7. Dinamikus programozas

7.1. Rekurzié memorizalassal.

Lattuk, hogy a particié probléma rekurziv algoritmusa Q(Z\m) eljarashivast végez. pedig a lehetséges részproblémak szama csak
n? (vagy n(n+1)/2, ha csak az n < k eseteket vessziik.) Ennek az az oka, hogy ugyanazon részprobléma megoldasa tosbb mas
részpobléma megoldasahoz kell, és az algoritmus ezeket mindig Ujra kiszamitja. Tehat egyer(ien gyorsithatjuk a szamitast, ha
minden részprobléma (azaz P2(n,k)) megoldasat taroljuk egy témbben. Ha hivatkozunk egy részprobléma megoldaséra, akkor
el6szor ellenbrizzik, hogy kiszamitottuk-e mar, és ha igen, akkor kiolvassuk az értéket a tablazathdl, egyebként rekurzivan szami-
tunk, és utana taroljuk az értéket a tablazatban.

A tablazat inicializalasahoz valasszunk egy olyan értéket, amely nem lehet egyetlen részprobléma megoldasa sem. Esetiinkben
ez leheta O.

Program ParticoiRM;

{A particié probléma megoldésa.

Médszer: rekurzid memorizdléassal}

Function P (N:Word) :Int64;

Const
MaxN=500; {a tdblazat mérete MaxN*MaxN}

Var
T2:array[l..MaxN,1..MaxN] of Int64;{a részproblémdk téblazata}
i, j:Word;

Function P2 (n,k:Word) :Int64;
Var E:Int64;

Begin{P2}
If T2[n,k]<>0 Then {P2(n, k) értékét mar kiszémitottuk}
P2:=T2[n, k]
Else Begin {P2(n,k) értékét még nem szamitottuk ki}
if (n =1) Or (k = 1) Then {rekurziv szamités}
E :=1

Else If n <= k Then
E :=1+ P2(n,n-1)
Else
E :=P2(n,k-1) + P2(n-k,k);
T2[n, k] :=E; {memorizalés}
P2:=E;
End;
End{P2};
Begin{P}
For i:=1 To N Do {a tédblazat inicializalésa}
For j:=1 To N Do T2[i,j]:=0;
P:=P2(n,n);
End{P};
Begin{program}
WriteLn (P (100));
End{program}.

Nyilvanvalé, hogy az algoritmus futasi ideje ©(n?), és a tarigénye is ©(n?) lesz, ha csak n? méretii tablazatnak foglalunk
memodriat dinamikusan az aktualis paraméter fliggvényében.

7.2. A partici6 probéma megoldasa tablazatkitoltéssel.

A rekurziét teljesen kikliszdbolhetjik tablazatkitoltéssel. Az 1. aran szemléltetett tdblazatot hasznaljunk a részproblémak megol-
dasainak tarolasara. Tehat a T2[n, k] tablazatelem tartalmazza a P2(n, k) részprobléma megoldasat. A tablazat elsé sora azonnal
kitolthetd, mert P2(n, 1) = 1. Olyan kit6ltési sorrendet keresiink, hogy minden (n,k),k > 1 részprobléma kiszamitasa esetén azok
a részproblémak, amelyek sziikségesek P2(n, k) kiszamitasdhoz, mar korabban kiszamitottak legyenek.

Altalanosan, rekurziv ésszefiiggéssel definialt problémamegoldas esetén egy r (rész)probléma dsszetevéi azok a részproblé-
mak, amelyek megoldasatél r megoldasa fligg. Tehat a tablazatkitdltés alkalmazasahoz meg kell allapitani a részproblémaknak
egy olyan sorrendjét, hogy minden r részprobléma minden ésszetevdje elébb alljon a sorrendben, mintr. A

