagol¢ a felsé korlat szerinti minimumos prioritasi sor.

Procedure Keresl2 (X:MTer; Var X0:MTer);
{ Optimdlis megoldéds keresese az X gydkerli megoldastér-faban. }

17

{ Ha az Y megoldds folytatasa X-nek, akkor AK(X)<=C(Y)<=FK(X),
de nem biztos, hogy AK(X)=C(X) ha X megoldds }
{ Aktiv pont valasztésa a felsd korlat szerinti mini. prioritédsi sorral }
Var
S:PriSor; { FK-szerinti minimumos prioritédsi sor }
G_F_K:Real;{ Globalis fels®é korlat: az eddigi legjobb Y megoldés,
C(Y) célfiiggvény értéke }

Begin (* Keresl2 *)

While Elemszam(S)>0 Do Begin
SorBol (S, X);

amig van aktiiv pont S-ben }
uj aktiv pontot a prisorbol }

UresX (X0);
G_F_K:=Inf; { még nincs megoldasunk }
If Not LehetMego(X) Then Exit; { nem léetezik megoldés }
Letesit (S); { az S prisor létesitése }
SorBa (S, X) ; { X az elsé aktiv pont }

{

{

If EFiu(X) Then { atlépés X elsé fidra, ha van, }
Repeat { X Osszes fidnak kigenerdldsa }
If Not LehetMego(X) Then { X kizart pont lett}
Continue;

If AK(X)>=G_F_K Then Continue;{ X-nek nincs jobb folytatasa }
If Megoldas (X) And { 0j megoldast taldltunk }
(C(X)<G_F_K) Then Begin { az 0j megoldds az eddigi legjobb:}
G_F_K:=C(X); { G_F_K aktualizéaléasa }
{

X0:=X; feljegyezziik a jobb megoldast }
End;
SorBa (S, X); { X-et be az aktiv pontok k&zé }
Until Not Testver (X); { &tlépés a kovetkezd fiura}
End{while};

End (* Keresl2 *);

Az elagazas-korlatozas modszer alkalmazasa az optimalis pénzvaltas probléma megoldasara.
Probléma: Optimalis pénzvaltas
Bemenet: P={pu,..., pn} pozitiv egészek halmaza, és E pozitiv egész szam.
Kimenet: Olyan SC P, hogy Y pcs = E és |§ — minimalis.
Tegyik fel, hogy a pénzek nagysag szerint nemcsokkend sorrendbe rendezettek: p1 > ... > pn. A megoldast keressik X =
(i1,..,im), i1 <i2 < ... < im alakl vektor formaban. jelclie Resz= 3" ; pj, és Maradt=3'_; ., p; 6sszegeket.

AK(X) =m+ [(E —Resz/piy+1]
FK(X) =m+ [(E—Resz/pn]

10.1. Er6s fels 6 korlat

Az FK(X) felsé korlatot erés fels korlatnak nevezziik, ha barmely X megoldaslezdeményre:
FK(X) <o = (3Y)(Y I<XAMEcoLDAS(Y) AC(Y) < FK(X))

Procedure Keres2l (X:MTer; Var X0:MTer; Var CO:Real);

{ Optimalis megoldads keresése az X gydkerli megoldastér-féban. }

{ Aktiv pont valasztédsa a also korldt szerinti mini. prioritdsi sorral }
Var

S:PriSor; { AK-szerinti minimumos prioritdsi sor }

G_F_K:Real;{ Létexik olyan X megoldds, hogy C(X)<=G_F_K }

18

Begin (* Keres2l *)
UresX (X0); G_F_K:=FK(X);C0:=G_F_K;
If Not LehetMego(X) Then Exit; { Nincs megoldéds }
Letesit (S); SorBa(S,X); { {ires prisor létesitése }
While Elemszam(S)>0 Do Begin { amig van aktiv pont }
SorBol (S, X); { uj aktiv pontot a prisorbdl}
If AK(X)>G_F_K Then Begin { egyetlen aktiv pontbol sem}
Megszuntet (S); Exit { kaphaté mdr jobb megoldas!}
End; { vége a keresésnek}
If EFiu(X) Then Repeat { atlépés az elsd fitura, ha van }
If Not LehetMego(X) Then Continue;{ X kizirt pont lett}
If G_F_K<AK(X) Then Continue;{ X-nek nincs jobb folytatdsa }
If Megoldas (X) And (C(X)<=G_F_K)

