
Algoritmizálás

Horváth Gyula
Szegedi Tudományegyetem

Természettudományi és Informatikai Kar
horvath@inf.u-szeged.hu

4. Dinamikus programozással megoldható feladatok
A dinamikus programozás elnevezés egy probléma-megoldási módszert jelöl. A módszer lényege, hogy a kiindulási problémát
részproblémákra bontjuk és a részproblémák megoldásaival fejezzük ki a megoldást. Bár a megoldást rekurzívan fejezzük ki,
azonban a tényleges kiszámítás nem rekurzív módon, hanem táblázat-kitöltéssel történik. Ez a módszer hatékony algoritmust
eredményez számos fontos probléma megoldására.

4.1. Feladat: A pénzváltás probléma.
Probléma: Pénzváltás
Bemenet: P = {p1, ..., pn} pozitív egészek halmaza, és E pozitív egész szám.
Kimenet: Olyan S⊆ P, hogy ∑p∈S = E.
Megjegyzés: A pénzek tetszőleges címletek lehetnek, nem csak a szokásos 1, 2, 5 10, 20, stb., és minden pénz csak egyszer
használható a felváltásban.

A Pénzváltás probléma; létezik-e megoldás
Először azt határozzuk meg, hogy van-e megoldás.
A megoldás szerkezetének elemzése.
Tegyük fel, hogy

E = pi1 + . . .+ pik , i1 < .. . < ik

egy megoldása a feladatnak. Ekkor
E− pik = pi1 + . . .+ pik−1

megoldása lesz annak a feladatnak, amelynek bemenete a felváltandó E − pik érték, és a felváltáshoz legfeljebb a első ik − 1
(p1, . . . , pik−1) pénzeket használhatjuk.
Részproblémákra bontás.
Bontsuk részproblémákra a kiindulási problémát: Minden (X , i)(1 ≤ X ≤ E,1 ≤ i ≤ N) számpárra vegyük azt a részproblémát,
hogy az X érték felváltható-e legfeljebb az első p1, . . . , pi pénzzel. Jelölje V (X , i) az (X , i) részprobléma megoldását, ami logikai
érték; V (X , i) = Igaz, ha az X összeg előállítható legfeljebb az első i pénzzel, egyébként Hamis.
Összefüggések a részproblémák és megoldásaik között.
Nyilvánvaló, hogy az alábbi összefüggések teljesülnek a részproblémák megoldásaira:
1. V (X , i) = (X = pi), ha i = 1
2. V (X , i) = V (X , i−1)∨ (X > pi)∧V (X− pi, i−1) ha i > 1

V (X , i)⇔

 X = pi∨
i > 1∧V (X , i−1)∨
i > 1∧X > pi∧V (X− pi, i−1)

(1)

A kiindulási probléma megoldása: V (E,n)
Rekurzív megoldás.
Mivel a megoldás kifejezhető egy V(X,i) logikai értékű függvénnyel, ezért a felírt összefüggések alapján azonnal tudunk adni egy
rekurzív függvényeljárást, amely a pénzváltás probléma megoldását adja.

1

1 f u n c t i o n V(X, i : word) : boolean ;
2 { G l o b á l i s : P}
3 { Módszer : Rekurzív megoldás }
4 begin
5 V: = (X=P [i]) or
6 (i >1) and V(X, i −1) or
7 (i >1) and (X>P [i]) and V(X−P [i] , i −1);
8 end {V} ;

Elemezzük a rekurzív megoldás futási idejét. Számítsuk ki, hogy legrosszabb esetben hány eljáráshívás történik; jelölje ezt F(E,n)
adott E és n aktuális paraméterekre. Mivel F(E,1) = 1 és F(E,n) = F(E,n− 1) + F(E −P[n],n− 1) így F(E,n) = 2n−1. Pl.
n = 100 esetén, feltéve, hogy olyan gyors gépünk van, amely 1 másodperc alatt 230 eljáráshívást hajt végre, a futási idő legrosszabb
esetben 17592 milliárd év lenne! Másképpen fogalmazva, a rekurzív megoldás a pénzek halmazának összes lehetséges részhal-
mazát megvizsgálja, hogy az adott részhalmaz összege megegyezik-e E-vel. De n-elemű halmaz összes részhalmazainak száma
2n. Mi az oka annak, hogy a rekurzív megoldás ilyen lassú? Jóllehet csak E ∗n részprobléma van, de egy részprobléma megoldása
(közvetve) sok másik részprobléma megoldásához kell és a rekurzív algoritmus ezeket mindig újra kiszámolja.

A gyorsítás tehát kézenfekvő: tároljuk a már kiszámított részproblémák megoldását.
Megoldás a részproblémák megoldásainak táblázatos tárolásával.
Vegyünk egy V T táblázatot, amelyben minden lehetséges részprobléma megoldását tároljuk. Mivel minden részproblémát két
érték határoz meg, X és i, ezért téglalap alakú táblázat kell. V T [X , i] az (X , i) részprobléma megoldását tartalmazza. A részprob-

1

1

N

?

!!

EX

i

i-1

X-P[i]

1. ábra. A pénzváltás táblázata

lémák kiszámítási sorrendje.
Olyan kiszámítási sorrendet kell megállapítani, amelyre teljesül, hogy amikor az (X , i) részproblémát számítjuk, akkor ennek
összetevőit már korábban kiszámítottuk. Mivel az (X ,1) részproblémáknak nincs összetevőjük, ezért közvetlenül kiszámíthatóak,
azaz a táblázat első sorát számíthatjuk először. Ha i > 1, akkor az (X , i) részprobléma összetevői az (X , i−1) és (X − pi, i−1),
ezért az i-edik sor bármely elemét ki tudjuk számítani, ha már kiszámítottuk az i− 1-edik sor minden elemét. Tehát a táblázat-
kitöltés sorrendje: soronként (alulról felfelé), balról-jobbra haladó lehet.

1 f u n c t i o n V(P : Penzek ; E ,N: word) : boolean ;
2 { P é n z v á l t á s n é g y z e t e s t á b l á z a t−k i t ö l t é s s e l }
3 c o n s t
4 MaxE=30000; { a max . f e l v á l t a n d ó ö s s z e g }
5 MaxN=200; { a pénzek max . száma }
6 var
7 VT: array [1 . . MaxE , 1 . . MaxN] of boolean ;
8 i , x : word ;

2

9 begin {VT}
10 f o r x :=1 to E do
11 VT[x , 1] : = f a l s e ; { az e l s ő sor , azaz V(x , 1) számí tása }
12 VT[P [1] , 1] : = P[1] <=E;
13 f o r i :=2 to N do { az i−edik sor , azaz V(x , i) s zámí tása }
14 f o r x :=1 to E do
15 VT[x , i] : = (P [i]=X) or
16 VT[x , i −1] or
17 (x>P [i]) and VT[x−P [i] , i −1];
18 V:=VT[E ,N] ;
19 end {V} ;

Az algoritmus futási ideje E ∗ n-el arányos, mivel minden részprobléma (táblázatelem) kiszámítása konstans idejű. A memória
igény E ∗n byte. Látható, hogy az i-edik sor kiszámításához csak az i−1-edik sor kell. Ezért, ha csak arra kell válaszolni, hogy
létezi-e megoldása a problémának, akkor elegendő lenne csak két egymást követő sort tárolni. Sőt, egyetlen sort is elég tárolni,
ha a sorok kitöltését a felváltandó érték szerint csökkenő sorrendben (hátulról előre haladva) végezzük. Az (X , i) és az (X , i−1)
részprobléma megoldását ugyanaz a táblázatelem tárolja, de nem írunk felül olyan részproblémát, amelyre később még szükség
lenne. Tehát algoritmusunknak mind a tárigénye, mind a futási ideje függ az előállítandó értéktől, illetve felső korlátjától.

