
9. Megoldás keresése visszalépéssel (backtracking)

Probléma: n-királyn ő
Helyezzünk el az nxn-es sakktáblán n királynőt, hogy egyik se üsse a másikat!

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

1. ábra. Üres tábla

A megoldás megadható annak az n mezőnek a koordinátáival, amelyekre királynőket helyezzük: M = {(x1,y1), · · · ,(xn,yn)}.
Tehát az (xi ,yi) és (x j ,y j) mezőkre helyezett két királynő akkor és csak akkor nem üti egymást, ha

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8
x

y

x+y=7

x-y=-3

2. ábra. Az (x,y) mezőn lévő királynő ütési mezői.

1

xi 6= x j (1)

yi 6= y j (2)

xi −yi 6= x j −y j (3)

xi +yi 6= x j +y j (4)

Tehát egy ilyen M halmaz akkor és csak akkor megoldása a feladatnak, ha (∀i, j)(1≤ i < j ≤ n)teljesül a fenti 4 feltétel.
Minden sorban, minden oszlopban pontosan egy királynőnek kell lenni, továbbá minden főátlóban és minden mellékátlóban leg-
feljebb egy királynő lehet. Tehát minden megoldás megadható egy X = 〈x1, . . . ,xn〉 vektorral, ami azt jelenti, a királynőket az
{(x1,1), · · · ,(xn,n)} mezökre helyezünk királynőket. Ekkor a megoldás feltétele:(∀i, j)(1≤ i < j ≤ n)

xi 6= x j (5)

xi − i 6= x j − j (6)

xi + i 6= x j + j (7)

9.1. Kimerít ő keresés (nyers er ő) módszere

Elvi algoritmus:
KIMERITOKERESES

∀X = 〈x1, . . . ,xn〉 ∈ [n]× . . .× [n] do
if Megoldás(X) then

KiIr(X)

A KIMERITOKERESES algoritmus megvalósítása:

abstract class Kimerito{
abstract boolean Megoldas(int[] X);
abstract void KiIr(int[] X);

public void Keres(int[] X, int k){
int n=X.length;
for(int i=1; i<=n; i++){

X[k]=i;
if (k==n-1 && Megoldas(X)){

KiIr(X);
}else

Keres(X,k+1);
}

}
}

Nyilvánvaló, hogy ez a módszer sok vektort feleslegesen vizsgál, hiszen ha például x1 = x2 (vagy általában, ha X = 〈x1, . . . ,xk〉
esetén két királynő üti egymást), akkor X biztosan nem lehet megoldás. Azaz, elegendő lenne csak a permutációkat vizsgálni.
Ötlet: probáljuk a megoldást lépésenként előállítani úgy, hogy ha már elhelyeztünk a tábla első k−1 sorában királynőket úgy, hogy
egyik sem üti a másikat, akkor a következő lépésben a k-adik sorba próbáljunk rakni egy királynőt.

Megoldáskezdemény:
X = 〈x1, . . . ,xk〉, 0≤ k≤ n,1≤ xi ≤ n
X jó megoldáskezdemény, ha kezdőszelete lehet egy megoldásnak, tehát nem üti egymást a táblára már elhelyezett k darab
királynő, azaz:
(∀i, j)(1≤ i < j ≤ k)
(xi 6= x j)∧ (xi − i 6= x j − j)∧ (xi + i 6= x j + j) V = 〈1,4,2,5,3〉 jó megoldáskezdemény, de nem folytatható, mert a 6. sorba nem
helyezhető királynő, hogy ne üsse a már táblán lévők egyikét sem.
Visszalépést kell végezni: az 5. sorban lévőt más helyre kell rakni.
Ez az a pont, ahol ez a módszer különbözik a mohó stratégiától. Ott a megoldáskezdemény mindig folytatható volt, és meg tudtuk
mondani, hogy melyik lépéssel.
Itt azonban nem tudjuk megmondani, hogy egy megoldáskezdemény folytatható-e, és ha igen milyen lépéssel.

2

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

3. ábra. Nem folytatható állás (megoldáskezdemény)

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

4. ábra. Az első megtalált megoldás

3

Vegyük észre, hogy a megoldáskezdemények fát alkotnak. Egy X = 〈x1, . . . ,xk〉 megoldáskezdemény lehetséges közvetlen
folytatásai, azaz X fiai az Y = 〈x1, . . . ,xk, i〉 i = 1, . . . ,n lehetséges megoldáskezdemények.
A kimerítő keresést lényeges gyorsíthatjuk, ugyanis ha az X = 〈x1, . . . ,xk〉 megoldáskezdeményre nem teljesül az (1-4) feltételek
valamelyike, akkor kihagyhatjuk a keresésből az összes olyan megoldáskezdeményt, amely folytatása X-nek. Ekkor azt mondjuk,
hogy az X megoldáskezdemény kizárt lesz.

