Algoritmizalas

Horvdth Gyula
Szegedi Tudomédnyegyetem
Természettudomdanyi és Informatikai Kar
horvath@inf.u-szeged.hu

4. Dinamikus programozassal megoldhat6 feladatok

A dinamikus programozds elnevezés egy probléma-megolddsi mddszert jelol. A mddszer 1€nyege, hogy a kiinduldsi problémat
részproblémakra bontjuk és a részproblémak megoldésaival fejezziik ki a megoldast. Bar a megoldast rekurzivan fejezziik ki,
azonban a tényleges kiszdmitds nem rekurziv médon, hanem tablazat-kitoltéssel torténik. Ez a médszer hatékony algoritmust
eredményez szdmos fontos probléma megoldasara.

4.1. Feladat: A pénzvaltas probléma.

Probléma: Pénzviltas

Bemenet: P = {p,..., p,} pozitiv egészek halmaza, és E pozitiv egész szdm.

Kimenet: Olyan S C P, hogy },cs = E.

Megjegyzés: A pénzek tetszbleges cimletek lehetnek, nem csak a szokdsos 1, 2, 5 10, 20, stb., és minden pénz csak egyszer
haszndlhat6 a felvéltasban.

A Pénzvaltas probléma; létezik-e megoldas

El6szor azt hatarozzuk meg, hogy van-e megoldas.
A megoldas szerkezetének elemzése.
Tegyiik fel, hogy
E:pil+"'+pik7 i <...<lig

egy megolddsa a feladatnak. Ekkor
E—pi=pi+...+pi_,

megolddsa lesz annak a feladatnak, amelynek bemenete a felvaltand6 E — p;, €rték, és a felvéltdshoz legfeljebb a els6 iy — 1
(P15, Pi,—1) pénzeket hasznalhatjuk.

Részproblémakra bontas.

Bontsuk részproblémékra a kiinduldsi problémat: Minden (X,i)(1 <X < E,1 <i < N) szdmpérra vegyiik azt a részproblémit,
hogy az X érték felvdlthaté-e legfeljebb az els6 pi, ..., p; pénzzel. Jeldlje V(X i) az (X, i) részprobléma megolddsat, ami logikai
érték; V (X, i) = Igaz, ha az X Osszeg elGallithaté legfeljebb az els6 i pénzzel, egyébként Hamis.

Osszefiiggések a részproblémak és megoldasaik kozott.

Nyilvanvald, hogy az aldbbi Osszefiiggések teljesiilnek a részproblémak megoldasaira:

L.LVX,i)=(X=p;), hai=1

2.V(X,i))=V(X,i—-1)V(X > p)AV(X —pii—1)hai>1

X =piV
V(X,i)e{ i>1AV(X,i—1)V 1)
i>1AX>piANV(X—pii—1)

A kiinduldsi probléma megolddsa: V (E,n)

Rekurziv megoldas.

Mivel a megoldas kifejezhetd egy V(X,i) logikai értékii fiiggvénnyel, ezért a felirt 6sszefiiggések alapjan azonnal tudunk adni egy
rekurziv fliggvényeljarast, amely a pénzvaltds probléma megolddsat adja.

0NN BN =

0NN kW=

function V(X,i:word): boolean;
{Globalis : P}
{Médszer: Rekurziv megoldas }
begin
V:=(X=P[i])or
(i>1) and V(X,i—-1) or
(i>1) and (X>P[i]) and V(X—P[i],i—-1);
end{V};

Elemezziik a rekurziv megoldas futési idejét. Szdmitsuk ki, hogy legrosszabb esetben hény eljarashivds torténik; jelolje ezt F(E, n)
adott E és n aktudlis paraméterekre. Mivel F(E,1) =1 és F(E,n) = F(E,n— 1)+ F(E — P[n],n— 1) igy F(E,n) = 2""!. PL
n = 100 esetén, feltéve, hogy olyan gyors gépiink van, amely 1 masodperc alatt 230 eljarashivast hajt végre, a futdsi id6 legrosszabb
esetben 17592 millidrd év lenne! Masképpen fogalmazva, a rekurziv megoldds a pénzek halmazanak dsszes lehetséges részhal-
mazat megvizsgalja, hogy az adott részhalmaz 6sszege megegyezik-e E-vel. De n-elem halmaz 6sszes részhalmazainak szama
2. Mi az oka annak, hogy a rekurziv megoldas ilyen lassi? Jéllehet csak E *n részprobléma van, de egy részprobléma megoldasa
(kdzvetve) sok masik részprobléma megoldasdhoz kell és a rekurziv algoritmus ezeket mindig tjra kiszdmolja.
A gyorsitds tehdt kézenfekvd: taroljuk a mar kiszdmitott részproblémak megoldésat.