Tegyük fel, hogy a pénzekről és az előállítandó értékről nem tudunk semmit. Kérdés, hogy létezik-e olyan algoritmus, ame-
lynek a futási ideje (legrosszabb esetben is) a pénzek n számának függvényében polinomiális? A választ nem tudjuk. Ez a
számítástudomány legfontosabb nyitott problémája. Sőt, ha erre a feladatra találnánk a pénzek számában polinomiális idejű
megoldást, akkor számos, fontos probléma megoldására is lenne hatékony algoritmus.

1 f u n c t i o n V1T(c o n s t P : Penzek ; E ,N: l o n g i n t) : boolean ;
2 { P é n z v á l t á s megoldása l i n e á r i s t á b l á z a t−k i t ö l t é s s e l }
3 c o n s t
4 MaxE=1000000; { a max . f e l v á l t a n d ó ö s s z e g }
5 var T: array [0 . . MaxE] o f boolean ;
6 i , x : l o n g i n t ;
7 begin {V1T}
8 f o r x :=1 to E do { az e l s ő sor , azaz V(x , 1) számí tása }
9 T[x] : = f a l s e ;

10 i f P[1] <=E then T[P [1]] : = true ;
11 f o r i :=2 to N do { az i−edik sor , azaz V(x , i) s zámí tása }
12 f o r x :=E downto 1 do
13 T[x] : =T[x] or (x>=P [i]) and T[x−P [i]] ;
14 V1T:=T[E] ;
15 end {V1T} ;

4.2. A Pénzváltás probléma; egy felváltás előállítása
Ezidáig azt vizsgáltuk, hogy létezik-e megoldása a pénzváltás problémának. Most egy, de tetszőleges megoldást is meg kell
határozni, amennyiben létezik megoldás.
Bemenet: P = {p1, ..., pn} pozitív egészek halmaza, és E pozitív egész szám.
Kimenet: Olyan S⊆ P, hogy ∑p∈S = E
Akkor és csak akkor létezik megoldás, ha V T [E,N] = true.
Vegyük észre, hogy egy megoldás "kiolvasható" a V T táblázatból. Legyen i a legkisebb olyan index, hogy V T [E, i] = true, tehát
V T [E, i−1] = f alse. Ez azt jelenti, hogy E nem állítható elő az első i−1 pénzzel, de előállítható az első i-vel, tehát a P[i] pénz
szerepel E valamely felváltásában. Tovább folytatva ezt a visszafejtést E−P[i] és i−1-re, mindaddig, amíg a felváltandó érték 0
nem lesz, megkapunk egy megoldást.

1 X:=E; i :=N;
2 m: = 0 ; { egy megoldásban a pénzek száma }
3 r ep ea t
4 whi le (i >0) and VT[X, i] do Dec (i) ;
5 Inc (m) ;
6 S [m] : = i +1;
7 X:=X−P [i + 1] ;

3

8 u n t i l X=0;
9 { az S [1] , . . . , S [m] indexű pénzek egy f e l v á l t á s a E−nek }

4.3. Feladat: Optimális pénzváltás
Bemenet: P = {p1, ..., pn} pozitív egészek halmaza, és E pozitív egész szám.
Kimenet: Olyan S⊆ P, hogy ∑p∈S = E és |S| → minimális
Először is lássuk be, hogy az a mohó stratégia, amely mindig a lehető legnagyobb pénzt választja, nem vezet optimális megoldáshoz.
Legyen E = 8 és a pénzek halmaza legyen {5,4,4,1,1,1}. A mohó módszer a 8 = 5+1+1+1 megoldást adja, míg az optimális
a 8 = 4 + 4.
Az optimális megoldás szerkezetének elemzése.
Tegyük fel, hogy

E = pi1 + . . .+ pik , i1 < .. . < ik

egy optimális megoldása a feladatnak. Ekkor
E− pik = pi1 + . . .+ pik−1

optimális megoldása lesz annak a feladatnak, amelynek bemenete a felváltandó E− pik érték, és a felváltáshoz legfeljebb a első
ik − 1 (p1, . . . , pik−1) pénzeket használhatjuk. Ugyanis, ha lenne kevesebb pénzből álló felváltása E − pik -nak, akkor E-nek is
lenne k-nál kevesebb pénzből álló felváltása.
Részproblémákra és összetevőkre bontás.
A részproblémák legyenek ugyanazok, mint az előző esetben. Minden (X , i) (1 ≤ X ≤ E,1 ≤ i ≤ N) számpárra vegyük azt a
részproblémát, hogy legkevesebb hány pénz összegeként lehet az X értéket előállítani legfeljebb az első i {p1, . . . , pi} pénz fel-
használásával. Ha nincs megoldás, akkor legyen ez az érték N + 1. Jelölje az (X , i) részprobléma optimális megoldásának értékét
Opt(X , i). Definiáljuk az optimális megoldás értékét X = 0-ra és i = 0-ra is, azaz legyen Opt(X ,0) = N + 1 és Opt(0, i) = 0. Így
Opt(X , i)-re az alábbi rekurzív összefüggés írható fel.
A részproblémák optimális megoldásának kifejezése az összetevők megoldásaival.

Opt(X , i) =


∞ ha i = 0∧X > 0
0 ha X = 0
Opt(X , i−1) ha X < pi
min(Opt(X , i−1),1 + Opt(X− pi, i−1)) ha X ≥ pi

(2)

1

1

N

?

!!