Tehát minden fabejáró algoritmus alkalmazható megoldás keresésére, azzal a módosítással, hogy ha az aktuális X pont (meg-
oldáskezdemény) nem választható, azaz kizárt lesz, akkor X-et úgy kell tekinteni a bejárás során, mint ha levél pont lenne.
A megoldás keresését meg tudjuk fogalmazni olyan általános formában, hogy az algoritmus érdemi része, azaz a megoldástér
bejárása csak néhány problémaspecifikus műveletet alkalmaz.
Ezt módszert "application framework" módszernek is nevezik. Adott problémára nem kell újraírni az érdemi részt, csak a problé-
maspecifikus műveletek megvalósítását kell megadni.
Érintetlen az olyan pontja a megoldástérnek, amelyet a keresés során még nem érintettünk.

���
�

���
�

���
�

���
�

��	
	

�
�

��

���
�

+

+

Érintetlen

Aktuális

Aktív

Bevégzett

Kizárt

Érintetlen-kizárt

5. ábra. A megoldástér pontjainak osztályozása visszalépéses keresésnél

Aktuális az a pont, amelyet éppen vizsgálunk.
Aktív az olyan pont, amelyet már érintettünk a keresés során, de még nem bevégzett. Pontosan azok az aktív pontok, amelyek az
aktuális pont ősei a fában. A keresés során az aktív pontokba még visszatérünk.
Kizárt a pont, ha olyan megoldáskezdemény, amelynek egyetlen folytatása (leszármazottja a fában) sem lehet megoldás.
Bevégzett a pont, ha minden fia vagy kizárt vagy bevégzett.
Érintetlen-kizárt a pont, ha leszármazottja valamely kizárt pontnak. Tehát a megoldástér ezen pontjait nem érinti a keresés.

Legyen MTer a megoldástér absztrakt osztály, amely az alábbi absztrakt metódusokat definiálja.
A megoldástér bejárásához szükséges műveletek:
ElsoFiu(), Testver(), Apa()
Megoldas(), LehetMego(), VisszaAllit()
Megoldástér osztály visszalépéses kereséshez:

public abstract class MTer implements Cloneable {
// probléma specifikus műveletek:

public abstract boolean ElsoFiu();
/** Ha van X-nek fia, akkor X az első fiúra változik és a

függvényhívás értéke true, egyébként false és X nem változik.
*/

public abstract boolean Testver();
/** Ha van X-nek még benemjárt testvére, akkor X a következő testvér lesz

4

6. ábra. A megoldástér sematikus képe visszalépéses keresésnél

* és a függvényhívás értéke true, egyébként false és X nem változik.
*/
public abstract boolean Apa();

/** Ha van X-nek apja, akkor X az apjára változik és a
függvényhívás értéke true, egyébként false és X nem változik.

*/
public abstract boolean Megoldas();

/** Akkor és csak akkor ad igaz értéket, ha X megoldása a problémának.
*/
public abstract boolean LehetMego();

/** X.LehetMego() false értéket ad, ha nincs megoldás az X gyökerű részfában.
Ha X.LehetMego() true, abból nem következik, hogy van X-nek olyan
folytatása, ami megoldás.
Bejegyzéseket tehet, ami segíti a műveletek hatékony megvalósításat.

*/
public abstract void VisszaAllit();

/** Törli a Lehetmego() által tett bejegyzéseket.
*/
public abstract void Input(String filenev)throws IOException;

/** A bemeneti adatok beolvasása és üres megoldáskezdemény előállítása.
*/
public abstract void Output(String filenev)throws IOException;

/** A megoldás kiíratása.
*/
public MTer clone() {

MTer result = this;
try {
result = (MTer)super.clone();
} catch (CloneNotSupportedException e) {

throw new InternalError();
}
return result;

}
}

public class VisszalepR{
//Megoldás rekurzív keresése az X gyökerű megoldástér fában

public MTer Megold(MTer X){

5

if (X.Megoldas()) //ha az összes megoldást keressük:
return X; //X.Output();

MTer XX=X.clone(); //másolat készítés
if (!XX.ElsoFiu()) //áttérés az első fiúra,

return null; //ha nincs, akkor visszatérés

do{ //X fiainak bejárása
if (!XX.LehetMego()) //ha XX nem folytatható megoldássá

continue; //továbblépés a következő testvérre
MTer X0=Megold(XX); //rekurzív hívás
if (X0!=null) //megoldást találtunk,

return X0; //készenvagyunk
XX.VisszaAllit(); //a LehetMego által tett bejegyzések törlése