1. P2(1,k) =1,P2(n,1) =1,
2. P2(n,n) =1+4+P2(n,n—1),
3. P2(n,k) = P2(n,n) han <k,
4. P2(n,k) = P2(n,k—1)+P2(n—k,k) hak < n.
A
K T2[n.,k]=P2(n,k)
N p
p
p ?
p !
p
p
p
p
p
k p I 7
k-1 "
1 I (1|1 {1 (1|1 (1|11 1]1]1]|1
1 n-k n N nr

1. 4bra. T4blazat a Particio probléma megoldaséahoz.

rekurziv 6sszefliggések megadjak az 6sszetevoket:

1. P2(1,k)-nak és P2(n,1)-nek nincs dsszetevdje,

2. P2(n,n) ¢sszetevéje P2(n,n—1),

3. P2(n,k) 6sszetevdje P2(n,n), ha (n < k),

4. P2(n,k) 6sszetevéi: P2(n,k— 1) és P2(n—k,k), ha (k < n).

Tehat a tablazat kitoltése (k-szerint) soronként balrél jobbra haladé lehet.
Az algoritmus futasi ideje és tarigénye is O(1?).

Program ParticT2; {A particidé probléma megolddsa.
Médszer: négyzetes tdblizatkitdltés}

Function P (N:Word) :Int64;
Const

MaxN=500; {a téblédzat mérete MaxN*MaxN}
Var

T2:array[l..MaxN,1..MaxN] of Inté64;

ki, ni,nl:Word;

Begin{P}
For ni:=1 To N Do T2[ni,1]:=1; {az elsd sor kitdltése}
For ki:=2 To N Do Begin {az ki. sor kitoltése }
T2 [ki, ki]:=T2[ki, ki-1]+1; {P2(n,n)=P2 (n,n-1)+1 }
For ni:=ki+l To n Do Begin {P2(ni, ki)=T2[ni,ki] szamitésa}
nl:=ki; {P2(n,k)=P2(n,k-1)+P2 (n-k, k) }
If ni-ki<ki Then nl:=ni-ki; {P2(n,k)=P2(n,n), ha k>n }
()=P2

T2[ni,ki]:=T2[ni,ki-1]+T2[ni-ki,nl]; {P2(n,k)=P
End{for ni};
End{for ki};
P:=T2[n,n];
End{P};
Begin{Program}
WriteLn (P (100));
End{Program}.

(n,k-1)+P2 (n-k, k) }

7.3. A partici6 probéma megoldasa lineéris tablazatkitdltéssel.

Lathat6, hogy elegendd lenne a tablazatnak csak két sorat tarolni, mert minden (n, k) részprobléma ésszetevédi vagy a k-adik,
vagy a k— l-edik sorban vannak. Sé&t, elég egy sort tarolni balrél-jobbra (névekvé n-szerint) halado kitoltésnél, mert amelyik

részproblémat felulirjuk ((n — k, K)), annak késébb éppen az (j értéke kell sszetevoként.

Program ParticD; { A particidészém probléma megoldésa.
Médszer: dinamikus programozéds linedris téblazatkitoltés helyben }

Function P (N:Word) :Int64;
Const
MaxN=5000 ; (* a tébléazat mérete *)
Var
T : Array[l..MaxN] Of Int64;
ki,ni : Word;

Begin{P}
For ni:=1 To N Do T[ni]l:=1; {az elsd sor kitdltése }
For ki:=2 To N Do Begin {az ki. sor kitdltése }
T[ki]:=T[ki]+1; {P2(n,n)=P2(n,n-1)+1 }
For ni:=ki+l To N Do {P2(n,k)=P2(n,k-1)+P2 (n-k, k) }

T[ni]:=T[ni] + T[ni-ki];
End{for ki};
P:=T[N];
End{P};

Begin{program}
WriteLn ("P(405)= ',P(405));
End{program}.

