9. Megoldas keresése visszalépéssel (backtracking)

Probléma: n-kirdlyn 6
Helyezziink el az nxnes sakktablan n kiralynét, hogy egyik se isse a masikat!

8
7
6
5
4
3
2
1
1 2 3 4 5 6 7 8
1. &bra. Ures tabla
A megoldas megadhaté annak az n mezének a koordinataival, amelyekre kiralyndket helyezzik: M = {(x1,y1), -, (X0, Yn) }-

Tehat az (X;,Vi) és (Xj,yj) mezdkre helyezett két kiralyn6 akkor és csak akkor nem (iti egymast, ha

X-y=-3

P N W b~ OO N

1 2 3 4 5 6 7 8
X+y=7

2. &bra. Az (X,y) mezdn |évé kirdlynd Utési mez6i.

X # Xj (1)

Yi Y (2
X —Yi X —Yj ®
Xi+Yi # Xj +Yj (4)

Tehat egy ilyen M halmaz akkor és csak akkor megoldasa a feladatnak, ha (Vi, j)(1 <i < j < n)teljestl a fenti 4 feltétel.
Minden sorban, minden oszlopban pontosan egy kirdlynének kell lenni, tovabba minden féatldéban és minden mellékatléban leg-
feliebb egy kiralynd lehet. Tehat minden megoldas megadhat6 egy X = (X1,...,X,) vektorral, ami azt jelenti, a kiralyn6ket az
{(x1,1),--+, (Xn,n)} mezokre helyeziink kiralyndket. Ekkor a megoldas feltétele:(Vi, j)(1 <i < j <n)

X 7 X (5)
X —1#X]—] (6)
X +17#Xj+] 7

9.1. Kimerit § keresés (nyers er 6) mddszere

Elvi algoritmus:
KIMERITOKERESES

VX = (X1,...,%) € [N] X ... x [n] do
if Megoldas(X) then
Kilr(X)

A KIMERITOKERESES algoritmus megvaldsitasa:

abstract class Kimeritof{
abstract boolean Megoldas (int[] X);
abstract void KiIr(int[] X);

public void Keres(int[] X, int k) {
int n=X.length;
for (int i=1; i<=n; i++){
X[k]=1i;
if (k==n-1 && Megoldas (X)) {
Kilr (X);
}else
Keres (X, k+1);

}

Nyilvanval6, hogy ez a médszer sok vektort feleslegesen vizsgal, hiszen ha példaul x; = X, (vagy altalaban, ha X = (Xq,..., %)
esetén két kirdlyné uti egymast), akkor X biztosan nem lehet megoldas. Azaz, elegendd lenne csak a permutéciokat vizsgalni.
Otlet: probaljuk a megoldast Iépésenként elallitani tgy, hogy ha mar elhelyeztiink a tabla elsé k— 1 soraban kiralynéket tgy, hogy
egyik sem Uti a masikat, akkor a kdvetkez6 lépésben a k-adik sorba prébaljunk rakni egy kiralynét.

Megoldaskezdemény:
X={Xg,...,%),0<k<nl1<x<n
X j6 megoldaskezdemény, ha kezdbszelete lehet egy megoldasnak, tehat nem Uti egymast a tablara mar elhelyezett k darab
kiralynd, azaz:
(Vi j)(1<i < j<K)

i(Xi—i£X—)AX+i#x+]) V=(1425,3)j6 megoldaskezdemény, de nem folytathatd, mert a 6. sorba nem
IyezHeto iralyno, hogy he Usse a maf tablan lévak egylket sem.

Vlsszalepest kell végezni: az 5. sorban lIévét mas helyre kell rakni.

Ez az a pont, ahol ez a mddszer kilonbézik a moho stratégiatél. Ott a megoldaskezdemény mindig folytathaté volt, és meg tudtuk
mondani, hogy melyik |épéssel.

Itt azonban nem tudjuk megmondani, hogy egy megoldaskezdemény folytathaté-e, és ha igen milyen Iépéssel.

P N W AN 01O N @
@

1 2 3 4 5 6 7 8

3. &bra. Nem folytathaté allas (megoldaskezdemény)

L N W hr~ OO N ©
®

®
1 2 3 4 5 6 7 8

4. dbra. Az els6 megtalalt megoldas

Vegyilk észre, hogy a megoldaskezdemények fat alkotnak. Egy X = (Xg,...,Xk) megoldaskezdemény lehetséges kizvetlen
folytatasai, azaz X fiaiaz Y = (x1,...,X,1) i = 1,...,nlehetséges megoldaskezdemények.
A kimerit§ keresést Iényeges gyorsithatjuk, ugyanis ha az X = (x1,...,Xc) megoldaskezdeményre nem teljestl az (1-4) feltételek
valamelyike, akkor kihagyhatjuk a keresésbél az 6sszes olyan megoldaskezdeményt, amely folytatdsa X-nek. Ekkor azt mondjuk,
hogy az X megoldaskezdemény kizart lesz.