EX

i

i-1

X-P[i]

2. ábra. A pénzváltás táblázata

1 procedure OptValto (c o n s t P : Penzek ; E : word ; N: word ;
2 var Db: word ; var C: Megoldas) ;
3 c o n s t
4 MaxE=30000; MaxN=100;
5 var
6 Opt : array [0 . . MaxE] o f 0 . . MaxN+1; { az opt . mego . é r t é k e }

4

7 V: array [0 . . MaxE , 0 . . MaxN] of 0 . . MaxN+1;
8 i , x , Rop : word ;
9 begin { OptValto }

10 f o r x :=1 to E do begin { i n i c i a l i z á l á s }
11 Opt [x] : =N+1; V[x , 0] : =N+1 end ;
12 Opt [0] : = 0 ;
13 f o r i :=1 to N do { t á b l á z a t−k i t ö l t é s }
14 f o r x :=E downto 1 do begin
15 i f (x>=P [i]) then
16 Rop:= Opt [x−P [i]] + 1 { x−P [i] opt . f e l v á l t á s a +1 }
17 e l s e
18 Rop:=N+1;
19 i f Rop<Opt [x] then begin { Opt [x]=1+Opt (x , i −1) }
20 Opt [x] : = Rop ; { az i . pénz s z e r p e l x }
21 V[x , i] : = i ; { o p t i m á l i s f e l v á l t á s á b a n }
22 end e l s e { Opt [x]= Opt (x , i −1) }
23 V[x , i] : =V[x , i −1]; { n i n c s jobb , mint i−1−re }
24 end { f o r x } ;

25 Db: = 0 ; x :=E; i :=N;
26 i f Opt [E] <=N then { van megoldás }
27 r ep ea t { egy o p t i m á l i s megoldás e l ő á l l í t á s a }
28 i :=V[x , i] ; { i . s z e r e p e l x opt . f e l v á l t á s á b a n }
29 Inc (Db) ; C[Db] : = i ; { i b e j e g y z é s e a megoldásba }
30 x := x−P [i] ; { x−P [i] opt . f e l v á l t á s á t nézzük }
31 Dec (i) ; { az 1 . . i−1 pénzekkel }
32 u n t i l x =0;
33 end { OptValto } ;

Az OPTVALTO algoritmus tárigénye E ∗ (N + 1)∗2 byte. A futási idő szintén E ∗N -el arányos.

A dinamikus programozás stratégiája.
A dinamikus programozás, mint probléma-megoldási stratégia az alábbi öt
lépés végrehajtását jelenti.

1. Az [optimális] megoldás szerkezetének elemzése.

2. Részproblémákra és összetevőkre bontás úgy, hogy:

• a) Az összetevőktől való függés körmentes legyen.

• b) Minden részprobléma [optimális] megoldása kifejezhető legyen (rekurzívan) az összetevők [optimális] megoldá-
saival.

3. Részproblémák [optimális] megoldásának kifejezése (rekurzívan) az összetevők [optimális] megoldásaiból.

4. Részproblémák [optimális] megoldásának kiszámítása alulról-felfelé haladva:

• a) A részproblémák kiszámítási sorrendjének meghatározása. Olyan sorba kell rakni a részproblémákat, hogy minden
p részprobléma minden összetevője (ha van) előbb szerepeljen a felsorolásban, mint p.

• b) A részproblémák kiszámítása alulról-felfelé haladva, azaz táblázat-kitöltéssel.

5. Egy [optimális] megoldás előállítása a 4. lépésben kiszámított (és tárolt) információkból.

4.4. Feladat: Testvéries osztozkodás (CEOI’95)
Két testvér ajándékokon osztozkodik. Minden egyes ajándékot pontosan ez egyik testvérnek kell adni. Minden ajándéknak pozitív
egész számmal kifejezett értéke van. Jelölje A az egyik, B pedig a másik testvér által kapott ajándékok összértékét. A cél az, hogy
az osztozkodás testvéries legyen, tehát A és B különbségének abszolútértéke minimális legyen.

5

Írjunk programot, amely kiszámítja a testvéries osztozkodás eredményeként keletkező A és B értékeket és megadja, hogy mely
ajándékokat kapja a két testvér.
Megoldás.
Legyen {e1, . . . ,en} az ajándékok értékeinek egy felsorolása és jelölje E az összegüket. Feltehetjük, hogy A≤B. Mivel A+B = E,
ezért A a legnagyobb olyan szám, amelyre A≤ E/2 és előállítható {e1, . . . ,en} egy részhalmazának összegeként.

Tehát a megoldás visszavezethető a pénzváltás probléma megoldására.

4.5. Feladat: Igazságos osztozkodás
Két testvér közösen kapott ajándékokat. Minden ajándéknak tudják a használati értékét, ami pozitív egész szám. Igazságosan el
akarják osztani az ajándékokat, tehát úgy, hogy mind kettőjük ugyanannyi összértékűt kapjon. Észrevették, hogy ez nem feltétlenül
teljesíthető, ezért elfogadnak olyan elosztást is, amely szerint a közösben is maradhat kinemosztott ajándék, de ragaszkodnak
ahhoz, hogy mindketten azonos összértéket kapjanak, és a közösben maradt ajándékok összértéke a lehető legkisebb legyen.

Írjon programot, amely megad egy igazságos osztozkodást!

Példa bemenet és kimenet
bemenet

6
10 3 12 5 15 6

kimenet

15
6 3
4 2 1

Megoldás

m = ai1 + · · ·+ aiu

m = a j1 + · · ·+ a jv

{i1, . . . , iu}∩{ j1, . . . , ju}= /0

n

∑
i=1

ai−2m→ minimális

Nyilvánvalóan m≤ f el = ∑
n
i=1 ai/2. Minden 0≤ x,y≤ f el -re és minden 1≤ n -re tekintsük azt a részproblémát, hogy előállítható-

e legfeljebb az első i ajándék összegeként mind x, mind y, de minden szám legfeljebb egyik összegben szerepelhet. Legyen
E(x,y, i) igaz, ha előállítható, egyébként hamis.
E(0,0, i) = igaz minden 0≤ i≤ n-re. Ha i > 0, akkor az alábbi rekurzív összefüggés adható:

V (x,y, i)⇔

 V (x,y, i−1)∨
ai ≤ x∧V (x−ai,y, i−1)∨
ai ≤ x∧V (x,y−ai, i−1)

(3)

A megoldás értéke az a legnagyobb x, amelyre E(x,x,n) = igaz. Egy megoldás a pénzváltáshoz hasonlóan állítható elő.

4.6. Feladat: Járdakövezés
Számítsuk ki, hogy hányféleképpen lehet egy 3×n egység méretű járdát kikövezni 1×2 méretű lapokkal!
Megoldás

3. ábra.

Jelölje A(n) a megoldás értékét 3×n egység méretű járda esetén.
Az első oszlop középső négyzete háromféleképpen fedhető le.

6

4. ábra. 1. eset

5. ábra. 2. eset

Az egyes esetek csak az alábbi módon folytathatók:
Jelölje B(n) azt, hogy hányféleképpen fedhető le egy 3× n egység méretű járda, amelynek a bal alsó sarka már le van fedve.
Szimmetria miatt a jobb felső sarok lefedettsége esetén is B(n)-féle lefedés van.