P(405)=9147679068859117602

7.4. A pénzvaltas probléma.

Probléma: Pénzvaltas
Bemenet: P={pu,..., pn} pozitiv egészek halmaza, és E pozitiv egész szam.
Kimenet: Olyan SC P, hogy 3 ncs=E.
Megjegyzés: A pénzek tetsz6leges cimletek lehetnek, nem csak a szokasos 1, 2, 5 10, 20, stb., és minden pénz csak egyszer
hasznalhat6 a felvaltasban.
El6szor azt hatarozzuk meg, hogy van-e megoldas.
A megoldéas szerkezetének elemzése.
Tegyuk fel, hogy
E=p,+...+p, i1<...<ik

egy megoldasa a feladatnak. Ekkor
E—pi,=pi,+---+ Py

megoldasa lesz annak a feladatnak, amelynek bemenete a felvaltand6 E — pj, érték, és a felvaltashoz legfeljebb a els6 iy — 1
(P1, ..., Pi,—1) pénzeket hasznalhatjuk.
Részproblémakra bontas.
Bontsuk részproblémakra a kiindulasi problémat: Minden (X,i)(1 < X < E,1 <i < N) szamparra vegyuk azt a részproblémat,
hogy az X érték felvalthato-e legfeljebb az els6 pa, ..., pi pénzzel. Jeldlie V(X,i) az (X,i) részprobléma megoldasat, ami logikai
érték; V (X,i) = lgaz ha az X dsszeg elballithato legfeliebb az els6 i pénzzel, egyébként Hamis

Osszefiiggések a részproblémak és megoldasaik kozott.
Nyilvanvald, hogy az alabbi 6sszefiiggések teljesiilnek a részprobléméak megoldasaira:
LV(X,i)=(X=p), hai=1
2VX, i) =VXi—1)vV(X>p)AV(X—pi,i—1) hai>1
Rekurziv megoldas.
Mivel a megoldas kifejezhet6é egy V(X,i) logikai értéki fliggvénnyel, ezért a felirt 6sszefiiggések alapjan azonnal tudunk adni egy
rekurziv fliggvényeljarast, amely a pénzvaltas probléma megoldasat adja.

Function V (X, i:Word) :Boolean;

{Glob&lis:P}

{Médszer: Rekurziv megoldas }

Begin
V:=(X=P[1i])O0r

>1) And V(X,i-1) Or

>1) And (X>P[i]) And V(X-P[i],1i-1);

End{V

Ez a megoldas azonban igen lassu, legrosszabb esetben a futasi idé Q(2").

Megoldas a részproblémak megoldasainak tablazatos tarolasaval.

Vegyunk egy VT tablazatot, amelyben minden lehetséges részprobléma megoldasat taroljuk. Mivel minden részproblémat két
érték hataroz meg, X és i, ezért téglalap alaka tablazat kell. VT[X,i] az (X, i) részprobléma megoldasat tartalmazza.

A részproblémak kiszamitasi sorrendje. Olyan kiszamitasi sorrendet kell megallapitani, amelyre teljesil, hogy amikor az
(X,1) részproblémat szamitjuk, akkor ennek Gsszetevsit mar korabban kiszamitottuk. Mivel az (X, 1) részprobléméaknak nincs
osszetevdjuk, ezért kozvetlenil kiszamithatdak, azaz a tablazat elsé sorat szamithatjuk eldszér. Ha i > 1, akkor az (X, i) rész-
probléma tsszetevdi az (X,i —1) és (X — pi,i — 1), ezért az i-edik sor barmely elemét ki tudjuk szamitani, ha mar kiszamitottuk
az i — 1-edik sor minden elemét. Tehat a tablazatkitoltés sorrendje: soronként (alulrdl felfelé), balrél-jobbra halado lehet.