Tehat minden fabejaré algoritmus alkalmazhaté megoldas keresésére, azzal a médositassal, hogy ha az aktudlis X pont (meg-
oldaskezdemény) nem valaszthato, azaz kizart lesz, akkor X-et (igy kell tekinteni a bejaras soran, mint ha levél pont lenne.
A megoldas keresését meg tudjuk fogalmazni olyan altalanos formaban, hogy az algoritmus érdemi része, azaz a megoldastér
bejarasa csak néhany problémaspecifikus miveletet alkalmaz.
Ezt modszert "application framework" mdodszernek is nevezik. Adott problémara nem kell Gjrairni az érdemi részt, csak a problé-
maspecifikus miveletek megvaldsitasat kell megadni.
Erintetlen az olyan pontja a megoldastérnek, amelyet a keresés soran még nem érintettiink.

A

(]

O Erintetlen
O+ Aktudlis
@® Aktiv

® Bevégzett
® Kizart

@ Erintetlen-kizart

5. dbra. A megoldastér pontjainak osztalyozasa visszalépéses keresésnél

Aktudlis az a pont, amelyet éppen vizsgalunk.

Aktiv az olyan pont, amelyet mar érintettiink a keresés soran, de még nem bevégzett. Pontosan azok az aktiv pontok, amelyek az
aktualis pont 6sei a faban. A keresés soran az aktiv pontokba még visszatérink.

Kizart a pont, ha olyan megoldadskezdemény, amelynek egyetlen folytatasa (leszarmazottja a faban) sem lehet megoldas.
Bevégzett a pont, ha minden fia vagy kizart vagy bevégzett.

Erintetlen-kizart a pont, ha leszarmazottja valamely kizart pontnak. Tehat a megoldastér ezen pontjait nem érinti a keresés.

Legyen MTer a megoldastér absztrakt osztaly, amely az alabbi absztrakt metédusokat definialja.
A megoldastér bejarasahoz sziikséges muveletek:
ElsoFiu(), Testver(), Apa()
Megoldas(), LehetMego(), VisszaAllit()
Megoldastér osztaly visszalépéses kereséshez:

public abstract class MTer implements Cloneable {
// probléma specifikus miveletek:
public abstract boolean ElsoFiu();
/** Ha van X-nek fia, akkor X az elsé fiura valtozik és a
fliggvényhivas értéke true, egyébként false és X nem valtozik.
*/
public abstract boolean Testver();
/** Ha van X-nek még benemjart testvére, akkor X a kovetkezd testvér lesz

@

6. abra. A megoldastér sematikus képe visszalépéses keresésnél

*
*/
public abstract boolean Apaf();

/** Ha van X-nek apja, akkor X az apjara valtozik és a
fliggvényhivas értéke true, egyébként false és X nem valtozik.

*/
public abstract boolean Megoldas();
/** BAkkor és csak akkor ad igaz értéket, ha X megoldésa a problémanak.
*/
public abstract boolean LehetMego();

/** X.LehetMego () false értéket ad, ha nincs megoldés az X gydkerld részféaban.
Ha X.LehetMego () true, abbdél nem kdvetkezik, hogy van X-nek olyan
folytatédsa, ami megoldés.

Bejegyzéseket tehet, ami segiti a mlveletek hatékony megvaldsitésat.
*/
public abstract void VisszaAllit();
/** Torli a Lehetmego() altal tett bejegyzéseket.
*/
public abstract void Input (String filenev)throws IOException;
/** A bemeneti adatok beolvasédsa és {ires megoldéskezdemény elédllitésa.
*/
public abstract void Output (String filenev)throws IOException;
/** A megoldads kiiratésa.
*/
public MTer clone() {
MTer result = this;
try {
result = (MTer)super.clone();
} catch (CloneNotSupportedException e) {
throw new InternalError();
}

return result;

és a fliggvényhivéds értéke true, egyébként false és X nem valtozik.