}while(XX.Testver()); //van-e még benemjárt testvér?

return null; //nincs megoldás az X-gyökerű fában
}

}

public class Visszalep{
private static enum Paletta {Feher, Kek, Piros};

//Megoldás visszalépéses keresése az X-gyökerű megoldástérben
public MTer Megold(MTer X){

Paletta szin=Paletta.Feher;
while (true){

switch (szin) {
case Feher:

if (X.LehetMego()){ //folytatható-e X megoldássá?
if (X.Megoldas()) //ha az összes megoldást keressük:

return X; //X.Output();
if (!X.ElsoFiu()) //átlépés az első fiúra, ha van

szin=Paletta.Kek; //uj aktuális pont
}else //X kizárt pont lesz

szin=Paletta.Piros;
break;

default:

if (szin==Paletta.Kek) //ha aktív pontból lépünk tovább
X.VisszaAllit(); //akkor előbb visszaállítás kell

if (X.Testver()) //átlépés a testvérre, ha van
szin=Paletta.Feher; //X új aktív pont lesz

else{ //ha X-nek nincs benemjárt testvére
if (X.Apa()) //visszalépés az apára

szin=Paletta.Kek; //az apa mindig aktív pont
else //X a gyökér

return null; //vége a keresésnek
}
break;

}//switch
}//while

}//Megold
}

A probléma-specifikus műveletek megvalósítása az n-királyn ő problémához.

public class Kiralynok extends MTer{

6

private static int N;
private int k;
private static int Sor[];
private static boolean Oszlop[];
private static boolean Fatlo[];
private static boolean Matlo[];
Kiralynok(){

k=0;
}
public void Input(String filenev){

Scanner stdin=new Scanner(System.in);
N=stdin.nextInt();
stdin.close();
Sor=new int[N+1];
Oszlop=new boolean[N+1];
Fatlo=new boolean[2*N+1];
Matlo=new boolean[2*N+1];

}

public void Output(String filenev){
for (int i=1; i<=N; i++)

System.out.print(Sor[i]+" ");
System.out.println();

}
public boolean ElsoFiu(){

if (k<N){
Sor[++k]=1;
return true;

}
return false;

}
public boolean Testver(){

if (Sor[k]<N){
++Sor[k];
return true;

}
return false;

}
public boolean Apa(){

if (k>1){
--k; return true;

} return false;
}

public boolean Megoldas(){
return k==N;

}
public boolean LehetMego(){

if (k==0) return true;
if(!Oszlop[Sor[k]] &&

!Fatlo[N+Sor[k]-k]&&
!Matlo[Sor[k]+k]) {
Oszlop[Sor[k]]=true;
Fatlo[N+Sor[k]-k]=true;
Matlo[Sor[k]+k]=true;
return true;

7

}
return false;

}
public void VisszaAllit(){

if (k==0) return;
Oszlop[Sor[k]]=false;
Fatlo[N+Sor[k]-k]=false;
Matlo[Sor[k]+k]=false;

}
}

9.2. A visszalépéses keresés alkalmazása a pénzváltás problémára.

Probléma: Pénzváltás
Bemenet: P = {p1, ..., pn} pozitív egészek halmaza, és E pozitív egész szám.
Kimenet: Olyan S⊆ P, hogy E = ∑p∈S

A megoldást kifejezhetjük és kereshetjük bitvektor formában, tehát olyan X = 〈x1, . . . ,xn〉 vektort keresünk, amelyre

E =
n

∑
i=1

xi pi

Ekkor a megoldástér fája bináris fa lesz. A megoldást kifejezhetjük és kereshetjük mint a pénzek indexeinek olyan S⊆ {1, . . . ,n}

0 1

0

0

0 0 0 0 0 0 0 0

000

01

1

1 1 1 1 1 1 1

111

1

7. ábra. Bináris megoldástér a pénzváltás probléma n = 4 esetében

halmazának X = 〈ik, . . . , im〉 növekvő felsorolásáként is, azaz i1 < i2 < .. . < im, hogy .