Megoldas a részproblémak megoldasainak tablazatos tarolasaval.

Vegyiink egy VT tdbldzatot, amelyben minden lehetséges részprobléma megolddsét taroljuk. Mivel minden részproblémat két
érték hatdroz meg, X és i, ezért téglalap alakd tabldzat kell. VT'[X,i] az (X, i) részprobléma megoldésat tartalmazza. A részprob-

f

N

i-1 ! !

\j

1 X-PJi] X E

1. dbra. A pénzvaltds tablizata

Iémak kiszamitasi sorrendje.

Olyan kiszdmitdsi sorrendet kell megéllapitani, amelyre teljesiil, hogy amikor az (X,i) részproblémat szdmitjuk, akkor ennek
Osszetev6it mar kordbban kiszdmitottuk. Mivel az (X, 1) részproblémdknak nincs sszetevdjiik, ezért kozvetleniil kiszdmithat6ak,
azaz a téblazat els§ sorat szamithatjuk elGszor. Ha i > 1, akkor az (X, i) részprobléma 6sszetevéi az (X,i—1) és (X — p;,i— 1),
ezért az i-edik sor barmely elemét ki tudjuk szdmitani, ha mar kiszdmitottuk az i — 1-edik sor minden elemét. Tehat a tabl4zat-
kitoltés sorrendje: soronként (alulrdl felfelé), balrél-jobbra haladé lehet.

function V(P:Penzek; E,N:word): boolean;
{ Pénzvaltas négyzetes tablazat—kitoltéssel }
const
MaxE=30000; {a max. felvaltandoé Osszeg}
MaxN=200; {a pénzek max. szama}
var
VT:array[1..MaxE,1..MaxN] of boolean;
i,x:word;

9
10
11
12
13
14
15
16
17
18
19

01NN AW~

—_ e = e
DA W= O O

~N NN R WD =

begin
for x:=1 to E do
VI[x,1]:=false;
VI[P[1],1]:= P[1]<=E;
for i:=2 to N do
for x:=1 to E do
VI[x,i]:=(P[i]=X) or
VI[x,i—1] or
(x>P[i]) and VT[x-P[i],i—1];
V:=VT[E,N];
end H

Az algoritmus futési ideje E * n-el ardnyos, mivel minden részprobléma (tdbl4zatelem) kiszdmitdsa konstans idejd. A memoria
igény E xn byte. Lathatd, hogy az i-edik sor kiszdmitasdhoz csak az i — 1-edik sor kell. Ezért, ha csak arra kell valaszolni, hogy
létezi-e megoldédsa a problémadnak, akkor elegendd lenne csak két egymast kovetd sort tarolni. S6t, egyetlen sort is elég tarolni,
ha a sorok kitoltését a felvéltand6 érték szerint csokkend sorrendben (hétulrdl eldre haladva) végezziik. Az (X,i) és az (X,i—1)
részprobléma megolddsat ugyanaz a tibldzatelem tarolja, de nem frunk feliil olyan részproblémat, amelyre kés6bb még sziikség
lenne. Tehat algoritmusunknak mind a tarigénye, mind a futasi ideje fiigg az eldallitand6 értéktdl, illetve felsd korlatjatol.