Function V(E,N:Word) :Boolean;
{ Pénzvaltds négyzetes tablazatkitdltéssel }
{Glob&l: P:Penzek}

Const
MaxE=100; {a max. felvaltandé Gsszeg}
MaxN=200; {a pénzek max. széma}

Var
VT:Array[l..MaxE,1..MaxN] Of Boolean;
i, x:Word;

N
i ?
i-1 ! !
1
1 X-P[i] X E
2. dbra. A pénzvaltas tablazata
Begin{VT}
For x:=1 To E Do
VT [x,1]:=False; {az elsd sor, azaz V(x,1) szamitdsa}
VT[P[1],1]:= P[1]<=E;
For i:=2 To N Do {az i-edik sor,azaz V(x,1) szamitéasa}

For x:=1 To E Do
VI[x,1]:=(P[1i]=X) Or
VT[x,1i-1] Or
(x>P[1]) And VT[x-P[i],i-1];
V:=VT[E,N];
End{V};

Egy megoldas el 6éllitAsa a megoldas visszafejtésével. Akkor és csak akkor van megoldasa a problémanak, ha a VT
tablazat kitoltése utan VT[E, N] értéke igaz. Ekkor az (1-2.) képletek szerint a legnagyobb i indexii p; pénz, amely szerepelhet E
eléallitasaban, az a legnagyobb index, amelyre

VTIE,i] = Truen (VT[E,i — 1] = False

De ekkor VT[E — PJi],i — 1] igaz, tehat E — p; el6allithaté az els6 i — 1 pénz felnasznalasaval. Tehat a fenti eljarast folytatni kell
E :=E — p;,i :=i— 1-re mindaddig, amig E 0 lesz.
Procedure PenzValtl (E:Word; Const P:Penzek; N: Word;
Var Db:Word; Var C :Megoldas);
Const
MaxE=300; {a max. felvalthatd érték}
Var

VT:Array[0..MaxE, 0..MaxN] Of Boolean;
i,X:Integer;

Begin{PenzValtl}
For X:=1 To E Do

VT [X,1]:=False; {az elsé sor, azaz V(X,1) szamitasa}
VT[P[1],1]:= P[1]<=E;
For 1:=2 To N Do {az i-edik sor,azaz V(X,1) szémitasa}

For X:=1 To E Do
VT[X,1]:=(P[1]=X) Or
VT [X,1-1] Or
(X>P[1]) And VT[X-P[i],1i-1];
Db:=0; X:=E; 1:=N { egy megoldas elddllitéasa}l
If Not VTI[E,N] Then Exit; {nincs megoldéas}

Repeat
While (i>0) And VT[X,i] Do Dec(i);

Inc(Db); CI[Db]:=1i+1; {i+tl bejegyzése a megoldasba}
X:=X-P[i+1]; {X-P[1i+1] felvaltasédval folytatijuk}
Until X=0;
End{PenzValtl};

Ha csak arra kell valszolni, hogy létezi-e megoldasa a problémanak, akkor elég a tablazat egy sorat tarolni, mert soronként vissza-
felé (x-szerint cs6kkend sorrendben) haladé kitoltést alkalmazhatunk.

Function PenzValtlL (E:Word; Const P:Penzek; N: Word):Boolean;
{ Linedris tablédzatkitdltéssel }
Const
MaxE=60000;
Var
T:Array[0..MaxE] Of Boolean;
i, x:Word;
Begin{PenzValtlL}
For x:=1 To E Do T[x]:=False;
T[0] :=True;
If P[1]<=E Then T[P[1l]]:=True;
For i:=2 To N Do
For x:=E DownTo 1 Do
T(x]:=T[x] Or (x>=P[i]) And T[x-P[1]];
PenzValtlL:=T[E];
End{PenzValtlL};