}

public class VisszalepR{

//Megoldéds rekurziv keresése az X gyOkerld megoldastér féaban
public MTer Megold (MTer X) {

if (X.Megoldas())

return X;

MTer XX=X.clone();
if (!'XX.ElsoFiu())

return null;

do{
if (!XX.LehetMego())
continue;
MTer X0=Megold (XX);
if (X0!=null)
return X0;
XX.VisszaAllit ();
}while (XX.Testver());

return null;

}

public class Visszalep{

//ha az 6sszes megoldést keressiik:
//X.0Output () ;

//mésolat készités

//&ttérés az elsd fiura,

//ha nincs, akkor visszatérés

//X fiainak bejarésa

//ha XX nem folytathaté megoldéssa
//tovabblépés a kdvetkezd testvérre
//rekurziv hivés

//megoldast talaltunk,

//készenvagyunk

//a LehetMego <al tett bejegyzések tdrlése
//van-e még benemjart testvér?

//nincs megoldds az X-gyoker(i féban

private static enum Paletta {Feher, Kek, Piros};
//Megoldéds visszalépéses keresése az X-gyodkerll megoldéstérben

public MTer Megold(MTer X) {
Paletta szin=Paletta.Feher;

while (true) {
switch (szin) {
case Feher:
if (X.LehetMego()) { //folytathaté-e X megoldéassé?
if (X.Megoldas()) //ha az Osszes megoldast keressiik:
return X; //%X.0utput () ;
if (!X.ElsoFiu()) //atlépés az elsé fiura, ha van
szin=Paletta.Kek; //uj aktudlis pont
}else //X kizédrt pont lesz
szin=Paletta.Piros;
break;
default:
if (szin==Paletta.Kek) //ha aktiv pontbdl lépiink tovabb
X.VisszaAllit (); //akkor eldébb visszadllitéds kell
if (X.Testver()) //&4t1épés a testvérre, ha van
szin=Paletta.Feher; //X Uj aktiv pont lesz
else(//ha X-nek nincs benemjart testvére
if (X.Apal()) //visszalépés az apdara
szin=Paletta.Kek; //az apa mindig aktiv pont
else //X a gyokér
return null; //vége a keresésnek
}
break;
}//switch
}//while
}//Megold

}

A probléma-specifikus miveletek megvalésitdsa az n-kirdlyn

public class Kiralynok extends MTer({

6 problémahoz.

private static int N;

private int k;

private static int Sor[];

private static boolean Oszlop[];

private static boolean Fatlo[];

private static boolean Matlo[];

Kiralynok () {
k=0;

}

public void Input (String filenev) {
Scanner stdin=new Scanner (System.in);
N=stdin.nextInt ();
stdin.close();
Sor=new int [N+1];
Oszlop=new boolean[N+1];
Fatlo=new boolean[2*N+1];
Matlo=new boolean[2*N+1]

’

}

public void Output (String filenev) {
for (int i=1; i<=N; i++)
System.out.print (Sor[i]+" ");
System.out.println();
}
public boolean ElsoFiu() {
if (k<N) {
Sor[++k]=1;
return true;
}
return false;
}
public boolean Testver() {
if (Sor[k]<N) {
++Sor[k];
return true;
}
return false;
}
public boolean Apa() {
if (k>1){
--k; return true;
} return false;

}

public boolean Megoldas () {
return k==N;
}
public boolean LehetMego () {
if (k==0) return true;
if(!Oszlop[Sor[k]] &&
!Fatlo[N+Sor[k]-k]&&
IMatlo[Sor[k]+k]) {
Oszlop[Sor[k]]=true;
Fatlo[N+Sor[k]-k]=true;
Matlo[Sor[k]+k]=true;
return true;

}

return false;

}

public void VisszaAllit () {
if (k==0) return;
Oszlop[Sor[k]]=false;
Fatlo[N+Sor[k]-k]=false;
Matlo[Sor[k]+k]=false;

9.2. A visszalépéses keresés alkalmazasa a pénzvaltas problémara.

Probléma: Pénzvaltas

Bemenet: P ={pi,..., pn} pozitiv egészek halmaza, és E pozitiv egész szam.

Kimenet: Olyan SC P, hogy E =} s

A megoldast kifejezhetjiik és kereshetjuk bitvektor formaban, tehat olyan X = (Xa,...,%n) vektort kerestink, amelyre

E n
= i;Xa P

Ekkor a megoldéastér faja binaris fa lesz. A megoldast kifejezhetjiik és kereshetjik mint a pénzek indexeinek olyan SC {1,...,n}

0 1 1
0 ﬁl <Cgo\l 1 o; ;1
O O OO ONONG®

7. dbra. Binaris megoldastér a pénzvaltas probléma n = 4 esetében

halmazanak X = (i, ...,im) ndvekvé felsorolasaként is, azaz iy <iz < ... < im, hogy .