Tegyiik fel, hogy a pénzekrdl és az eldallitand6 értékr6l nem tudunk semmit. Kérdés, hogy 1étezik-e olyan algoritmus, ame-
lynek a futasi ideje (legrosszabb esetben is) a pénzek n szdmanak fiiggvényében polinomidlis? A vélaszt nem tudjuk. Ez a
szamitastudomany legfontosabb nyitott problémdja. S&t, ha erre a feladatra taldlndnk a pénzek szdmdaban polinomidlis idejd
megoldast, akkor szdmos, fontos probléma megoldaséra is lenne hatékony algoritmus.

function VIT(const P:Penzek; E,N:longint): boolean;
const
MaxE=1000000;
var T:array[0..MaxE] of boolean;
i,x:longint;
begin
for x:=1 to E do
T[x]:=false
if P[1]<=E then T[P[1]]:=true;
for i:=2 to N do
for x:=E downto 1 do
T[x]:=T[x] or (x>=P[i]) and T[x-P[il]l];
VIT:=T[E];
end H

4.2. A Pénzvaltas probléma; egy felvaltas eloallitasa

Ezidaig azt vizsgaltuk, hogy létezik-e megolddsa a pénzvaltds problémdnak. Most egy, de tetszéleges megoldast is meg kell
hatdrozni, amennyiben l1étezik megoldds.

Bemenet: P = {py,..., p,} pozitiv egészek halmaza, és E pozitiv egész szdm.

Kimenet: Olyan S C P, hogy) ,cs = E

Akkor és csak akkor 1étezik megoldds, ha VT [E,N| = true.

Vegyiik észre, hogy egy megoldés "kiolvashaté”" a VT tdbldzatb6l. Legyen i a legkisebb olyan index, hogy VTE,i] = true, tehét
VT[E,i— 1] = false. Ez azt jelenti, hogy E nem éllithat6 el az els6 i — 1 pénzzel, de elGdllithaté az elsS i-vel, tehdt a P[i] pénz
szerepel E valamely felvéltdsdban. Tovdbb folytatva ezt a visszafejtést E — P[i] és i — 1-re, mindaddig, amig a felvéltandé érték O
nem lesz, megkapunk egy megoldast.

X:=E; i:=N;
m:=0;
repeat
while (i>0) and VT[X,i] do Dec(i);
Inc (m);
S[m]:=i+1;
X:=X-P[i+1];

AN AW~

until X=0;

4.3. Feladat: Optimalis pénzvaltas

Bemenet: P = {py,..., p,} pozitiv egészek halmaza, és E pozitiv egész szdm.
Kimenet: Olyan S C P, hogy ¥ ,cs = E és |S| — minimdlis
Eldszor is 1dssuk be, hogy az a moh¢ stratégia, amely mindig a lehet6 legnagyobb pénzt vdlasztja, nem vezet optimédlis megolddshoz.
Legyen E = 8 és a pénzek halmaza legyen {5,4,4,1,1,1}. A moh6 médszer a 8 =5+ 1+ 1+ 1 megoldést adja, mig az optimalis
a8=4+4.
Az optimalis megoldas szerkezetének elemzése.
Tegyiik fel, hogy
E=pi+...4+pi, i1 <...<lig

egy optimdlis megolddsa a feladatnak. Ekkor
E_pik = Pi; +"'+pik,]

optimdlis megolddsa lesz annak a feladatnak, amelynek bemenete a felvéltandd E — p;, érték, és a felvaltashoz legfeljebb a elsd
irx — 1 (p1,...,pi,—1) pénzeket haszndlhatjuk. Ugyanis, ha lenne kevesebb pénzbdl all6 felvéltdsa E — p;, -nak, akkor E-nek is
lenne k-nél kevesebb pénzbdl allo felvaltasa.

Részproblémakra és Gsszetevikre bontas.

A részproblémdk legyenek ugyanazok, mint az el6z8 esetben. Minden (X,i) (1 <X < E,1 <i < N) szampdrra vegyiik azt a
részproblémit, hogy legkevesebb hany pénz dsszegeként lehet az X értéket elGdllitani legfeljebb az elsS i {py,...,p;} pénz fel-
haszndldsdval. Ha nincs megoldds, akkor legyen ez az érték N + 1. Jelolje az (X, i) részprobléma optimdlis megolddsénak értékét
Opt(X,i). Definialjuk az optimalis megoldds értékét X = O-ra és i = O-ra is, azaz legyen Opt(X,0) = N+ 1 és Opt(0,i) = 0. igy
Opt(X,i)-re az aldbbi rekurziv osszefiiggés irhaté fel.