7.5. Az optimalis pénzvaltas probléma.

Probléma: Optimalis pénzvaltas
Bemenet: P ={pi,..., pn} pozitiv egészek halmaza, és E pozitiv egész szam.
Kimenet: Olyan SC P, hogy ¥ pcs = E és |§ — minimalis
El6szor is lassuk be, hogy az a mohé stratégia, amely mindig a lehet6 legnagyobb pénzt valasztja, nem vezet optimalis megoldas-
hoz. Legyen E = 8 és a pénzek halmaza legyen {5,4,4,1,1,1}. A moh6 médszer a 8 =5+ 1+ 1+ 1 megoldast adja, mig az
optimalisa8=4+4.
Az optimalis megoldéas szerkezetének elemzése.
Tegyuk fel, hogy
E= Q1+m..+—mk,H_<...<ik

egy optimalis megoldasa a feladatnak. Ekkor

E-pi=py+ -+ P,
optimélis megoldéasa lesz annak a feladatnak, amelynek bemenete a felvaltandé E — pj, érték, és a felvaltashoz legfeljebb a els6
ik—1(p1,..., Pi—1) pénzeket hasznalhatjuk. Ugyanis, ha lenne kevesebb pénzbél all6 felvaltasa E — pj, -nak, akkor E-nek is lenne
k-nal kevesebb pénzbdl all6 felvaltasa.
Részproblémaékra és dsszetev 6kre bontas.
A részproblémak legyenek ugyanazok, mint az el6zé esetben. Minden (X,i) (1 < X < E,1 <i < N) szamparra vegylk azt a
részproblémat, hogy legkevesebb hany pénz gsszegeként lehet az X értéket el@allitani legfeliebb az els6 i {pa,..., pi} pénz fel-
hasznalasaval. Ha nincs megoldas, akkor legyen ez az érték N + 1. Jelélje az (X, i) részprobléma optimalis megoldasanak értékét
Opt(X,i). Definidljuk az optimalis megoldas értékét X = O-ra és i = O-ra is, azaz legyen Opt(X,0) = N+ 1 és Opt(0,i) = 0. igy
Opt(X,i)-re az alabbi rekurziv 6sszefiiggés irhaté fel. A részproblémak optimalis megoldasanak kifejezése az Gsszetev 6k
optimalis megoldasaival.

N+1 ha i=0AX>0
. ha X=0
OptX,i) = Opt(X,i—1) ha X<pi @

min(Opt(X,i —1),1+Opt(X — p;,i—1)) ha X>p

Procedure OptValto(Const P :Penzek; E :Word; N:Word;
Var Db:Word; Var C:Megoldas);
Const MaxE=300;
Var
Opt:Array[0..MaxE] Of 0..MaxN+l; {az opt. mego.értéke}
V:Array[0..MaxE,(0..MaxN] Of 0..MaxN+1;
i,x,Rop:Word;

Begin{OptValto}
For x:=1 To E Do Begin {inicializ4léds}
Opt [x]:=N+1; V[x,0]:=N+1 End;
Opt[0]:=0;
For i:=1 To N Do { tédblazatkitdltés}

For x:=E DownTo 1 Do Begin
If (x>=P[i]) Then

Rop:=0pt [x-P[1]]+1 {x-P[i] opt.felvaltésa+l}

Else
Rop:=N+1;

If Rop<Opt[x] Then Begin {Opt [x]=1+0pt (x,1-1)}
Opt [x] :=Rop; {az 1. pénz szerpel x }
Vix,1]:=1; {optimdlis felvadltiséban}

End Else {Opt [x]=0pt (x,1-1)}
Vix,1]:=V[x,1i-1]; {nincs jobb, mint i-1l-re}

End{for x};

Db:=0; x:=E; 1i:=N;

If Opt[E]<=N Then { van megoldéas}
Repeat { egy optimdlis megoldéds elddllitésa}
i:=V[x,11; {i. szerepel x opt. felvdltdsédban}
Inc (Db); C[Db]:=i; {i bejegyzése a megoldésba}
x:=x-P[1]; {x-P[1i] opt. felvaltédsadt nézziik}
Dec(1); { az 1..i-1 pénzekkel}
Until x=0;
End{OptValto};

A dinamikus programozas stratégiaja.
A dinamikus programozas, mint probléma-megoldasi stratégia az alabbi 6t Iépés végrehajtasat jelenti.