Then Begin { 4j, jobb megoldast kaptunk,}
X0:=X; { feljegyezzik }
G_F_K:=C(X) { G_F_K aktualizédlésa }
End Else If FK(X)<G_F_K Then
G_F_K:=FK(X); { G_F_K aktualizéléasa }
SorBa (S, X) ; { X-et be az aktiv pontok kozé}
Until Not Testver (X); { &tlépés a kovet. testvérre}
End{while};
C0:=G_F_K;

End (* Keres2l *);

Procedure Keres22 (X:MTer; Var X0:Mter; Var CO:Real);
{ Aktiv pont vadlasztasa a elsd korlat szerinti minimumos
prioritédsi sorral, FK erés felsd korlat }

Var S:PriSor; { FK-szerinti minimumos prioritdsi sor }
G_F_K:Real; { létezik olyan X: C(X)<=G_F_K}

Begin (* Keres22 *)

CO:=Inf;

If Not LehetMego(X) Then Exit; {nincs megoldéas}
G_F_K:=FK(X); {inicializaléas}

Letesit (S); {ires prisor létesitése}
SorBa (S,X);

While Elemszam(S)>0 Do Begin {amig van aktiv pont}
SorBol (S, X); {taj aktiv pontot a prisorbdl}
If G_F_K<AK(X) Then {X-nek nincs jobb folytatésa,}
Continue; {kizdrt pont lesz}
If EFiu(X) Then {atlépés az elsé fiura}
Repeat {X Osszes fidnak kigenerdlésa}
If Not LehetMego(X) Then Continue;{ X kizart lett}
If G_F_K<AK(X) Then Continue; {X-nek nincs jobb folytatésa}
If Megoldas (X) And (C(X)<=G_F_K) Then Begin
X0:=X; {tj, jobb megoldast kaptunk}
G_F_K:=C(X); {G_F_K aktualizaléasa}
End Else If FK(X)<G_F_K Then {létezik jobb megoldds, amely}
G_F_K:=FK(X); {folytatdsa X-nek }
{
{

SorBa (S, X); X-et be az aktiv pontok k&zé}

Until Not Testver (X); dtlépés a kovetkezd testvérre}
End{while};
CO0:=G_F_K;

End (* Keres22 *);

19

10.2. Utemezési probléma

M = {my,...,my} munkak halmaza
m(i].idotartam> 0 egész
m(i].hatarido > 0 egész
m(i].haszon> 0 val6s

Kimenet:
HC1l.n
1. A H-beli munkék beoszthatok hataridét nem sért6 maédon.
2.
CH)= ; m(i].haszon— maxi (8)
i€
H elemeinek egy (i1,...,ik) felsorolasa hatérid6t nem sérté, ha V1 < j <k
j
Z m(iy].idotartam< mi;].hatarido 9)
u=1

Allitas: H-nak akkor és csak akkor van hataridét nem sért6 beosztasa, ha elemeinek hataridd szerinti felsorolasa hataridét nem
sérto.

<= trivi.

= Tfh. H-nak van hatarid6t nem sért6 beosztasa, de ebben van olyan egymast kovetd u és u+ 1, hogy mli,].hatarido >
mMliyr1].hatarida Ekkor u és u+ 1 felcserélhetd a sorban.

Visszavezetés minimalizaciés feladatra.

CH) = ;m[i].haszon
i#H

= ‘im[i].haszon—C(H) — mini

C(H) — maxi< C(H) — mini

Tegyuk fel, hogy a munkak hataridé szerint nemcsokkend sorrendben vannak felsorolva. Ekkor a megoldas kifejezhetd
X = (i1,...,ik) vektorral, ahol i1 <iz < --- <

Minden X megoldaskezdeményre def. a problémaspecifikus miiveleteket.

LehetMeg¢X) = igaz<> ha a felsorolas hatarid6t nem sért6.

MegoldagX) = LehetMeg@X)

AK(X) = z m[j].haszon (10)
J<ik,)#X
FK(X) = g m[j].haszon (12)
j#x

Tehat, ha LehetMeg@X), akkor MegoldagX) és C(X) = FK(X), ezért FK er6s fels korlat.

20