A részproblémak optimalis megoldasanak kifejezése az osszetevok megoldasaival.

oo ha i=0AX>0
~_) 0 ha X=0
OPX:D) =93 opr(x,i—1) ha X < p;)

min(Opt(X,i—1),1+O0pt(X —p;,i—1)) ha X > p;

1 X-PJi] X E

2. abra. A pénzvaltas tablazata

procedure OptValto(const P :Penzek; E :word; N:word;
var Db:word; var C:Megoldas);
const
MaxE=30000; MaxN=100;
var
Opt:array [0..MaxE] of 0..MaxN+1;

8

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33

V:array[0..MaxE,0..MaxN] of 0..MaxN+1;
i,x,Rop:word;
begin
for x:=1 to E do begin
Opt[x]:=N+1; V[x,0]:=N+1 end;
Opt[0]:=0;
for i:=1 to N do
for x:=E downto 1 do begin
if (x>=P[i]) then
Rop:=O0Opt[x—P[i]]+1
else
Rop:=N+1;
if Rop<Opt[x] then begin
Opt[x]:=Rop;
Vix,il:=i;
end else
Vix,i]:=V[x,i—1];
end H

Db:=0; x:=E; i:=N;
if Opt[E]<=N then
repeat
i:=V[x,i];
Inc(Db); C[Db]:=1i;
x:=x—P[i];
Dec(i);
until x=0;
end 3

Az OPTVALTO algoritmus térigénye E * (N + 1) %2 byte. A futdsi id§ szintén E x N -el ardnyos.

A dinamikus programozas stratégiaja.

A dinamikus programozds, mint probléma-megoldasi stratégia az aldbbi 6t
1€pés végrehajtasat jelenti.

1. Az [optimalis] megoldds szerkezetének elemzése.
2. Részproblémdkra és 0sszetevékre bontds ugy, hogy:

e a) Az OsszetevOktol vald fiiggés kormentes legyen.
e b) Minden részprobléma [optimalis] megoldasa kifejezhet6 legyen (rekurzivan) az dsszetevok [optimalis] megolda-
saival.
3. Részproblémak [optimalis] megolddsanak kifejezése (rekurzivan) az 6sszetevdk [optimalis] megoldadsaibdl.
4. Részproblémdk [optimdlis] megoldasanak kiszdmitdsa alulrél-felfelé haladva:
e a) A részproblémak kiszamitasi sorrendjének meghatarozasa. Olyan sorba kell rakni a részproblémdkat, hogy minden
p részprobléma minden 6sszetevdje (ha van) elbb szerepeljen a felsoroldsban, mint p.

e b) A részproblémdk kiszdmitdsa alulrdl-felfelé haladva, azaz tabldzat-kitoltéssel.

7z

5. Egy [optimdlis] megoldds eldéllitdsa a 4. 1épésben kiszamitott (€s trolt) informaciokbol.

4.4. Feladat: Testvéries osztozkodas (CEOI’95)

Két testvér ajandékokon osztozkodik. Minden egyes ajandékot pontosan ez egyik testvérnek kell adni. Minden ajandéknak pozitiv
egész szammal kifejezett értéke van. Jelolje A az egyik, B pedig a masik testvér altal kapott ajandékok osszértékét. A cél az, hogy
az osztozkodds testvéries legyen, tehdt A és B kiilonbségének abszolitértéke minimadlis legyen.

[rjunk programot, amely kiszamitja a testvéries osztozkodds eredményeként keletkezs A és B értékeket és megadija, hogy mely
ajandékokat kapja a két testvér.

Megoldas.
Legyen {ey,...,e,} az ajandékok értékeinek egy felsorolésa és jeldlje E az sszegiiket. Feltehetjiik, hogy A < B. Mivel A+B=E,
ezért A a legnagyobb olyan szdm, amelyre A < E /2 és elGdllithaté {ej,...,e,} egy részhalmazdnak sszegeként.