m
E=> mi
&

Ekkor a megoldastér formaja a 8. abran lathatdé n =5 esetére. A pénzvaltas probléma megoldasahoz elegendé megadni a
probléma-specifikus ELSOFIU , TESTVER, (APA,) VISSZAALLIT, LEHETMEGO, MEGOLDAS m(iveletek megvalésitasat, és az RKE-
RES (KERES) eljaras valtoztatas nélkil alkalmazhat6é egy megoldas eléallitasara.
(Az Apa miivelet csak a nemrekurziv keresés esetén kell.)
Legyen X = (i, . ..,im) tetsz6leges megoldaskezdemény.
ELsoFIu(X) = (i1,--.,im,im+ 1), hain<n
TESTVER(X) = (i1,...,im-1,im+ 1), hain <n
APA(X) = (i1,...,im-1), ham>0
LEHETMEGO(X) akkor és csak akkor adjon igaz értéket, ha

m m n

i <EA i T+ i > E
kzl Pi, < kZl Piy j:%-s-l pj =

MEGOLDAS(X) akkor és csak akkor adjon igaz értéket, ha

8. dbra. Nem binaris megoldastér a pénzvaltas probléma n = 5 esetében

9. abra. A fa pontjai

A VisszAALLIT mivelet megvalésitasa el6tt donteni kell, hogy milyen segéd informaciot tarolunk egy megoldastérpontban. Cél-
szer(tarolni a

m
Resz= z Piy
K=1

n
Maradt= 3% pj
j=lm+1

0sszegeket, hogy a LEHETMEGO(X) és MEGOLDAS(X) miiveleteket konstans id6ben ki tudjuk szamitani.

public class Penzvalto extends MTer({
private static int N, E;
private int k;
private static int Penz[];
private static int S[];
private int resz;
private int maradt;

Penzvalto () {
k=0;
}
public void Input (String filenev)throws IOException({
Scanner bef;
if (filenev.length ()==0)
bef=new Scanner (System.in);
else
bef=new Scanner (new File(filenev));

N=bef.nextInt ();
E=bef.nextInt ();
bef.nextLine () ;
Penz=new int [N+1];
S=new int [N+1];

S[0]=0;
resz=0;
maradt=0;
for (int i=1; i<=N; i++){
Penz[i]=bef.nextInt();
maradt+=Penz[i];
}
bef.close();
}
public void Output (String filenev)throws IOException({
PrintWriter kif;
if (filenev.length()==0)
kif=new PrintWriter (System.out);
else
kif=new PrintWriter(
new BufferedWriter (
new FileWriter (filenev)
)
)i

for (int i=1; i<=k; i++)

System.out.print (S[i]+" ");
System.out.println();

10

}

public boolean ElsoFiu() {
if (k<N && S[k]<N) {
k++;
S[k]=S[k-11+1;
return true;
}
return false;
}
public boolean Testver () {
if (k>0 && S[k]I<N){
++S[k];
return true;
}
return false;
}
public boolean Apaf() {
if (k>0){

return true;
}
return false;

}

public boolean Megoldas () {
return resz==E;
}
public boolean LehetMego () {
if (resz<=E && resztmaradt>=E) {
resz+=Penz [S[k]];
maradt-=Penz [S[k]];
return true;
}
return false;
}
public void VisszaAllit () {
for (int 1=S[k-1]+1; i<=S[k]; 1i++)
maradt+=Penz[i];
resz-=Penz [S[k]];

}

Visszalépéses keresési algoritmusok futasi ideje

Legrosszabb esetben a keresés a megoldastér-fa minden pontjat bejarja, ami exponencialis.

Visszalépéses keresési algoritmusok tarigénye

A rekurziv megvalositas tarigénye fiigg az alkalmazott programozasi nyelvtél. Minden esetben tarolni kell az aktiv pontokat. Ha
objektum orientalt nyelven térténik a megvaldsitas, ahol automatikus memdriagazdalkodas van, akkor a tényleges tarigény ennél
tobb. Ennek az az oka hogy a rekurziv eljaraspéldany terminalasakor nem szabadul fel automatikusan az eljaras soran létesitett
objektumok altal elfoglalt memoria.

Nemrekurziv megvaldsitas soran elég csak csak az aktudlis pontot tarolni.

A visszalépéses keresés alkalmazhat6 optimalis megoldas eléallitasara is.

Legyen C(X) a célfiiggvény, tehat olyan X-et keresiink, amelyre: MEGOLDAS(X) és C(X) minimdlis. Az §sszes megoldas kere-
sése soran ha jobb megoldast talalunk, feljegyezziik.