E =
m

∑
k=1

pik

Ekkor a megoldástér formája a 8. ábrán látható n = 5 esetére. A pénzváltás probléma megoldásához elegendő megadni a
probléma-specifikus ELSOFIU , TESTVER, (APA,) VISSZAALLIT, LEHETMEGO, MEGOLDAS műveletek megvalósítását, és az RKE-
RES (KERES) eljárás változtatás nélkül alkalmazható egy megoldás előállítására.
(Az APA művelet csak a nemrekurzív keresés esetén kell.)
Legyen X = 〈ik, . . . , im〉 tetszőleges megoldáskezdemény.
ELSOFIU(X) = 〈i1, . . . , im, im+1〉, ha im < n
TESTVER(X) = 〈i1, . . . , im−1, im+1〉, ha im < n
APA(X) = 〈i1, . . . , im−1〉, ha m> 0
LEHETMEGO(X) akkor és csak akkor adjon igaz értéket, ha

m

∑
k=1

pik ≤ E∧
m

∑
k=1

pik +
n

∑
j=im+1

p j ≥ E

MEGOLDAS(X) akkor és csak akkor adjon igaz értéket, ha

E =
m

∑
k=1

pik

8

5

5

3

4 5

5

5

5

4 5 5

3 4 5 4 5 5

2 3 4 51

2 54

4 53

54

8. ábra. Nem bináris megoldástér a pénzváltás probléma n = 5 esetében

k

k+1 n

. . .

X

9. ábra. A fa pontjai

9

A VISSZAALLIT művelet megvalósítása előtt dönteni kell, hogy milyen segéd információt tárolunk egy megoldástérpontban. Cél-
szerű tárolni a

Resz=
m

∑
k=1

pik

Maradt =
n

∑
j=im+1

p j

összegeket, hogy a LEHETMEGO(X) és MEGOLDAS(X) műveleteket konstans időben ki tudjuk számítani.

public class Penzvalto extends MTer{
private static int N, E;
private int k;
private static int Penz[];
private static int S[];
private int resz;
private int maradt;

Penzvalto(){
k=0;

}
public void Input(String filenev)throws IOException{

Scanner bef;
if (filenev.length()==0)

bef=new Scanner(System.in);
else

bef=new Scanner(new File(filenev));

N=bef.nextInt();
E=bef.nextInt();
bef.nextLine();
Penz=new int[N+1];
S=new int[N+1];

S[0]=0;
resz=0;
maradt=0;
for (int i=1; i<=N; i++){

Penz[i]=bef.nextInt();
maradt+=Penz[i];

}
bef.close();

}
public void Output(String filenev)throws IOException{

PrintWriter kif;
if (filenev.length()==0)

kif=new PrintWriter(System.out);
else

kif=new PrintWriter(
new BufferedWriter(

new FileWriter(filenev)
)

);

for (int i=1; i<=k; i++)
System.out.print(S[i]+" ");

System.out.println();

10

}

public boolean ElsoFiu(){
if (k<N && S[k]<N){

k++;
S[k]=S[k-1]+1;
return true;

}
return false;

}
public boolean Testver(){

if (k>0 && S[k]<N){
++S[k];
return true;

}
return false;

}
public boolean Apa(){

if (k>0){
S[k]=0;
--k;
return true;

}
return false;

}

public boolean Megoldas(){
return resz==E;

}
public boolean LehetMego(){

if (resz<=E && resz+maradt>=E){
resz+=Penz[S[k]];
maradt-=Penz[S[k]];
return true;

}
return false;

}
public void VisszaAllit(){

for (int i=S[k-1]+1; i<=S[k]; i++)
maradt+=Penz[i];

resz-=Penz[S[k]];
}

}

Visszalépéses keresési algoritmusok futási ideje
Legrosszabb esetben a keresés a megoldástér-fa minden pontját bejárja, ami exponenciális.
Visszalépéses keresési algoritmusok tárigénye
A rekurzív megvalósítás tárigénye függ az alkalmazott programozási nyelvtől. Minden esetben tárolni kell az aktív pontokat. Ha
objektum orientált nyelven történik a megvalósítás, ahol automatikus memóriagazdálkodás van, akkor a tényleges tárigény ennél
több. Ennek az az oka hogy a rekurzív eljáráspéldány terminálásakor nem szabadul fel automatikusan az eljárás során létesített
objektumok által elfoglalt memória.
Nemrekurzív megvalósítás során elég csak csak az aktuális pontot tárolni.
A visszalépéses keresés alkalmazható optimális megoldás előállítására is.
Legyen C(X) a célfüggvény, tehát olyan X-et keresünk, amelyre: MEGOLDAS(X) és C(X) minimális. Az összes megoldás kere-
sése során ha jobb megoldást találunk, feljegyezzük.