1. Az [optimalis] megoldas szerkezetének elemzése.
2. Részproblémakra és 0sszetevdkre bontas gy, hogy:

e a) Az dsszetevoktdl valo fliggés kdrmentes legyen.

e b) Minden részprobléma [optimalis] megoldasa kifejezhet6 legyen (rekurzivan) az 6sszetevok [optimalis] megoldasaival.
3. Részproblémak [optimalis] megoldasanak kifejezése (rekurzivan) az 6sszetevék [optimalis] megoldasaibol.
4. Részproblémak [optimalis] megoldasénak kiszamitasa alulrél-felfelé haladva:

e a) A részproblémak kiszamitasi sorrendjének meghatarozasa. Olyan sorba kell rakni a részproblémakat, hogy minden
p részprobléma minden ésszetevlje (ha van) el6bb szerepeljen a felsorolasban, mint p.

e b) A részproblémak kiszamitasa alulrél-felfelé haladva, azaz tablazatkitoltéssel.

5. Egy [optimalis] megoldas eléallitasa a 4. Iépésben kiszamitott (és tarolt) informaciokbadl.

7.6. Optimalis binaris keres 6fa el 6allitasa

A F = (M, R Adat) absztrakt adatszerkezetet binaris keres6fanak nevezzik, ha
1. F binaris fa,

2. Adat: M — Elemtipés Elemtipon értelmezett egy < linearis rendezési relacio,
3. (Vx e M)(Vp € Fyai(x)) (Vd € Fjobnx)) (Adat(p) < Adat(x) < Adat(q))
A BINKERFAKERES fliggvényeljaras egy nyilvanvalé megoldasa a faban keresése feladatnak.

3. dbra. Binaris keresb6fa

Function BinKerFaKeres (a:Adat; F:BinFA) :BinFa;
Begin
While (F<>Nil) And (a<>F”".adat) Do
If a<F".adat Then
F:=F".bal
Else
F:=F".7jobb;
BinKerFaKeres:=F;
End;

Xg

)
G
()

4, dbra. 10 adatot (kulcsot) tartalmazé binaris keresé6fa

Tegytk fel, hogy ismerjik minden k; kulcs keresési gyakorisagat, ami pj (i = 1,...,n) Tovabba ismert azon K kulcsok (sikertelen)
keresési gyakorisaga, amelyre ki < k < ki1, ami g; (i=1,...,n), és (o a k < Kk kulcsok keresési gyakorisaga.
Atlagos keresésiid 6 (kdltség):

V<F>=i§lpi dp<m>+iiqidp<yi>

5. abra. Binaris keresdtfa kiegésziteve sikertelen keresési pontokkal

, ahol de (p) a p pont mélysége az F faban.

Probléma: Optimalis binaris keres6fa eléallitasa.

Bemenet: P = (pa,..., pn) sikeres és Q = (qp,...,qn) sikertelen keresési gyakorisagok.

Kimenet: Olyan F binaris kerestfa, amelynek a V (F) kéltsége minimalis.

Az optimalis megoldés szerkezete.

Tegyuk fel, hogy a (ki,...,Kn) kulcsokat tartalmaz6 F binaris kereséfa optimdlis, azaz V (F) minimélis. Jeldlie X a fa gyoke-
rét. Ekkor az Fy = Py x) fa @ (Ke,...,k—1) kulcsokat, az F = Fjoppyx,) fa pedig a (kr11, ..., kn) kulcsokat tartalmazza. Mivel

Fi F

inorder(F) = (k,...k—1) inorder(R) = (Kr+1, ..., Kn)

6. dbra. Ha az optimalis fa gyokerében a k; kulcs van.

dr, (p) = dr (p) +1és dr,(p) =dr (p) + 1.