11

if (X.Megoldas() && X.C()<OptC) {
X0=X;
OptC=C (X) ;

9.3. Elagazéas-korlatozas mddszere (branch and bound)

Ha a megoldaskezdemények tere fa, akkor a probléma egy, vagy az 6sszes megoldasat kereshetjiik a fak szint szerinti bejarasanak
megfeleld stratégiaval. A stratégiat még altalanosabban hasznalhatjuk, ugyanis az aktualis pontot tetsz6legesen valaszthatjuk az
aktiv pontok kozil. A Iényeg, hogy a valasztott aktudlis pont minden fiat kigeneraljuk, és ha lehetséges megoldas (azaz teljesiil
rd4 a Lehetmego feltétel), akkor betessziik az aktiv pontok halmazaba. Tehat az algoritmus egy adagol6t hasznal az aktiv pontok
tarolasara. A visszalépéses stratégia esetén elég volt egy pontot, az aktudlis pontot tarolni, mert a kdvetkezé aktiv pont mindig
ennek fia, testvére, vagy apja. Az adagoldval térténé bejaraskor ez nem igaz, ezért a fabejardshoz szikséges ELSOFIU és
TESTVER mlveleteket célszerl ugy specifikalni, hogy mindig Uj objektumként hozzék létre a filt vagy testvért, ha nem létezik,
akkor pedig null értéket adjanak.

cone
!

FAa
VIRV ARUAN

Erintetlen
Aktualis
Aktiv
Kizért

Bevégzett

ON N N N NO

Erintetlen-kizart

10. &bra. A megoldastér pontjainak osztalyozasa adagoldval torténd keresés esetén.

12

gzgi\gll;

O Erintetlen
@ Aktualis
@ Aktiv
@ Kizart

@ Bevégzett

O Erintetlen-kizart

11. dbra. A megoldastér pontjainak sematikus abrazolasa adagolds keresés esetén.

public static void AKeres (EKMegold X)throws Exception{
Adagolo<EKMegold> A=new AdagoloL<EKMegold>();

if (!X.LehetMego()) return;
A.Betesz (X);
while (A.nemUres()) {
X=A.Kivesz();
X=X.ElsoFiu();
while (X!=null) {
if (X.LehetMego()) {
if (X.Megoldas())
X.Output ("");
A.Betesz (X);
}
X=X.Testver();
}
}//while
return;

}

9.1. Allitds. Ha X az lires megoldaskezdemény, akkor AKERES(X) a probléma dsszes megoldésat adja.

Bizonyitas. Az alabbi feltétel a while (A.nemUres ()) kezdetl ismétlés ciklusinvariansa lesz.

Barmely Y megoldas vagy bevégzett (azaz egyszer mar kivettiik A-bol), vagy van olyan Z € A, hogy Y leszarmazottja Z-nek a
megoldastér faban (azaz Y érintetlen).

A ciklus el6tt az allitas teljesdl, mert minden pont érintetlen, az adagoléban csak az tires megoldaskezdemény van és minden
megoldaskezdemény leszarmazottja az tresnek.
Tegyik fel, hogy a feltétel teljesiil a ciklusmag végrehajtasa el6tt és az adagolébol X-et vesszik ki. Tovabba tegyuk fel, hogy Y
nem bevégzett. Ekkor két eset lehet.
a.) Y leszarmazottja X-nek. Ekkor vagy Y = X és igy Y bevégzett lesz, vagy Y leszarmazottja X valamely Z fianak. De a ciklusban

13

X minden fia kigeneralasra kerl, tovabba LEHETMEGO(Z) biztosan igazat ad, mert van megoldas a Z-gyoker(i faban, nevezetesen
Y. Ezért Z-t betessziik az adagol6ba.
b.) Y nem leszarmazottja X-nek. Ekkor Y olyan X # Z € Aleszarmazottja, amely Z tovabbra is A-ban marad.
Tehat mindkét esetben teljesil a feltétel a ciklusmag utan.
Ebbdl kdvetkezik az algoritmus helyessége, hisz a ciklus terminalasa utan az A adagol6 res, igy minden megoldas bevégzett. ®
Az algoritmus futasi ideje sok esetben erdsen fligg az aktualis pont valasztasatél. Ezen kivil tovabbi kizarasokat is tehetlink.
Tegytk fel, hogy minimalizacids feladatot kell megoldani. Tehat adott a C(X) valos értékii célfuggvény, és olyan X megoldast
kerestink, amelyre a célfuggvény C(X) értéke minimalis.
TegyUk fel tovabba, hogy a megoldaskezdeményekre meg tudunk adni olyan AK(X) alsé korlat figgvényt, amelyekre teljesil-
nek az alabbi egyenl6tlenségek.
Barmely X megoldaskezdeményre és minden olyan Y megoldasra, amely leszarmazottja X-nek:

AK(X) < C(Y)

Ekkor az adagol6 lehet az AK szerinti minimumos prioritasi sor, tehat az aktiv pontok kdzil mindig a legkisebb alsé korlatd pontot
vélasztjuk aktudlisnak.
Az keresés soran taroljuk az addig megtalalt megoldasok célfiggvény értékeinek minimumat.