A(n) =

 0 ha n = 1
3 ha n = 2
A(n−2)+ 2B(n−1) ha n > 2

(4)

B(n) =

 1 ha n = 1
0 ha n = 2
A(n−1)+ B(n−2) ha n > 2

(5)

1 program jarda ;
2 f u n c t i o n B(n : i n t e g e r) : l o n g i n t ; forward ;
3 f u n c t i o n A(n : i n t e g e r) : l o n g i n t ;
4 begin
5 i f (n=1) then
6 A := 0
7 e l s e i f (n=2) then
8 A := 3
9 e l s e

10 A := A(n−2)+2ΛB(n−1);
11 end {A} ;
12
13 f u n c t i o n B(n : i n t e g e r) : l o n g i n t ;
14 begin
15 i f (n=1) then
16 B := 1
17 e l s e i f (n=2) then
18 B := 0
19 e l s e
20 B := A(n−1)+B(n−2);
21 end {B} ;
22 begin

6. ábra. 3. eset

7

7. ábra. Az 1. eset csak így folytatható

8. ábra. A 2. eset csak így folytatható

9. ábra. A 3. eset csak így folytatható

10. ábra. Az 1. eset csak így folytatható

11. ábra. Az 2. eset csak így folytatható

8

23 w r i t e l n (A(3 2)) ;
24 end .

B(1)

41

A(2)

B(1) A(2) B(3) A(2) B(1)

B(3)

+2*

+2*

+2*

3

3 3

3

31

1

1

4 4

4

11

1511 B(5)

A(4)

A(4)

A(6)

B(3)

A(2)

+

+

+ + +

+ +

+ +

++

A(2)

12. ábra. Rekurziós fa

1 program jarda2 ;
2 { megoldás din . prog . módszerre l (t á b l á z a t−k i t ö l t é s s e l) }
3 c o n s t
4 maxN=100;
5 var
6 A, B: array [1 . . maxN] of Int64 ;
7 n , i : i n t e g e r ;
8 begin
9 n : = 6 4 ;

10 A[1] : = 0 ; A[2] : = 3 ;
11 B [1] : = 1 ; B [2] : = 0 ;
12 f o r i := 3 to n do begin
13 A[i] : =A[i −2]+2ΛB[i −1];
14 B[i] : =A[i −1]+B[i −2];
15 end ;
16 w r i t e l n (’A(’ , n , ’) = ’ ,A[n]) ;
17 end .

A(64) = 1582048049556775361

4.7. Feladat: Tükörszó (IOI’2000)
Egy karaktersorozatot tükörszónak nevezünk, ha balról-jobbra, valamint jobbról-balra olvasva megegyezik. Például görög,
egészsége, mesélésem.

Írjunk olyan programot, amely kiszámítja, hogy egy adott szóból minimálisan hány betűt kell törölni, hogy tükörszót kapjunk.

Bemenet
A tukorszo.be szöveges állomány első és egyetlen sora egy S szót tartalmaz, amelynek hossza legfeljebb 5000, és S minden c
karakterére: ′a′ ≤ c≤′ z′ és ′A′ ≤ c≤′ Z′.

Kimenet
A tukorszo.ki szöveges állomány első és egyetlen sora egy m nemnegatív egész számot tartalmazzon, ami a minimális törlendő
karakterek száma, amellyel a bemeneti S szó tükörszóvá tehető.

9

Megoldás
Vegyük észre, hogy egy S szó akkor és csak akkor tükörszó, ha vagy üres szó, vagy egybetűs, vagy az első és utolsó betűje mege-
gyezik és ezeket elhagyva ismét tükörszót kapunk.

Az optimális megoldás szerkezetének elemzése.
Minden S szóra jelölje T (S) a probléma egy megoldását, tehát olyan tükörszót, amely S-ből a lehető legkevesebb betű törlésével
kapható. Ilyen biztosan létezik, hiszen egy kivételével minden betűt törölve tükörszót kapunk. Ha S egy betűből áll, akkor maga
is tükörszó, T (S) = S. Legyen S = xRy, ahol x az első, y pedig az utolsó betűje S-nek (R lehet üres szó is). Ha x = y, akkor
T (S) = T (R). Ha x 6= y, akkor vagy az x, vagy az y betűt biztosan törölni kell, tehát a megoldás vagy T (xR), vagy T (Ry). Az
optimális megoldás szerkezete azt sugallja, hogy minden (i, j),1 ≤ i ≤ j ≤ n indexpárra tekintsük azt a részproblémát, hogy az
S[i.. j] = S[i]...S[j] szó legkevesebb hány betű törlésével tehető tükörszóvá. Jelölje az (i, j) részprobléma megoldását M(i, j).
Tehát a kitűzött feladat megoldása M(1,n).

A részproblémák megoldásának kifejezése az összetevők megoldásaival.
Ha i > j esetre M(i, j) értékét 0-ként értelmezzük, akkor a részproblémák megoldásai között az alábbi rekurzív összefüggést lehet
felírni.

M(i, j) =

 0, ha i≥ j
M(i + 1, j−1), ha i < j és S[i] = S[j]
1 + min(M(i + 1, j),M(i, j−1)), ha i < j és S[i] 6= S[j]

Tehát az (i, j) részprobléma összetevői: (i + 1, j−1), (i + 1, j) és (i, j−1).
A részproblémák kiszámítási sorrendje, táblázat-kitöltés.
Tároljuk a részproblémák megoldását táblázatban, az (i, j) megoldását az M[i, j] táblázatelemben. Mivel az (i, j) részprobléma
megoldása legfeljebb az (i + 1, j− 1), (i + 1, j) és (i, j− 1) megoldásaitól függ, ezért a táblázat-kitöltés sorrendje lehet alulról
felfelé, soronként pedig jobbról-balra haladó.
A négyzetes táblázat tárigénye 5000 ∗ 5000 ∗ 2 = 50000000 byte, ami túl sok. Látható azonban, hogy elegendő lenne csak két
egymást követő sort tárolni. Sőt, egy sort is elég tárolni, ha megoldjuk, hogy ne írjuk felül azt a T [i] = M(i, j) kitöltésekor az
M(i, j−1) értéket, amit szintén T [i] tárol.

j-1

0

0

0

0

0

0

0

0

0

0

?

x

x

x

1 n

1

n

i i+1

j

13. ábra. Táblázat-kitöltési sorrend: soronként alulról felfelé, jobbról balra haladva.

1 f u n c t i o n Megold (c o n s t S : Sorozat ; N: word) : word ;
2 { Megoldás l i n e á r i s t á b l á z a t−k i t ö l t é s s e l }
3 var
4 T: array [1 . . MaxN] of word ;
5 i , j : i n t e g e r ;
6 Ment , Menti : word ;
7 begin
8 T [1] : = 0 ;
9 f o r j :=2 to N do begin

10 T[j] : = 0 ; Menti : = 0 ; { Minti=M(i +1 , j−1) }

10

11 f o r i := j−1 downto 1 do begin
12 {M(i , j) s zami tasa es t a r o l a s a T[i]−ben }
13 Ment :=T[i] ;
14 i f S [i]=S [j] then
15 T[i] : = Menti { Menti=M(i +1 , j−1) }
16 e l s e {M(i , j)=1+Min (M(i , j−1)+M(i +1 , j)) }
17 T[i] :=1+Min (T[i] , T[i + 1]) ;
18 Menti :=Ment ;
19 end { f o r i } ;
20 end { f o r j } ;
21 Megold :=T [1] ; {=M(1 ,N) }
22 end { Szamit } ;

Az algoritmus futási ideje Θ(n2), tárigénye Θ(n).
Ha egy megoldást is elő kell állítani, akkor minden (i, j) részproblémára tarolni kell azt az információt, hogy melyik összetevőre
kapjuk az optimális megoldást ha S[i] 6= S[j].
Vagy minden (i, j) részproblémára taroljuk M(i, j) értékét, és ekkor M(i+1, j) < M(i, j−1) összehasonlítással megadható, hogy
az i-edik (első), avagy a j-edik (utolsó) betűt kell-e törölni, vagy egy külön L tömbben tároljuk, hogy a részsorozat melyik végéről
kell törölni az optimális megoldáshoz. Ezt nevezzük az optimális megoldás visszafejtésének.
Ekkor algoritmus futási ideje is és tárigényre is Θ(n2).