Tehat a megoldas visszavezethetd a pénzvaltds probléma megolddsara.

4.5. Feladat: Igazsagos osztozkodas

Két testvér kozosen kapott ajdindékokat. Minden ajandéknak tudjdk a haszndlati értékét, ami pozitiv egész szdm. Igazsdgosan el

akarjak osztani az ajandékokat, tehat igy, hogy mind kettGjiik ugyanannyi osszértékiit kapjon. Eszrevették, hogy ez nem feltétleniil

teljesithetd, ezért elfogadnak olyan elosztast is, amely szerint a kozosben is maradhat kinemosztott ajandék, de ragaszkodnak

ahhoz, hogy mindketten azonos 0sszértéket kapjanak, és a kozosben maradt ajaindékok Osszértéke a lehetd legkisebb legyen.
frjon programot, amely megad egy igazsigos osztozkodast!

Példa bemenet és kimenet

bemenet kimenet
6 15
10 3 12 515 6 6 3
} 4 21
Megoldas

m=aj +---+a,
m=aj +---+aj,

{it,- i N1, jut =0

n

Y a;i—2m — minimalis

i=1
Nyilvdnvaléan m < fel =Y}, a;/2. Minden 0 < x,y < fel -re és minden 1 < n -re tekintsiik azt a részproblémat, hogy el&allithat6-
e legfeljebb az els6 i ajandék 6sszegeként mind x, mind y, de minden szdm legfeljebb egyik Osszegben szerepelhet. Legyen
E(x,y,i) igaz, ha elGallithatd, egyébként hamis.
E(0,0,i) = igaz minden 0 < i < n-re. Ha i > 0, akkor az aldbbi rekurziv 6sszefiiggés adhaté:

V<x7yai_ 1)\/
Vixyi) & a <xAV(x—ayi—1)V 3)
ai <xAV(x,y—a;i—1)

A megoldis értéke az a legnagyobb x, amelyre E(x,x,n) = igaz. Egy megoldds a pénzviltashoz hasonléan dllithaté eld.

4.6. Feladat: Jardakovezés

Szamitsuk ki, hogy hanyféleképpen lehet egy 3 x n egység méretii jardat kikovezni 1 x 2 méretd lapokkal!
Megoldas

3. abra.

Jelslje A(n) a megoldés értékét 3 x n egység méretli jarda esetén.
Az elsd oszlop kozépsd négyzete haromféleképpen fedheto le.

0NN AW~

11
12
13
14
15
16
17
18
19
20
21
22

4. abra. 1. eset

5. abra. 2. eset

Az egyes esetek csak az aldbbi mddon folytathatok:
Jelolje B(n) azt, hogy hdnyféleképpen fedhets le egy 3 x n egység méretii jarda, amelynek a bal als6 sarka mér le van fedve.
Szimmetria miatt a jobb felsd sarok lefedettsége esetén is B(n)-féle lefedés van.

program jarda;
function B(n: integer): longint;
function A(n: integer): longint;

begin
if

(n=1) then
A :=0

else if (n=2) then

A :=3

else

end

A := A(n—2)+2AB(n—1);

.
b

function B(n: integer): longint;

begin
if (n=1) then
B :=1
else if (n=2) then
B :=0
else
B := A(n—1)+B(n—2);
end H
begin

0

A(n—2)+2B(n—1)

1
0
Aln—1)+B(n-2)

forward ;

2 vz

ha n=1
ha n=2
ha n>2
ha n=1
ha n=2
ha n>2

6. dbra. 3. eset

@

&)

I
-

7. abra. Az 1. eset csak igy folytathat6

L

8. dbra. A 2. eset csak igy folytathaté

]

9. dbra. A 3. eset csak igy folytathat6

—

10. abra. Az 1. eset csak igy folytathat6

11. dbra. Az 2. eset csak igy folytathatd

23 writeln (A(32));

24 end.
A(6)41 o+
A(4)
+
A(2)3] A(4)11
7 o3
A(2)3] A(2)[3] B(3)4 A(2) 3]
gy
A(2)3] B(1)\1]
12. abra. Rekurziés fa
1 program jarda2;
2
3 const
4 maxN=100;
5 var
6 A,B:array[1..maxN] of Int64;
7 n,i: integer;
8 begin
9 n:=64;

10 A[1]:=0; A[2]:=3;
11 B[1]:=1; B[2]:=0;
12 for i:= 3 to n do begin

13 Ali]:=A[i—-2]+2AB[i —1];

14 Bli]:=A[i—-1]+B[i —2];

15 end;

16 writeln(’A(’,n,’) _=.",A[n]);
17 end.