G_F_K =min{C(X) : MEGOLDAS(X) ES X BEVEGZETT}
Ekkor a kovetkezd kizarasokkal (korlatozasokkal) gyorsithatjuk a keresést:
1. Ha az X uj aktudlis pontra G_F_K < AK(X), akkor X kizart lehet.

2. Ha a sorbél az X pontot vettik ki és G_F_K < AK(X), akkor a keresést befejezhetjik, hiszen nem kaphatunk mar jobb
megoldast.

Ha a megoldaskezdeményekre meg tudunk adni felsé korlat is, akkor az adagolé lehet a fels6 korlat szerinti minimumos prioritasi
sor. Fels6 korlat olyan FK(X) fuggvényt értiink, amelyre teljesil, hogy minden X megoldaskezdeményre és minden olyan Y
megoldasra, amely leszarmazottja X-nek:

C(Y) <FK(X)

Ekkor azonban a 2. kizarast nem alkalmazhatjuk.
Az FK(X) felsé korlatot erés felsd korlatnak nevezziik, ha barmely X megoldaskezdeményre:

FK(X) <o = (3Y)(Y I<XAMEcoLDAS(Y) AC(Y) < FK(X))

Az erds felst korlat létezése azt jelenti, hogy barmely X megoldaskezdeményre, ha FK(X) < oo, akkor biztosan létezik megoldas
az X gyoker(i megoldastér faban, és ennek célfiggvény értéke < FK(X). Ekkor a keresést végezhetjik a felsd korlat szerinti
minimumos prioritasi sorral Ggy, hogy feljegyezziik az addig érintett pontok felsé korlatjainak minimumat. Legyen ez a G_F_K.
Tehat a keresés soran azt allithatjuk, hogy biztosan létezik olyan megoldas, amelynek célftiggvény értéke < G_F_K, de nem
biztos, hogy mar talaltunk is ilyen megoldast. A 2. szamu kizarast ennek ellenére tovabbra is megtehetjik.

public abstract class EKMegold implements Cloneable, Comparable<EKMegold>{
/** Ha vanfia, akkor a visszadott érték olyan uj objektum, amelynek értéke
az els6é fil, egyébként null.
*/
public abstract EKMegold ElsoFiu();
/** Ha van még be nem jart testvére, akkor a visszadott érték olyan uj
objektum, amelynek értéke a kbvetkezd testvér, egyébként null.
*/
public abstract EKMegold Testver();
/** BAkkor és csak akkor ad igaz értéket, ha a megoldéskezdemény megoldésa
a problémanak.
*/
public abstract boolean Megoldas();
/** Hamis értéket ad, ha nincs megoldds az adott gydker(i részfaban.
Ha értéke igaz, abbdl nem kdvetkezik, hogy van olyan folytatédsa,
ami megoldés.

14

*/
public abstract boolean LehetMego();
/** A célfiiggvény. */
public abstract float C();
/** Az alsdkorldt fliggvény. */
public abstract float AK();
/** A felsbkorlat fliggvény. */
public abstract float FK();
/** Rendezés az alsdkorlat szerint */
public int compareTo (EKMegold X) {
return this.AK() < X.AK() ? -1: this.AK() > X.AK() 2 1: 0;
}
/** A bemeneti adatok beolvasédsa és {ires megoldéskezdemény elédllitésa.
*/
public abstract void Input (String filenev)throws IOException;
/** A megoldas kiiratésa. */
public abstract void Output (String filenev)throws IOException;
public EKMegold clone() throws CloneNotSupportedException{
EKMegold result = this;
try {
result = (EKMegold)super.clone();
} catch (CloneNotSupportedException e) {
System.err.println("Az objektum nem klénozhatd");
}
return result;

}

/* Megoldéds keresése felsdkorldt szerinti min. Prioritdsi sorral
az X gyOker megoldastér féban. */

public static EKMegold Keresl (EKMegold X)throws Exceptionf{
float G_F_K=Float.POSITIVE_INFINITY,
PriSor<EKMegold> S=new PriSor<EKMegold> (1000);
EKMegold X0=null;

if (!X.LehetMego()) return null;
S.SorBa (X);
while (S.Elemszam()>0) {
X=S.SorBol();
if (G_F_K<=X.AK()) return X0;
X = X.ElsoFiu();
while (X!=null) {
if (X.LehetMego() && X.AK()<G_F_K){
if (X.Megoldas() && X.C()<G_F_K) {
G_F_K=X.C();
X0=X;
}
S.SorBa (X);
}//else X kizart
X=X.Testver();
}
}//while
return X0;