V(F) = ii pi dr (%) +iiQi dr (i)

r-1 r—1 n
= _Z\pidF(Xi)+_ZOQidF(Yi)+pr+_z Pide (%) + 3 aide (%)

i=r+1

r-1 r-1
= Z\ pi (0 (%) +1) + ';Qi (dey (V1) +1) +

FY BRI D+ S Gdnt)+Y)

i=r+1 i=r+1

= i pi + _iQi + er pi dr, (%) + Tthi dr, (vi)

Y PdR(6)+) aide(y)

i=r+1
- 3Ry ARV
Tehat
V(F) = ipiJr_iqurV(Fl)JrV(Fz) @

Az Fy faa (kq,...,k_1) kulcsokat tartalmazd optimalis binaris kereséfa a (p,..., pr—1) sikeres és (Qo,...,0r—1) sikertelen ke-
resési gyakorisagokra, az F fa pedig (kr+1,...,Kn) kulcsokat tartalmazé optimalis binaris kereséfa a (pry1,..., Pn) Sikeres és
(OF,--.,0n) sikertelen keresési gyakorisagokra. A bizonyitas a kivagas-és-beillesztés modszerrel végezhetd. Ha lenne olyan Fq
binaris keres6fa a (p,...,pr_1) sikeres és (0o, ...,0r_1) sikertelen keresési gyakorisagokra, hogy V (F1) < V(Fy), akkor az F

faban Fy helyett az Fy részfat véve olyan fat kapnank a {ps,..., pn) sikeres és (do,...,0n) sikertelen keresési gyakorisagokra,
amelynek koltsége ST, pi+ 3{Lo0 +V(F1) +V(F) < V(F). Ugyanigy bizonyithaté, hogy F is optimalis fa a (K11, ...,kn)
kulcsokra a (Pr41, ..., Pn) Sikeres és (0, ...,qn) sikertelen keresési gyakorisagokra.

Részproblémakra bontas.
Minden (i, j) indexparra 0 <i < j < ntekintstik azt a részproblémat hogy mi az optimalis binaris kereséfa az (pi;1,.. ., pj) sikeres
és (Q;,...,qj) sikertelen keresési gyakorisagokra. Jelolie Opt(i, j) az optimalis fa kéltségét az (i, j) részproblémara.
Az optimalis megoldas értékének rekurziv kiszamitasa.
Vezessik be a j j

W)= 3 put Y

u=I+1 U=l

jelélést.
Minden (i, j)-re a (2) képlet miatt biztosan Iétezik olyan i < r < j, hogy
Opt(i, j) =W(i,)+ Opt(i,r —1) + Opt(r, j), csak azt nem tudjuk, hogy melyik r-re. Tehat azt az r-et keressiik, amelyre a fenti
osszeg minimalis lesz. Tehat Opt(i, j) a kovetkez6 rekurziv sszefiiggéssel szamithato.

- di ha i=j
Opt(i, j) ={ W(i,)+ min (Opt(i.r — 1)+ Opt(r,j)) ha i<j ©)
i<r<j
Az Osszetev 6k és a kiszamitasi sorrend meghatarozasa.
Az (i,1) részproblémaknak nincs dsszetevéjik, mert Opt(i,i) = ;.

Az (i,]),1 < | részprobléma dsszetevéi az (i,r —1) és (r,j), r =i+1,...,] részproblémak.
Tehat a tablazatot ki tudjuk télteni atlésan haladva, a mredik atléban m=1,...,nazon
(i, j)részproblémakat szamitjuk, amelyekre j —i =m.

Kiszamitas alulrél-felfelé haladva (tablazatkitoltés).
Ahhoz, hogy egy optimalis megoldast el§ tujunk allitani, minden (i, j) részproblémara taroljuk egy G tablazat Gi, j]-elemében

10

N qn
] 1 | ! | ! ! q]
!
!
!
!
!
!
qi
ql
0fq0
0 i N

7. dbra. Tablazatkitoltési sorrend

azt az r értéket, amelyre a (3) képletben az minimum eldall. Ez az r lesz a (ki11,...,Kj) kulcsokat tartalmazé optimalis binaris
kerestfa gyokere. A Gli, j] értékeket felnasznalva a FASIT rekurziv eljaras llitjia el6 ténylegesen az algoritmus kimenetét jelentd
keresdfat.