1 procedure KiIr ;
2 { Global : T , S , N}
3 var
4 Bal , Jobb : word ;
5 begin
6 Bal : = 1 ; Jobb :=N;
7 whi le Bal <Jobb do begin
8 i f S [Bal]=S [Jobb] then begin
9 Inc (Bal) ; Dec (Jobb)

10 end e l s e i f T[Bal +1 , Jobb] < T[Bal , Jobb−1] then begin
11 Write (KiF , Bal , ’ ’) ;
12 Inc (Bal) ;
13 end e l s e begin
14 Write (KiF , Jobb , ’ ’) ;
15 Dec (Jobb) ;
16 end ;
17 end { whi l e }
18
19 end { KiIr } ;

4.8. Feladat: Számjáték (IOI’96)
Tekintsük a következő kétszemélyes játékot. A játéktábla pozitív egész számok sorozata. A két játékos felváltva lép. Egy lépés
azt jelenti, hogy a játékos a sorozat bal, avagy jobb végéről levesz egy számot. Az levett szám hozzáadódik a pontszámához. A
játék akkor ér véget, ha a számok elfogytak. Az első játékos nyer, ha az általa választott számok összege legalább annyi, mint
a második játékos által választottak összege. A második játékos a lehető legjobban játszik. A játékot az első játékos kezdi. Ha
kezdetben a táblán levő számok száma páros, akkor az első játékosnak van nyerő stratégiája.
Írjunk olyan programot, amely az első játékos szerepét játssza és megnyeri játékot! A második játékos lépéseit egy már adott
számítógépes program szolgáltatja. A két játékos a rendelkezésedre bocsátott Play modul három eljárásán keresztül kommunikál
egymással.

StartGame Az első játékos a játszmát a paraméter nélküli StartGame eljárás végrehajtásával indítja.

MyMove Ha az első játékos a bal oldalról választ számot, akkor a MyMove(’L’) eljárást hívja. Hasonlóképpen a MyMove(’R’)
hívással közli a második játékossal, hogy a jobb oldalról választott.

YourMove A második játékos (tehát a gép) azonnal lép. Az első játékos a lépést a YourMove(C) utasítással tudhatja meg, ahol
C egy karakter típusú változó. (C/C++ nyelven YourMove(&C)). A C változó értéke ’L’ vagy ’R’ lesz attól függően, hogy a
második játékos a bal vagy a jobb oldalról választott.

11

Bemenet
Az input.txt fájl első sora a kezdőtábla n méretét (a számok darabszámát) tartalmazza. n páros és 2 <= n <= 100. A második
sor n számot tartalmaz, a játék kezdetén a táblán lévő számokat. A táblán 200-nál nagyobb szám nem szerepel.

Kimenet
Ha a játék véget ért, akkor a programod írja ki a végeredményt az OUTPUT.TXT fájlba! A fájl első sorában két szám legyen! Az
első szám az első játékos által választott számok összegével, a második szám a második játékos által választott számok összegével
egyezzen meg! A programodnak a játékot le kell játszania és az output a lejátszott játék eredményét kell tartalmazza.

Példa bemenet és kimenet
INPUT.TXT
6
4 7 2 9 5 2

OUTPUT.TXT
18 11

Megoldás
Jelölje 〈a1, . . . ,an〉 a kezdeti játékállást. Minden lehetséges játékállást egyértelműen meghatározza az, hogy mely számok vannak
még a táblán. Tehát minden játékállás azonosítható egy (i, j) számpárral, ami azt jelenti, hogy a táblán az 〈ai, . . . ,a j〉 számsorozat
van. Mivel n páros szám, így minden esetben, amikor az első játékos lép, vagy i páros és j páratlan, vagy fordítva. Tehát az első
játékos kényszerítheti a második játékost, hogy az mindig vagy csak páros, vagy csak páratlan indexű elemét válassza a szám-
sorozatnak. Tehát ha a páros indexűek összege nagyobb, vagy egyenlő, mint a páratlanok összege, akkor az első játékos mindig
páratlan indexűt választ, egyébként mindig párosat.

Érdekesebb a játék, ha az a cél, hogy az első játékos a lehető legtöbbet szerezze meg, feltéve, hogy erre törekszik a második
játékos is.
Ábrázoljuk a játékállásokat gráffal.

1,8

2,8

3,8

4,8

5,8

6,8

7,8

8,8

1,7

1,5

1,6

1,4

1,3

1,2

1,1

2,7

3,7

4,7

5,7

6,7

7,7

2,6

3,6

4,6

5,6

6,6

2,5

3,5

4,5

5,5

2,4

3,4

4,4 3,3

2,3

2,2

14. ábra. A játékállások gráfja n = 8 esetén. Körrel jelölt állásból (i + j páratlan) az első, négyzettel jelölt állásból (i + j páros) a
második játékos lép.

Definiáljuk minden (i, j) játékállásra azt a maximális pontszámot, amit az első játékos elérhet ebből a játékállásból indulva.
Jelölje ezt az értéket Opt(i, j).
Opt(i, j) a következő rekurzív összefüggéssel számítható.

Opt(i, j) =

 0 ha i = j
max(ai + Opt(i + 1, j),a j + Opt(i, j−1) ha i < j és i + j páratlan
min(Opt(i + 1, j),Opt(i, j−1) ha i < j és i + j páros

Tehát alkalmazható a dinamikus programozás módszere, vagyis az Opt(i, j) értékeket a játék megkezdése előtt kiszámítjuk.
Tároljuk minden (i, j) játékállásra a Lep[i,j] tömbelemben az optimális lépést, tehát az ’L’ karaktert, ha a képletben ai +Opt(i+
1, j) > a j + Opt(i, j−1), mert ekkor balról kell elvenni, egyébként pedig az ’R’ karaktert, mert ekkor jobbról kell elvenni.

12

i-1,j i,j+1

i,ji,j

i-1,j i,j+1

Min(B,J) Max(B,J)

B J B J

15. ábra. Mini-max szabály.