A(64) = 1582048049556775361

4.7. Feladat: Tiikorsz6 (101'2000)
Egy karaktersorozatot tiikorszénak neveziink, ha balrdl-jobbra, valamint jobbrdl-balra olvasva megegyezik. Példaul gorog,

egészsége, mesélésem.

[rjunk olyan programot, amely kiszamitja, hogy egy adott sz6bSl minimdlisan hany betiit kell torolni, hogy tiikorszot kapjunk.

Bemenet

A tukorszo.be szoveges dllomany els6 és egyetlen sora egy S szot tartalmaz, amelynek hossza legfeljebb 5000, és S minden ¢
karakterére: 'a’ <c <7 és'A' <c<' 7.

Kimenet

7 2z

A tukorszo.ki szoveges dllomany elsé és egyetlen sora egy m nemnegativ egész szamot tartalmazzon, ami a minimalis térlend6
karakterek szdma, amellyel a bemeneti S sz6 tiikkorszova tehetd.

p—

S O 00NN AW

Megoldas
Vegyiik észre, hogy egy S sz6 akkor €s csak akkor tiikorszo, ha vagy iires sz6, vagy egybetis, vagy az elsé €s utolso betiije mege-
gyezik és ezeket elhagyva ismét tiikkorszot kapunk.

Az optimalis megoldas szerkezetének elemzése.

Minden S széra jelolje T(S) a probléma egy megoldésat, tehdt olyan tiikorszot, amely S-bdl a lehetd legkevesebb beti torlésével
kaphat6. Ilyen biztosan létezik, hiszen egy kivételével minden betit torolve tiikorszot kapunk. Ha S egy betiibdl 4ll, akkor maga
is tikkorsz6, T(S) = S. Legyen S = xRy, ahol x az els8, y pedig az utolsé betlije S-nek (R lehet iires sz6 is). Ha x =y, akkor
T(S) =T(R). Ha x # y, akkor vagy az x, vagy az y betiit biztosan térolni kell, tehdt a megoldds vagy T (xR), vagy T (Ry). Az
optimalis megoldds szerkezete azt sugallja, hogy minden (i, j),1 <i < j < n indexpdrra tekintsiik azt a részproblémat, hogy az
S[i..j] = S[i]...S[J] sz6 legkevesebb hény betii torlésével tehetd tiikkorszova. Jeldlje az (i, j) részprobléma megoldésat M(i, j).
Tehdt a kitlizott feladat megolddsa M (1,n).

A részproblémak megoldasanak kifejezése az osszetevok megoldasaival.
Hai > j esetre M(i, j) értékét O-ként értelmezziik, akkor a részproblémédk megoldasai kozott az aldbbi rekurziv dsszefiiggést lehet
felirni.

0, hai>j
M@, j)=<¢ M(i+1,j—1), hai < jés S[i] =S[j]
I+min(M(i+1,/),M(i,j—1)), hai<jésS[i]#S[)]

Tehat az (i, j) részprobléma Osszetevdi: (i+1,j—1), (i+1,j) és (i,j—1).

A részproblémak kiszamitasi sorrendje, tablazat-kitoltés.

Taroljuk a részproblémdk megolddsit tébldzatban, az (i, j) megoldésat az M[i, j] tabldzatelemben. Mivel az (i, j) részprobléma
megoldésa legfeljebb az (i+ 1,7 — 1), (i+1,j) és (i,j — 1) megoldésaitdl fiigg, ezért a tdblazat-kitsltés sorrendje lehet alulrdl
felfelé, soronként pedig jobbrdl-balra haladé.