}

/* Megoldéds keresése felsbkorldt szerinti min. Prioritési sorral,
* erds felsd korlattal. */

15

public static EKMegold Keres2 (EKMegold X) {
float G_F_K=X.FK();
PriSor<EKMegold> S=new PriSor<EKMegold>(1000);
EKMegold X0=null;
if (!X.LehetMego()) return null;
S.SorBa (X);
while (S.Elemszam()>0) {
X=S.SorBol();
if (G_F_K<X.AK()) continue;
X = X.ElsoFiu();
while (X!=null) {
if (X.LehetMego() && X.AK()<=G_F_K){
if (X.Megoldas() && X.C()<=G_F_K) {
G F K=X.C(); X0=X;
}else if (X.FK()<G_F_K)
G_F_K=X.FK();
S.SorBa (X);
}//else X kizart
X=X.Testver ();
}
}//while
return XO0;

9.3.1. Optimalis pénzvaltas

Az eldgazas-korlatozas modszer alkalmazasa az optimalis pénzvaltas probléma megoldasara.

Probléma: Optimalis pénzvaltas

Bemenet: P ={pi,..., pn} pozitiv egészek halmaza, és E pozitiv egész szam.

Kimenet: Olyan SC P, hogy ¥ ycs = E és |S| — minimalis.

Tegytk fel, hogy a pénzek nagysag szerint nemcsokkend sorrendbe rendezettek: p1 > ... > pn. A megoldast keressik X =
(i1, im), 11 <2 <... <im alakd vektor formaban. jelolie Resz= 3!, pj, és Maradt=y7_; ., p; 6sszegeket.

AK(X) =m+ [(E —Resz/piy1]
FK(X) =m+ [(E —Resz/p]

Ez a fels6 korlat nem er6s, és nem is tudunk olcsén kiszamithato er6s fels6é korlatot adni.

public class OPenzvalto extends EKMegold{
private static int N, E;
private int k;
private static int Penz[];
private int S[];
private int resz;
private int maradt;

OPenzvalto () {
k=0;
}
public OPenzvalto clone() {
OPenzvalto co = this;
try {
co = (OPenzvalto)super.clone();
} catch (CloneNotSupportedException e) {
System.err.println ("MyObject can’t clone");

16

}
co.S=S.clone();
return co;

}

public float C(){
return k;
}
public float AK() {
int i=S[k]<N ? S[k]+1 : N;
return k+(float)Math.ceil ((E-resz)/Penz[i]);
}
public float FK() {
return k+(E-resz)/Penz[N];

}

public OPenzvalto ElsoFiu() {
if (k<N && S[k]<N) {
OPenzvalto fiu=this.clone();
++fiu.k;
fiu.S[k+1]=S[k]+1;
fiu.resz+=Penz [S[k]+1];
fiu.maradt-=Penz [S[k]+1];
return fiu;
}
return null;
}
public OPenzvalto Testver () {
if (k>0 && S[k]<N) {
OPenzvalto tv=this.clone();
tv.resz+=Penz[S[k]+1]-Penz[S[k]];
++tv.S[k];
tv.maradt-=Penz [S[k]];
return tv;
}
return null;

}

public boolean Megoldas () {
return resz==E;
}
public boolean LehetMego () {
if (resz<=E && resz+maradt>=E) {
return true;

}

return false;

public void Input (String filenev)throws IOException({
Scanner bef;
if (filenev.length ()==0)
bef=new Scanner (System.in);
else
bef=new Scanner (new File(filenev));

17

N=bef.nextInt ();

E=bef.nextInt ();

bef.nextLine();

Penz=new int[N+1];

S=new int [N+1];

S[0]1=0;

resz=0;

maradt=0;

for (int i=1; i<=N; i++) {
Penz[i]=bef.nextInt ();
maradt+=Penz[i];

}

bef.close();

}

public void Output (String filenev)throws IOException({
PrintWriter kif;
if (filenev.length ()==0)
kif=new PrintWriter (System.out);
else
kif=new PrintWriter (
new BufferedWriter (
new FileWriter (filenev)
)

)
System.out.print (E+"=");
for (int i=1; i<=k; i++)

System.out.print (S[i]
System.out.println();

+"+ "),.