1 Program Jatek ;
2 Uses Play ; { a második j á t é k o s t m e g v a l ó s í t ó modul }
3 c o n s t
4 MaxN=100;
5 var
6 InpF , OutF : Text ;
7 A: array [1 . . MaxN] of word ; { a t áb l án l é v ő számok s o r o z a t a }
8 N: word ; { a t á b l a mérete }
9 Opt : array [1 . . MaxN , 1 . . MaxN] of word ;

10 Lt : array [1 . . MaxN , 1 . . MaxN] of char ; { az 1 . j á t é k o s o p t i m á l i s l é p é s e i }
11
12 procedure Beolvas ; var i : word ; begin
13 Assign (InpF , ’ input . t x t ’) ; Reset (InpF) ;
14 ReadLn (InpF ,N) ;
15 f o r i :=1 to N do
16 Read (InpF ,A[i]) ;
17 Close (InpF) ;
18 end ;

19 procedure E l o f e l d o l g o z ;
20 var i , j : word ;
21 Pont , PontBal , PontJobb : word ;
22 begin
23 f o r j :=1 to N do begin
24 Opt [j , j] : = 0 ;
25 f o r i := j−1 downto 1 do begin
26 i f Odd(j−i +1) then begin { 2 . j á t é k o s l é p }
27 i f Opt [i +1 , j] <Opt [i , j−1] then
28 Opt [i , j] : = Opt [i +1 , j]
29 e l s e
30 Opt [i , j] : = Opt [i , j−1]
31 end e l s e begin { 1 . j á t é k o s l é p }
32 PontBal :=A[i]+ Opt [i +1 , j] ;
33 PontJobb :=A[j]+ Opt [i , j −1];
34 i f PontBal >PontJobb then begin
35 Opt [i , j] : = PontBal ; Lt [i , j] : = ’L ’
36 end e l s e begin
37 Opt [i , j] : = PontJobb ; Lt [i , j] : = ’R’
38 end
39 end ;
40 end { f o r i } ;
41 end { f o r j } ;
42 end { E l o f e l d o l g o z } ;

43 procedure J a t s z a s ;
44 var

13

45 Bal , Jobb : word ; { az a k t u á l i s j á t é k á l l á s : A[Bal . . Jobb] }
46 L1 , L2 : Char ; { a két j á t é k o s a k t u á l i s l é p é s e }
47 begin
48 Bal : = 1 ; Jobb :=N; { a kezdő j á t é k á l l á s b e á l l í t á s a }
49 whi le Bal <=Jobb do begin { amíg nem üres a t á b l a }
50 MyMove(Lt [Bal , Jobb]) ; { az én lépésem }
51 i f Lt [Bal , Jobb]= ’L ’ then { a j á t é k á l l á s a k t u a l i z á l á s a }
52 Inc (Bal)
53 e l s e
54 Dec (Jobb) ;
55 L2:=YourMove ; { az e l l e n f é l l é p é s e }
56 i f L2= ’L ’ then { a j á t é k á l l á s a k t u a l i z á l á s a }
57 Inc (Bal)
58 e l s e
59 Dec (Jobb) ;
60 end { whi l e } ;
61 end { J a t s z a s } ;

62 begin
63 Beolvas ;
64 E l o f e l d o l g o z ;
65 StartGame ;
66 J a t s z a s ;
67 end .

4.9. Feladat: Vágás
Adott egy fémrúd, amelyet megadott számú darabra kell felvágni úgy, hogy a vágások pontos helyét is tudjuk. A vágások helyét a
rúd egyik végétől mért, milliméterben kifejezett értékek adják meg. Olyan vágógéppel kell a feladatot megoldani, amely egyszerre
csak egy vágást tud végezni. A vágások tetszőleges sorrendben elvégezhetőek. Egy vágás költsége megegyezik annak a darabnak
a hosszával, amit éppen (két darabra) vágunk. A célunk optimalizálni a műveletsor teljes költséget.
Írjunk olyan programot, amely kiszámítja a vágási műveletsor optimális összköltségét, és megad egy olyan vágási sorrendet,
amely optimális költséget eredményez.

Bemenet
A vag.be szöveges állomány első sora egyetlen egész számot tartalmaz, a vágandó rúd h hosszát (0 < h ≤ 1000). A második
sorban az elvégzendő vágások n száma van (1 ≤ n ≤ 1000). A harmadik sor n darab egész számot tartalmaz egy-egy szóközzel
elválasztva, az elvégzendő vágások helyeit. A számok szigorúan monoton növekvő sorozatot alkotnak, és mindegyik nagyobb,
mint 0 és kisebb, mint h.

Kimenet
A vag.ki szöveges állomány első sorába egyetlen számot, a vágási műveletsor optimális összköltségét kell írni! A második sor
n darab egész számot tartalmazzon, ami a vágási helyek sorszámainak egy olyan felsorolása legyen, hogy ebben a sorrendben
elvégezve a vágásokat, az összköltség optimális lesz.
Példa bemenet és kimenet
Bemenet

24
7
3 10 12 15 17 18 20

Kimenet

70
2 1 4 3 7 5 6Megoldás.

Az optimális megoldás szerkezetének vizsgálata.
Vegyünk fel egy v0 = 0 és vn+1 = h fiktív vágási helyet a rúd elejére, illetve végére.Ha az optimális vágás során először a vk (1 ≤ k ≤ n) helyen történik a vágás, akkor az első darabon a v0,v1, . . . ,vk−1,vk, a

másodikon pedig és vk,vk+1, . . . ,vn,h vágásoknak is optimálisnak kell lenni.
Az optimális megoldás értékének rekurzív kifejezése.
Legyen minden i, j párra, (0≤ i < j≤ n+1) Opt(i, j) a vi, vágási helytől a v j, vágási hely által meghatározott rúddarab optimális
vágásának költsége.

Opt(i, j) =
{

0, ha j = i + 1
v j− vi + min j−1

k=i+1(Opt(i,k)+ Opt(k, j) ha i < j + 1

14

16. ábra.

v1 v2 vn vn+1 = h

17. ábra. A vágási helyek: v0 = 0 , vn+1 = h

Legyen S(i, j) az a k, amelyre a minimum adódik.

0

1 n n+10

0

1

n

n+1

j

x

x x x

x

x

?

i

0

0

0

0

0

0

0

0

0

0

18. ábra. Táblázat-kitöltési sorrend: átlósan, vagy alulról-felfelé,jobbról-balra haladva.