11

if (X.Megoldas() && X.C()<OptC){
X0=X;
OptC=C(X);

}

9.3. Elágazás-korlátozás módszere (branch and bound)

Ha a megoldáskezdemények tere fa, akkor a probléma egy, vagy az összes megoldását kereshetjük a fák szint szerinti bejárásának
megfelelő stratégiával. A stratégiát még általánosabban használhatjuk, ugyanis az aktuális pontot tetszőlegesen választhatjuk az
aktív pontok közül. A lényeg, hogy a választott aktuális pont minden fiát kigeneráljuk, és ha lehetséges megoldás (azaz teljesül
rá a Lehetmego feltétel), akkor betesszük az aktív pontok halmazába. Tehát az algoritmus egy adagolót használ az aktív pontok
tárolására. A visszalépéses stratégia esetén elég volt egy pontot, az aktuális pontot tárolni, mert a következő aktív pont mindig
ennek fia, testvére, vagy apja. Az adagolóval történő bejáráskor ez nem igaz, ezért a fabejáráshoz szükséges ELSŐFIÚ és
TESTVÉR műveleteket célszerű úgy specifikálni, hogy mindig új objektumként hozzák létre a fiút vagy testvért, ha nem létezik,
akkor pedig null értéket adjanak.

Érintetlen

Aktuális

Aktív

Kizárt

Bevégzett

Érintetlen-kizárt

10. ábra. A megoldástér pontjainak osztályozása adagolóval történő keresés esetén.

12

Érintetlen

Aktuális

Aktív

Kizárt

Bevégzett

Érintetlen-kizárt

11. ábra. A megoldástér pontjainak sematikus ábrázolása adagolós keresés esetén.

public static void AKeres(EKMegold X)throws Exception{
Adagolo<EKMegold> A=new AdagoloL<EKMegold>();

if (!X.LehetMego()) return;
A.Betesz(X);
while (A.nemUres()){

X=A.Kivesz();
X=X.ElsoFiu();
while (X!=null){

if (X.LehetMego()){
if (X.Megoldas())

X.Output("");
A.Betesz(X);

}
X=X.Testver();

}
}//while
return;

}

9.1. Állítás. Ha X az üres megoldáskezdemény, akkor AKERES(X) a probléma összes megoldását adja.

Bizonyítás. Az alábbi feltétel a while (A.nemUres()) kezdetű ismétlés ciklusinvariánsa lesz.
Bármely Y megoldás vagy bevégzett (azaz egyszer már kivettük A-ból), vagy van olyan Z ∈ A, hogy Y leszármazottja Z-nek a

megoldástér fában (azaz Y érintetlen).
A ciklus előtt az állítás teljesül, mert minden pont érintetlen, az adagolóban csak az üres megoldáskezdemény van és minden

megoldáskezdemény leszármazottja az üresnek.
Tegyük fel, hogy a feltétel teljesül a ciklusmag végrehajtása előtt és az adagolóból X-et vesszük ki. Továbbá tegyük fel, hogy Y
nem bevégzett. Ekkor két eset lehet.
a.) Y leszármazottja X-nek. Ekkor vagy Y = X és így Y bevégzett lesz, vagy Y leszármazottja X valamely Z fiának. De a ciklusban

13

X minden fia kigenerálásra kerül, továbbá LEHETMEGO(Z) biztosan igazat ad, mert van megoldás a Z-gyökerű fában, nevezetesen
Y. Ezért Z-t betesszük az adagolóba.
b.) Y nem leszármazottja X-nek. Ekkor Y olyan X 6= Z ∈ A leszármazottja, amely Z továbbra is A-ban marad.
Tehát mindkét esetben teljesül a feltétel a ciklusmag után.
Ebből következik az algoritmus helyessége, hisz a ciklus terminálása után az A adagoló üres, így minden megoldás bevégzett. �

Az algoritmus futási ideje sok esetben erősen függ az aktuális pont választásától. Ezen kívül további kizárásokat is tehetünk.
Tegyük fel, hogy minimalizációs feladatot kell megoldani. Tehát adott a C(X) valós értékű célfüggvény, és olyan X megoldást
keresünk, amelyre a célfüggvény C(X) értéke minimális.

Tegyük fel továbbá, hogy a megoldáskezdeményekre meg tudunk adni olyan AK(X) alsó korlát függvényt, amelyekre teljesül-
nek az alábbi egyenlőtlenségek.
Bármely X megoldáskezdeményre és minden olyan Y megoldásra, amely leszármazottja X-nek:

AK(X)≤C(Y)

Ekkor az adagoló lehet az AK szerinti minimumos prioritási sor, tehát az aktív pontok közül mindig a legkisebb alsó korlátú pontot
választjuk aktuálisnak.
Az keresés során tároljuk az addig megtalált megoldások célfüggvény értékeinek minimumát.