9.3.2. Utemezési probléma

Bemenet:

M = {my,...,my} munkék halmaza
m(i].idotartam> 0 egész
m(i].hatarido> 0 egész
m(i].haszon> 0 val6s

Kimenet:
HC1l.n
1. A H-beli munkék beoszthat6k hataridét nem sérté médon.
2
CH)= ; m(i].haszon— maxi (8)
i€

H elemeinek egy (i1,...,ik) felsorolasa hatéridét nem sérté, ha V1 < j <k

i

Z u)-idotartam< m(i;].hatarido 9)

Allitds: H-nak akkor és csak akkor van hatarid6t nem sérté beosztasa, ha elemeinek hataridd szerinti felsorolasa hataridét nem
sérto.

<= trividlis.

= Tfh. H-nak van hataridét nem sért6 beosztasa, de ebben van olyan egymast koveté u és u+ 1, hogy m[i,].hatarido >
M(iy+1].hatarida Ekkor u és u+ 1 felcserélhetd a sorban.

Visszavezetés minimalizaciés feladatra.

18

CH) = Zm[i].haszon
i#H

= ‘im[i}.haszon—C(H) — mini

C(H) — maxi< C(H) — mini

Tegyiik fel, hogy a munkak hataridé szerint nemcsokkend sorrendben vannak felsorolva. Ekkor a megoldas kifejezhetd
X = (i1,...,ik) vektorral, ahol i1 <ip < .-+ <k

Minden X megoldaskezdeményre definialjuk. a problémaspecifikus mveleteket.

LehetMeg¢X) = igaz< ha a felsorolas hatarid6t nem sérté.

MegoldagX) = LehetMeg@X)

AK(X) = Z m[j].haszon (10)
J<ik,]gX

FK(X)=$ m[j].haszon (12)
j#x

Tehat, ha LehetMeg@X), akkor MegoldagX) és C(X) = FK(X), ezért FK er6s fels6 korlat.

public class Utemez extends EKMegold({
private static int N;
private int k;
private int[] S;
private static int[] Ido;
private static int[] Hat;
private static int[] Hasz;

private int oido; //a bevalasztott munkak Osszideje
private int ehaszon; //az elmaradt haszon
private int maradt; //a még valaszthatd munkdk haszna
Utemez () {

k=0;

}

public Utemez clone() {
Utemez co = this;
try {
co = (Utemez)super.clone();
} catch (CloneNotSupportedException e) {
System.err.println("MyObject can’t clone");
}
co.S=S.clone();
return co;

}

public float C() {
return ehaszontmaradt;

}
public float AK() {

return ehaszon;

}
public float FK() {
return ehaszon+maradt;

19

/** Rendezés a felsd korlat szerint
*/
public int compareTo (EKMegold X) {
return this.FK() < X.FK() ? -1: this.FK() > X.FK() 2 1: 0;
}

public Utemez ElsoFiu() {
if (k<N && S[k]<N) {
Utemez fiu=this.clone();
++fiu.k;
fiu.S[k+1]1=S[k]+1;
fiu.oido+=Ido[S[k]+1];
fiu.maradt-=Hasz[S[k]+1];
return fiu;
}
return null;
}
public Utemez Testver() {
if (k>0 && S[k]I<N){
Utemez tv=this.clone();
tv.oido+=Ido[S[k]+1]-Ido[S[k]];
++tv.S[k];
tv.maradt-=Hasz [S[k]+1];
tv.ehaszon+=Hasz [S[k]];
return tv;
}
return null;

}

public boolean Megoldas () {
return oido<=Hat [S[k]];

}

public boolean LehetMego () {
return (oido<=Hat[S[k]]);

public void Input (String filenev)throws IOException({
Scanner bef;
if (filenev.length()==0)
bef=new Scanner (System.in);
else
bef=new Scanner (new File(filenev));
N=bef.nextInt (); bef.nextLine();
S =new int [N+1];
Ido =new int [N+1];
Hat =new int[N+1];
Hasz =new int [N+1];
S[0]=0;
for (int i=1; i<=N; 1i++){
Ido[i]=bef.nextInt ();
} bef.nextLine();
for (int i=1; i<=N; i++) {
Hat [i]=bef.nextInt ();
}bef.nextLine();
for (int i=1; i<=N; i++) {

20

Hasz[i]=bef.nextInt ();
maradt+=Hasz[i];

}

bef.close();

}

public void Output (String filenev)throws IOException({
PrintWriter kif;
if (filenev.length ()==0)
kif=new PrintWriter (System.out);
else
kif=new PrintWriter (
new BufferedWriter (
new FileWriter (filenev)
)
)
System.out.print ("= ");
for (int i=1; i<=k; i++)
System.out.print (S[i]+"+ ");
System.out.println();

21