A négyzetes tablazat tarigénye 5000 x 5000 x 2 = 50000000 byte, ami tdl sok. Lathaté azonban, hogy elegendd lenne csak két
egymdst kovet sort tdrolni. Sét, egy sort is elég tarolni, ha megoldjuk, hogy ne irjuk feliil azt a T[i] = M(i, j) kitoltésekor az
M(i, j—1) értéket, amit szintén 7'[i] tdrol.

n 0
0
0
j ? |x 0
[x | x 0
0
0
0
0

110

1 i i+l n

13. dbra. Tablazat-kitoltési sorrend: soronként alulrdl felfelé, jobbrol balra haladva.

function Megold(const S:Sorozat; N:word): word;

var
T:array[1..MaxN] of word;
i,j:integer;
Ment, Menti:word;

begin
T[1]:=0;
for j:=2 to N do begin

T[jl:=0; Menti:=0;

10

11
12
13
14
15
16
17
18
19
20
21
22

0NN kAW~

for i:=j—1 downto 1 do begin

Ment:=TJ[i];
if S[i]=S[j] then
T[i]:=Menti
else
T[i]:=1+Min(T[i], T[i+1]);
Menti:=Ment;

end H
end H
Megold:=T[1];
end H

Az algoritmus futési ideje @ (n?), tirigénye O (n).

Ha egy megoldast is el kell dllitani, akkor minden (i, j) részprobléméra tarolni kell azt az informéciét, hogy melyik Gsszetevére
kapjuk az optimalis megoldast ha S[i] # S[J].

az i-edik (elsd), avagy a j-edik (utolsd) betiit kell-e tordlni, vagy egy kiilon L tombben taroljuk, hogy a részsorozat melyik végérdl
kell tor6lni az optimélis megolddshoz. Ezt nevezziik az optimdlis megoldas visszafejtésének.

Ekkor algoritmus futési ideje is és tarigényre is @ (n?).

procedure Kilr;

var
Bal, Jobb:word;
begin
Bal:=1; Jobb:=N;
while Bal<Jobb do begin
if S[Bal]=S[Jobb] then begin
Inc(Bal); Dec(Jobb)
end else if T[Bal+1,Jobb] < T[Bal, Jobb—1] then begin
Write (KiF, Bal,’ ’);
Inc(Bal);
end else begin
Write (KiF, Jobb,’ ’);
Dec(Jobb);
end ;
end

end H

4.8. Feladat: Szamjaték (101°96)

Tekintsiik a kovetkezd kétszemélyes jatékot. A jatéktabla pozitiv egész szamok sorozata. A két jatékos felvdltva 1ép. Egy 1épés
azt jelenti, hogy a jatékos a sorozat bal, avagy jobb végérdl levesz egy szamot. Az levett szim hozzdadédik a pontszdmahoz. A
jaték akkor ér véget, ha a szdmok elfogytak. Az els$ jatékos nyer, ha az altala valasztott szamok Osszege legalabb annyi, mint
a masodik jatékos altal valasztottak 6sszege. A mdasodik jatékos a lehetd legjobban jatszik. A jatékot az elsé jatékos kezdi. Ha
kezdetben a tdblan lev szamok szama paros, akkor az elsd jatékosnak van nyerd stratégidja.

[rjunk olyan programot, amely az els§ jatékos szerepét jatssza és megnyeri jatékot! A mdsodik jatékos lépéseit egy mér adott
szamitogépes program szolgaltatja. A két jatékos a rendelkezésedre bocsatott P1ay modul hdrom eljarasan keresztiil kommunikal
egymadssal.

StartGame Az elsé jatékos a jatszmat a paraméter nélkiili StartGame eljards végrehajtdsdval inditja.

MyMove Ha az elsd jatékos a bal oldalrél valaszt szamot, akkor a MyMove (' L") eljarast hivja. Hasonléképpen a MyMove (’R’)
hivassal kozli a mésodik jatékossal, hogy a jobb oldalrdl vilasztott.