G_F_K = min{C(X) : MEGOLDAS(X) ÉS X BEVÉGZETT}

Ekkor a következő kizárásokkal (korlátozásokkal) gyorsíthatjuk a keresést:

1. Ha az X új aktuális pontra G_F_K < AK(X), akkor X kizárt lehet.

2. Ha a sorból az X pontot vettük ki és G_F_K < AK(X), akkor a keresést befejezhetjük, hiszen nem kaphatunk már jobb
megoldást.

Ha a megoldáskezdeményekre meg tudunk adni felső korlát is, akkor az adagoló lehet a felső korlát szerinti minimumos prioritási
sor. Felső korlát olyan FK(X) függvényt értünk, amelyre teljesül, hogy minden X megoldáskezdeményre és minden olyan Y
megoldásra, amely leszármazottja X-nek:

C(Y)≤ FK(X)

Ekkor azonban a 2. kizárást nem alkalmazhatjuk.
Az FK(X) felső korlátot erős felső korlátnak nevezzük, ha bármely X megoldáskezdeményre:

FK(X) < ∞⇒ (∃Y)(YEX∧MEGOLDAS(Y)∧C(Y)≤ FK(X))

Az erős felső korlát létezése azt jelenti, hogy bármely X megoldáskezdeményre, ha FK(X) < ∞, akkor biztosan létezik megoldás
az X gyökerű megoldástér fában, és ennek célfüggvény értéke ≤ FK(X). Ekkor a keresést végezhetjük a felső korlát szerinti
minimumos prioritási sorral úgy, hogy feljegyezzük az addig érintett pontok felső korlátjainak minimumát. Legyen ez a G_F_K.
Tehát a keresés során azt állíthatjuk, hogy biztosan létezik olyan megoldás, amelynek célfüggvény értéke ≤ G_F_K, de nem
biztos, hogy már találtunk is ilyen megoldást. A 2. számú kizárást ennek ellenére továbbra is megtehetjük.

public abstract class EKMegold implements Cloneable, Comparable<EKMegold>{
/** Ha vanfia, akkor a visszadott érték olyan uj objektum, amelynek értéke
az első fiú, egyébként null.
*/

public abstract EKMegold ElsoFiu();
/** Ha van még be nem járt testvére, akkor a visszadott érték olyan uj

objektum, amelynek értéke a következő testvér, egyébként null.
*/

public abstract EKMegold Testver();
/** Akkor és csak akkor ad igaz értéket, ha a megoldáskezdemény megoldása
a problémának.
*/
public abstract boolean Megoldas();

/** Hamis értéket ad, ha nincs megoldás az adott gyökerű részfában.
Ha értéke igaz, abból nem következik, hogy van olyan folytatása,
ami megoldás.

14

*/
public abstract boolean LehetMego();

/** A célfüggvény. */
public abstract float C();

/** Az alsókorlát függvény. */
public abstract float AK();

/** A felsőkorlát függvény. */
public abstract float FK();

/** Rendezés az alsókorlát szerint */
public int compareTo(EKMegold X){

return this.AK() < X.AK() ? -1: this.AK() > X.AK() ? 1: 0;
}

/** A bemeneti adatok beolvasása és üres megoldáskezdemény előállítása.
*/
public abstract void Input(String filenev)throws IOException;

/** A megoldás kiíratása. */
public abstract void Output(String filenev)throws IOException;
public EKMegold clone() throws CloneNotSupportedException{

EKMegold result = this;
try {
result = (EKMegold)super.clone();
} catch (CloneNotSupportedException e) {

System.err.println("Az objektum nem klónozható");
}
return result;

}

/* Megoldás keresése felsókorlát szerinti min. Prioritási sorral
az X gyökerű megoldástér fában. */

public static EKMegold Keres1(EKMegold X)throws Exception{
float G_F_K=Float.POSITIVE_INFINITY;
PriSor<EKMegold> S=new PriSor<EKMegold>(1000);
EKMegold X0=null;

if (!X.LehetMego()) return null;
S.SorBa(X);
while (S.Elemszam()>0){

X=S.SorBol();
if (G_F_K<=X.AK()) return X0;
X = X.ElsoFiu();
while (X!=null){

if (X.LehetMego() && X.AK()<G_F_K){
if (X.Megoldas() && X.C()<G_F_K){

G_F_K=X.C();
X0=X;

}
S.SorBa(X);