1 Program Vag ;
2 c o n s t
3 MaxN=100; { a v á g á s i he lyek max . száma }
4 MaxM=500; { a maximális rúdhossz }
5 I n f =200000000;
6 var
7 H: 1 . .MaxM;
8 N: byte ; { a vágások száma }
9 V: array [0 . . MaxN+1] o f 0 . .MaxM; { a v á g á s i he lyek }

10 Kol t s : l o n g i n t ;
11 S : array [0 . . MaxN+ 1 , 0 . . Maxn+1] o f 0 . . MaxN;

12 procedure Beolvas ;
13 var
14 BeF : Text ;
15 i , x , y : byte ;
16 begin { Beolvas }

15

17 Assign (BeF , ’ vag . be ’) ; Reset (BeF) ;
18 ReadLn (BeF , H) ;
19 ReadLn (BeF , N) ;
20 f o r i :=1 to N do
21 Read (BeF , V[i]) ;
22 Close (BeF) ;
23 V[0] : = 0 ; V[N+1] :=H;
24 end { Beolvas } ;

25 procedure Szamit ; { Global : N, V, S}
26 var
27 Opt : array [0 . . MaxN+ 1 , 0 . .MaxN+1] o f l o n g i n t ;
28 i , j , k , u ,G: word ;
29 Min , Uj : l o n g i n t ;
30 begin { Szamit }
31 f o r i :=0 to N do begin { i n i c i a l i z a l a s }
32 Opt [i , i + 1] : = 0 ; S [i , i + 1] : = 0 ;
33 end { f o r i } ;
34 f o r u:=2 to N+1 do begin { j−i =u}
35 f o r i :=0 to N−u+1 do begin
36 j := i +u ; Min:= I n f ;
37 f o r k:= i +1 to j−1 do begin
38 Uj := Opt [i , k]+ Opt [k , j] ;
39 i f Uj <Min then begin
40 Min:= Uj ;
41 G:=k ;
42 end ;
43 end {k} ;
44 Opt [i , j] : = Min+V[j]−V[i] ;
45 S [i , j] : =G;
46 end { i } ;
47 end { f o r u} ;
48 Kol t s := Opt [0 ,N+ 1] ;
49 end { Szamit } ;

50 procedure KiIr ;
51 var
52 KiF : Text ;
53 Ind , i : word ;
54 procedure Bejar (i , j : word) ;
55 var k : word ;
56 begin
57 i f j <= i +1 then Ex i t ;
58 k:=S [i , j] ;
59 w r i t e (KiF , k , ’ ’) ;
60 Bejar (i , k) ;
61 Bejar (k , j) ;
62 end { Bejar } ;
63
64 begin { KiIr }
65 Assign (KiF , ’ vag . k i ’) ; Rewrite (KiF) ;
66 WriteLn (KiF , Kol t s) ;
67 Ind : = 0 ;
68 Bejar (0 ,N+ 1) ;
69 WriteLn (KiF) ;
70 Close (KiF) ;
71 end { KiIr } ;

16

72 begin { program }
73 Beolvas ;
74 Szamit ;
75 KiIr ;
76 end .

4.10. Feladat: Torony építése kockákból.
Építőkockákból úgy lehet stabil tornyot építeni, hogy kisebb kockára nem lehet nagyobbat, illetve könnyebb kockára nem lehet
nehezebbet tenni.
Adjunk olyan algoritmust, amely adott N darab kocka alapján megadja a belőlük építhető legmagasabb tornyot!

Bemenet
A torony.be állomány első sorában a kockák n (1≤ n≤ 1000) száma van, a további n sorban, pedig az egyes kockák oldalhossza
és súlya (mindkettő 20000-nél kisebb pozitív egész szám), egyetlen szóközzel elválasztva. Nincs két kocka, amelynek oldalhossza
és a súlya is megegyezne.

Kimenet
A torony.ki állomány első sorába a legmagasabb torony k kockaszámát kell írni, a következő k sorba pedig az építés szerint
alulról felfelé sorrendben a felhasznált kockák oldalhosszát és súlyát.

Példa bemenet és kimenet
Bemenet

5
10 3
20 5
15 6
15 1
10 2

Kimenet

3
20 5
10 3
10 2

Az optimális megoldás szerkezetének vizsgálata.
A kockák oldalhosszai: h1, . . . ,hn, súlyai pedig s1, . . . ,sn.
Elemezzük az optimális megoldás szerkezetét.
Tegyük fel, hogy a i1, . . . , ik sorszámú kockák ebben a sorrendben egymásra rakásával kapjuk a legmagasabb tornyot. Ekkor
i2, . . . , ik torony a lehető legmagasabb olyan torony, amelynek legalsó kockája i2. Mert ha lenne magasabb torony, amelynek
legalsó kockája i2, akkor ezt a i1 kockára rárakhatnánk, hisz a i1 kocka biztosan nem szerepelhet olyan toronyban, amelynek
legalsó kockája i2, és így magasabb tornyot kapnánk, mint a i1, . . . , ik. Ez azért igaz, mert az a gráf, amelynek pontjai a kockák
(sorszámai), és élei azok a (i, j) párok, amelyekre igaz, hogy az i-edik kockára rárakható a j-edik, (hi ≥ h j ∧ si ≥ s j) körmentes
gráf.
Részproblémákra és összetevőkre bontás.
Minden i-re (1 ≤ i ≤ n) vegyük azt a részproblémát, hogy mekkora a magassága a legmagasabb olyan toronynak, amelynek
legalsó kockája az i. Jelölje M(i) ezt a legmagasabb toronymagasságot, tehát a részprobléma optimális megoldásának az értékét.
A részproblémák megoldásának kifejezése az összetevők megoldásaival.

M(i) = hi + max(M(j) : i 6= j∧hi ≥ h j ∧ si ≥ s j)

A részproblémák kiszámítási rekurzióval, memorizálva.
Az optimális megoldás értékét rekurzióval számítjuk a fenti kifejezés alapján, de ha egy részproblémára kiszámítottuk, akkor
azt eltároljuk egy táblázatban, és ha később ismét szükség lesz rá, akkor a táblázatból olvassuk ki az értéket. Ehhez először a
táblázatot olyan értékkel kell feltölteni, amely azt jelzi, hogy a megfelelő részprobléma értékét még nem számítottuk ki. Ez az
érték lehet 0, mivel minden megoldás tartalmazza azt a kockát, tehát az optimális megoldás értéke > 0.
Ezzel a módszerrel elkerülhető a részproblémák megfelelő sorrendjének kiszámítása. Ez csökkentheti a kivitelezési időt és néha
a futási időt is. Az algoritmus tárigénye n-el arányos, futási ideje pedig legrosszabb esetben n2-el.