{ Globdlis programelemek az OptBKfa eljdrdshoz :}

Const

MaxN = ?°?2°? ; { a kulcsok max. széma }
Type

Kulcstip = ??7?; { a kulcsok tipusa }

Index = 1..MaxN;
Vektor = Array[Index] Of Real; {a sikeres keresési gyakorisdgok}
Vektorl = Array[0..MaxN] Of Real; {a sikertelen keresési gyakorisigok}
Fa = Array[Index] Of Record {a bindris kereséfa abrazolisa}

bal, jobb : 0..MaxN;

kulcs : kulcstip;

{egyéb mezdk}

End;

Procedure OptBKfa (Const P : Vektor;
Const Q : Vektorl;

N : Index;

Var Gyoker : Index;

Var F : Fa)
{ P[i]:az i-edik halmazelem keresési gyakorisdga }
{ Q[i]:az 1-edik es az i+l-edik almazelem kozé esd elemek }
{ keresési gyakoriséga }
{ Gyoker:az optimdlis keresdfa gydkérpontjénak indexe }
{F :az optimdlis bindris kereséfa}

11

Var
Opt: Array[0..MaxN, 0..MaxN] Of Real;
{ Optl[i,j] az i+l..7j elemeket tartalmazd OBK kdltsége }
W: Array[0..MaxN, 0..MaxN] Of Real;
{ Wii,3]= Q[i]+Sum(P[k]+Q[k]: k:=i+1l..7 }
G : Array[0..MaxN, 0..MaxN] Of 0..MaxN;
{G[i,]] az i+l..7J elemeket tartalmazd optimdlis bindris keresdédfa
gyokérpont jdnak indexe }
i, j,r,m,optr : Integer; optV, V : Real;

Procedure Fasit (Apa, 1, j : Integer);
{ El6allitja az i+l..j elemek OB keres6fdjat a G értékekbdl}
{ Globalis: G, F}

Begin{Fasit}

If Apa <> 0 Then Begin
F[Apa].bal := G[i, Apa-1];
F[Apa].jobb := G[Apa, Jl;

Fasit (G[i, Apa-1], 1, Apa-1);
Fasit (G[Apa, jl, Apa, 7J)
End
End{Fasit};

Begin{OptBKfa}

For i := 0 To N-1 Do Begin { inicializ4lés }
W[i,1]:=Q[1];
G[i,1]:=0;
Opt[i,i]:=Q[1];

End;

W[N,N]:=Q[N]; G[N,N]:=0; Opt[N,N]:=Q[N];

For m := 1 To N Do {m=7j-i}

For i := 0 To N-m Do Begin{ Opt (i, j) szamitésa }
j o= i4m;
Wli, 3] := W[i,3-11+P[J]1+Q[J];
optr := j; optV := Optl[i,j-1]1+Q[J]1{=Opt[],Jl};
For r := i+l To j-1 Do Begin

V := Opt[i,r-11+0ptlzr,Jl;
If V < optV Then Begin
optV :=V; optr :=r
End
End{for r};
Opt[i,j] =
End{i};
Gyoker := G[0,N];
Fasit (Gyoker, 0, N)
End{OptBKfa};

W[i, jl+optV; G[i,]j] := optr

A OPTBKFA algoritmus futasi ideje O(n®).
Bizonyitas nélkil megjegyezziik, hogy a

For r := i+l To j-1 Do Begin

ciklusban elegend6 lenne az r ciklusvaltozot G[i, j-1]1+1 -t6l G[i+1, J]-ig futtani, és ezzel az algoritmus futasi ideje @(nz) lenne.

12