}//else X kizárt
X=X.Testver();

}
}//while
return X0;

}

/* Megoldás keresése felsőkorlát szerinti min. Prioritási sorral,
* erős felső korláttal. */

15

public static EKMegold Keres2(EKMegold X){
float G_F_K=X.FK();
PriSor<EKMegold> S=new PriSor<EKMegold>(1000);
EKMegold X0=null;
if (!X.LehetMego()) return null;
S.SorBa(X);
while (S.Elemszam()>0){

X=S.SorBol();
if (G_F_K<X.AK()) continue;
X = X.ElsoFiu();
while (X!=null){

if (X.LehetMego() && X.AK()<=G_F_K){
if (X.Megoldas() && X.C()<=G_F_K){

G_F_K=X.C(); X0=X;
}else if (X.FK()<G_F_K)

G_F_K=X.FK();
S.SorBa(X);

}//else X kizárt
X=X.Testver();

}
}//while
return X0;

}
}

9.3.1. Optimális pénzváltás

Az elágazás-korlátozás módszer alkalmazása az optimális pénzváltás probléma megoldására.
Probléma: Optimális pénzváltás
Bemenet: P = {p1, ..., pn} pozitív egészek halmaza, és E pozitív egész szám.
Kimenet: Olyan S⊆ P, hogy ∑p∈S = E és |S| → minimális.
Tegyük fel, hogy a pénzek nagyság szerint nemcsökkenő sorrendbe rendezettek: p1 ≥ . . . ≥ pn. A megoldást keressük X =
〈i1, . . . , im〉, i1 < i2 < .. . < im alakú vektor formában. jelölje Resz= ∑m

k=1 pik és Maradt = ∑n
j=im+1 p j összegeket.

AK(X) = m+ d(E−Resz)/pim+1e

FK(X) = m+ d(E−Resz)/pne

Ez a felső korlát nem erős, és nem is tudunk olcsón kiszámítható erős felső korlátot adni.

public class OPenzvalto extends EKMegold{
private static int N, E;
private int k;
private static int Penz[];
private int S[];
private int resz;
private int maradt;

OPenzvalto(){
k=0;

}
public OPenzvalto clone() {

OPenzvalto co = this;
try {
co = (OPenzvalto)super.clone();
} catch (CloneNotSupportedException e) {

System.err.println("MyObject can’t clone");

16

}
co.S=S.clone();
return co;

}

public float C(){
return k;

}
public float AK(){

int i=S[k]<N ? S[k]+1 : N;
return k+(float)Math.ceil((E-resz)/Penz[i]);

}
public float FK(){

return k+(E-resz)/Penz[N];
}

public OPenzvalto ElsoFiu(){
if (k<N && S[k]<N){

OPenzvalto fiu=this.clone();
++fiu.k;
fiu.S[k+1]=S[k]+1;
fiu.resz+=Penz[S[k]+1];
fiu.maradt-=Penz[S[k]+1];
return fiu;

}
return null;

}
public OPenzvalto Testver(){

if (k>0 && S[k]<N){
OPenzvalto tv=this.clone();
tv.resz+=Penz[S[k]+1]-Penz[S[k]];
++tv.S[k];
tv.maradt-=Penz[S[k]];
return tv;

}
return null;

}

public boolean Megoldas(){
return resz==E;

}
public boolean LehetMego(){

if (resz<=E && resz+maradt>=E){
return true;

}
return false;

}
}

public void Input(String filenev)throws IOException{
Scanner bef;
if (filenev.length()==0)

bef=new Scanner(System.in);
else

bef=new Scanner(new File(filenev));

17

N=bef.nextInt();
E=bef.nextInt();
bef.nextLine();
Penz=new int[N+1];
S=new int[N+1];
S[0]=0;
resz=0;
maradt=0;
for (int i=1; i<=N; i++){

Penz[i]=bef.nextInt();
maradt+=Penz[i];

}
bef.close();

}

public void Output(String filenev)throws IOException{
PrintWriter kif;
if (filenev.length()==0)

kif=new PrintWriter(System.out);
else

kif=new PrintWriter(
new BufferedWriter(

new FileWriter(filenev)
)

);
System.out.print(E+"=");
for (int i=1; i<=k; i++)

System.out.print(S[i]+"+ ");
System.out.println();

}

9.3.2. Ütemezési probléma

Bemenet:
M = {m1, . . . ,mn} munkák halmaza
m[i].idotartam≥ 0 egész
m[i].hatarido≥ 0 egész
m[i].haszon≥ 0 valós
Kimenet:
H ⊆ 1..n
1. A H-beli munkák beoszthatók határidőt nem sértő módon.
2.