17

1 procedure Kocka (c o n s t H, S :Tomb; N: word ; var Also : word ; var Ra :Tomb) ;
2 c o n s t MaxN=1000;
3 var
4 MagasMem: array [1 . . MaxN] of l o n g i n t ;
5 MaxM: l o n g i n t ; { az é p í t h e t ő max . toronymagasság }
6 i : i n t e g e r ;
7 f u n c t i o n Magas (i : word) : l o n g i n t ; { Global :N, S , H, MagasMem }
8 var
9 Mi , Mj , j : l o n g i n t ;

10 begin { Magas }
11 i f MagasMem[i] >0 then begin {p−re már k i s z á m í t o t t u k }
12 Magas := MagasMem[i] ; Ex i t { t á b l á z a t b ó l vesszük }
13 end ;
14 Mi: = 0 ;
15 f o r j :=1 to N do { minden q−ra , amely rakható p−re }
16 i f (i <> j) and (H[i] >=H[j]) and (S [i] >=S [j]) then begin
17 Mj:= Magas (j) ; { Magas (q) r e k u r z i v számí tása }
18 i f Mj>Mi then begin { Maximum s z á m í t á s }
19 Mi:=Mj;
20 Ra [i] : = j ; { b e j e g y z é s : i−re j−t k e l l akni }
21 end ;
22 end ;
23 MagasMem[i] : = Mi+H[i] ; { Memorizálás }
24 Magas := MagasMem[i] ;
25 end { Magas } ;

26 var
27 KiF : Text ; k : i n t e g e r ;
28 begin { kocka }
29 f o r i :=1 to N do { i n i c i a l i z á l á s , még semmit nem}
30 MagasMem[i] : = 0 { számí to t tunk ki }
31 MaxM: = 0 ;
32 f o r i :=1 to N do begin
33 Magas (i) ;
34 i f MaxM<MagasMem[i] then begin { hol a maximum? }
35 MaxM:=MagasMem[i] ;
36 Also := i ;
37 end ;
38 end { f o r i } ;
39 a s s i g n (KiF , ’ kocka . k i ’) ; r e w r i t e (KiF) ; { k i í r a t á s }
40 k : = 0 ; i := Also ;
41 whi le i >0 do begin
42 i n c (k) ; i :=Ra [i] ;
43 end ;
44 w r i t e l n (KiF , k) ;
45 whi le Also >0 do begin
46 w r i t e (KiF , Also , ’ ’) ;
47 Also :=Ra [Also] ;
48 end ;
49 w r i t e l n (KiF) ; c l o s e (KiF) ;
50 end ; { kocka }

18

4.11. Feladat: Kitalálós játék
Ádám és Éva kitalálós játékot játszik. Éva gondol egy 1 és n közötti egész számot, amelyet Ádámnak ki kell találnia. Ádám
olyan kérdést tehet fel, hogy "A gondolt szám kisebb-e, mint x?". Éva válasza "igen", vagy "nem" lehet. Hogy a játék érdekesebb
legyen, megállapodtak abban, hogy Ádám legfeljebb h-szor tehet fel olyan kérdést, amelyre a válasz "nem", tehát ha már h
kérdésére "nem" választ kapott, akkor tovább nem kérdezhet.

Írjon programot, amely n és h ismeretében kiszámítja azt a legkisebb k értéket, amelyre teljesül, hogy Ádám bármely 1 és n
közötti gondolt számot ki tud találni legfeljebb k kérdéssel úgy, hogy legfeljebb h-szor kap "nem" választ!

Bemenet
A be.txt szöveges állomány első sorában két egész szám van, az n értéke (1≤ n≤ 2000000000) és a h (2≤ h≤ 100) értéke.

Kimenet
A ki.txt szöveges állomány első és egyetlen sorába egy számot kell írni, azt a minimális k értéket, amelyre teljesül, hogy Ádám
bármely 1 és n közötti gondolt számot ki tud találni legfeljebb k kérdéssel úgy, hogy legfeljebb h-szor kap "nem" választ!
Példa bemenet és kimenet
9 2 4

Megoldás
Minden olyan bináris fa, amely teljesíti az alábbi három feltételt, kifejez egy olyan kérdezési stratégiát, amely során legfeljebb
h kérdésre kaphatunk nem választ. Fordítva is igaz, tehát minden olyan kérdezési stratégia, amely során legfeljebb h kérdésre
kaphatunk nem választ, kifejezhető ilyen fával.
• A fának n levele van és ezek balról jobbra sorrendben az 1, . . . ,n számokat tartalmazzák.

• A fának n−1 belső pontja van. Minden p belső pont a p jobb-részfájában lévő levél értékek minimumát tartalmazza.

• Bármely gyökértől levélig vezető úton legfeljebb h-szor megyünk jobbra.

71 2

3 4

5

6 7

8

9

6

3

2 5

4

9

8

19. ábra. Egy 2-hibázó kérdezőfa a példa bemenetre.

Kérdezőfa a következőképpen használható. Kezdetben a p aktuális pont legyen a fa gyökere. Mindaddig, amíg p nem levél,
kérdezzünk rá a p-ben lévő értékre. Ha a válasz igen, akkor p legyen a bal fia, egyébként a jobb fia. Az ismétlés befejeződése
után a gondolt szám p-ben van.
Adott kérdezőfát használva a legrosszabb esetben annyi kérdést kell feltenni, amennyi a fa magassága. Tehát az a kérdés, hogy
adott n és h esetén mekkora a legkisebb magasságú olyan kérdezőfa magassága, amelynek legalább n levele van és bármely
gyökértől levélig vezető úton legfeljebb h-szor megyünk jobbra.
Jelölje Fk,h a legtöbb levelet tartalmazó k magasságú (legfeljebb k kérdéssel kitaláló) h-hibázó kérdezőfa, a leveleinek száma pedig
L(k,h).

L(k,1) = k + 1
L(k,h) = L(k,k) ha k < h

L(k,h) = L(k−1,h)+ L(k−1,h−1) ha k > 1∧ k ≥ h

Tehát a probléma megoldása az a legkisebb k, amelyre L(k,h)≥ n

19

4

1 2

3

4

2

3

20. ábra. F3,1: 1-hibázó 3 magas kérdezőfa.

k,h

F
k−1,h

Fk−1,h−1

k−1

k

F

21. ábra. Fk,h: k-magas h-hibázó legtöbb levelet tartalmazó kérdezőfa.

1
1 2 3 k+1

!!
!

?j

h
=

=

=

k

22. ábra. Részproblémák számítási sorrendje: oszloponként felülről lefelé haladva.

20

L(k,1) = k + 1
L(k, j) = L(k,k) ha k < j

L(k,k) = L(k−1,k)+ L(k−1,k−1) = 2L(k−1,k−1)
L(k, j) = L(k−1, j)+ L(k−1, j−1) ha k > 1∧ j < k

1 f u n c t i o n Lf (n : l o n g i n t ; h : i n t e g e r) : l o n g i n t ;
2 c o n s t
3 maxH=100;
4 var
5 L: array [1 . . maxH] of i n t 6 4 ;
6 k , j , hh : i n t e g e r ;
7 begin
8 L [1] : = 2 ; { az e l s ő o s z l o p }
9 k : = 1 ;

10 r ep ea t { a k . o s z l o p k i s z á m í t á s a }
11 i n c (k) ;
12 i f k<=h then begin
13 hh :=k ;
14 L[k] : =L[k−1]+L[k−1];
15 end e l s e begin
16 hh :=h ;
17 L[h] : =L[h]+L[h−1];
18 end ;
19 f o r j :=hh−1 downto 2 do
20 L[j] : =L[j]+L[j −1];
21 L[1] : = k+1;
22 u n t i l L[hh] >=n ;
23 Lf :=k ;
24 end { Lf } ;

21