C(H) = ∑
i∈H

m[i].haszon→maxi (8)

H elemeinek egy 〈i1, . . . , ik〉 felsorolása határidőt nem sértő, ha ∀1≤ j ≤ k

j

∑
u=1

m[iu].idotartam≤m[i j].hatarido (9)

Állítás: H-nak akkor és csak akkor van határidőt nem sértő beosztása, ha elemeinek határidő szerinti felsorolása határidőt nem
sértő.
⇐ triviális.
⇒ Tfh. H-nak van határidőt nem sértő beosztása, de ebben van olyan egymást követő u és u+ 1, hogy m[iu].hatarido>
m[iu+1].hatarido. Ekkor u és u+1 felcserélhető a sorban.
Visszavezetés minimalizációs feladatra.

18

C(H) = ∑
i /∈H

m[i].haszon

=
n

∑
i=1

m[i].haszon−C(H)→mini

C(H)→maxi⇔C(H)→mini
Tegyük fel, hogy a munkák határidő szerint nemcsökkenő sorrendben vannak felsorolva. Ekkor a megoldás kifejezhető
X = 〈i1, . . . , ik〉 vektorral, ahol i1 < i2 < · · ·< ik
Minden X megoldáskezdeményre definiáljuk. a problémaspecifikus műveleteket.
LehetMego(X) = igaz⇔ ha a felsorolás határidőt nem sértő.
Megoldas(X) = LehetMego(X)

AK(X) = ∑
j<ik, j /∈X

m[j].haszon (10)

FK(X) = ∑
j /∈X

m[j].haszon (11)

Tehát, ha LehetMego(X), akkor Megoldas(X) és C(X) = FK(X), ezért FK erős felső korlát.

public class Utemez extends EKMegold{
private static int N;
private int k;
private int[] S;
private static int[] Ido;
private static int[] Hat;
private static int[] Hasz;
private int oido; //a bevalasztott munkak összideje
private int ehaszon; //az elmaradt haszon
private int maradt; //a még választható munkák haszna

Utemez(){
k=0;

}
public Utemez clone() {

Utemez co = this;
try {
co = (Utemez)super.clone();
} catch (CloneNotSupportedException e) {

System.err.println("MyObject can’t clone");
}
co.S=S.clone();
return co;

}

public float C(){
return ehaszon+maradt;

}
public float AK(){

return ehaszon;
}
public float FK(){

return ehaszon+maradt;
}

19

/** Rendezés a felső korlát szerint
*/
public int compareTo(EKMegold X){

return this.FK() < X.FK() ? -1: this.FK() > X.FK() ? 1: 0;
}

public Utemez ElsoFiu(){
if (k<N && S[k]<N){

Utemez fiu=this.clone();
++fiu.k;
fiu.S[k+1]=S[k]+1;
fiu.oido+=Ido[S[k]+1];
fiu.maradt-=Hasz[S[k]+1];
return fiu;

}
return null;

}
public Utemez Testver(){

if (k>0 && S[k]<N){
Utemez tv=this.clone();
tv.oido+=Ido[S[k]+1]-Ido[S[k]];
++tv.S[k];
tv.maradt-=Hasz[S[k]+1];
tv.ehaszon+=Hasz[S[k]];
return tv;

}
return null;

}

public boolean Megoldas(){
return oido<=Hat[S[k]];

}
public boolean LehetMego(){

return (oido<=Hat[S[k]]);
}

}

public void Input(String filenev)throws IOException{
Scanner bef;
if (filenev.length()==0)

bef=new Scanner(System.in);
else

bef=new Scanner(new File(filenev));
N=bef.nextInt(); bef.nextLine();
S =new int[N+1];
Ido =new int[N+1];
Hat =new int[N+1];
Hasz =new int[N+1];
S[0]=0;
for (int i=1; i<=N; i++){

Ido[i]=bef.nextInt();
} bef.nextLine();
for (int i=1; i<=N; i++){

Hat[i]=bef.nextInt();
}bef.nextLine();
for (int i=1; i<=N; i++){

20

Hasz[i]=bef.nextInt();
maradt+=Hasz[i];

}
bef.close();

}

public void Output(String filenev)throws IOException{
PrintWriter kif;
if (filenev.length()==0)

kif=new PrintWriter(System.out);
else

kif=new PrintWriter(
new BufferedWriter(

new FileWriter(filenev)
)

);
System.out.print("= ");
for (int i=1; i<=k; i++)

System.out.print(S[i]+"+ ");
System.out.println();

}

21