YourMove A masodik jatékos (tehat a gép) azonnal 1ép. Az elsé jatékos a 1épést a YourMove (C) utasitdssal tudhatja meg, ahol
C egy karakter tipusu valtozé. (C/C++ nyelven YourMove (&C)). A C véltozé értéke "L’ vagy 'R’ lesz attdl fiiggden, hogy a
madsodik jatékos a bal vagy a jobb oldalrdl vélasztott.

11

Bemenet

s

Az input.txt féjl elsd sora a kezd6tabla n méretét (a szdmok darabszamadt) tartalmazza. n paros és 2 <= n <= 100. A masodik
sor n szamot tartalmaz, a jaték kezdetén a tablan 1év6 szdmokat. A tablan 200-nal nagyobb szdm nem szerepel.

Kimenet

Ha a jaték véget ért, akkor a programod irja ki a végeredményt az OUTPUT . TXT fajlba! A f4jl elsé sordban két szam legyen! Az

els6 szdm az elsd jatékos 4ltal valasztott szamok Osszegével, a mdsodik szdm a masodik jatékos altal valasztott szimok Osszegével
egyezzen meg! A programodnak a jatékot le kell jatszania és az output a lejatszott jaték eredményét kell tartalmazza.

Példa bemenet és kimenet

INPUT.TXT OUTPUT.TXT

6 18 11

472952

Megoldas

Jelslje (ay, .. .,a,) akezdeti jatékélldst. Minden lehetséges jatékallast egyértelmiien meghatdrozza az, hogy mely szamok vannak
még a tdbldn. Tehdt minden jatékallds azonosithatd egy (i, j) szdmparral, ami azt jelenti, hogy a tibldn az (a;,...,a;) szdmsorozat

van. Mivel n paros szdm, igy minden esetben, amikor az elsd jatékos 1ép, vagy i paros és j paratlan, vagy forditva. Tehat az els6
jatékos kényszeritheti a masodik jatékost, hogy az mindig vagy csak pdros, vagy csak pdratlan index elemét valassza a szdm-
sorozatnak. Tehat ha a paros indextiek 0sszege nagyobb, vagy egyenld, mint a paratlanok Osszege, akkor az elsé jatékos mindig
pératlan indexiit vélaszt, egyébként mindig parosat.

Erdekesebb a jaték, ha az a cél, hogy az elsé jatékos a lehetd legtibbet szerezze meg, feltéve, hogy erre torekszik a masodik
jatékos is.
Abrazoljuk a jatékallasokat gréffal.

14. abra. A jatékallasok grafja n = 8 esetén. Korrel jelolt llasbol (i + j paratlan) az elsd, négyzettel jelolt allasbol (i + j paros) a
madsodik jatékos 1ép.

21, 4

Definidljuk minden (i, j) jatékalldsra azt a maximdlis pontszdmot, amit az els§ jatékos elérhet ebbdl a jatékallasbol indulva.
Jelolje ezt az értéket Opt (i, j).
Opt (i, j) a kovetkezd rekurziv 6sszefiiggéssel szamithatd.

0 hai=j
Opt(i,j) =< max(a;+Opt(i+1,j),a;+O0pt(i,j—1) hai< jési+ jpdratlan
min(Opt(i+1,j),0pt(i,j—1) hai < jési+ jparos

Tehdt alkalmazhaté a dinamikus programozds médszere, vagyis az Opt(i, j) értékeket a jaték megkezdése el6tt kiszdmitjuk.
Téroljuk minden (i,) jatékalldsraa Lep[i, j] tombelemben az optimdlis 1épést, tehdt az "L’ karaktert, ha a képletben a; + Opt (i +
1,j) > a;+Opt(i, j— 1), mert ekkor balrdl kell elvenni, egyébként pedig az "R’ karaktert, mert ekkor jobbrdl kell elvenni.

12

ij | Min.D) ° Max(B,J)

Q L A

i-1j) B J i-1,] B ij+l | J

15. dbra. Mini-max szabaly.

1 Program Jatek;

2 Uses Play; {a masodik jatékost megvalésitéo modul}

3 const

4 MaxN=100;

5 var

6 InpF ,OutF: Text;

7 A:array[1..MaxN] of word;{ a tablan 1évd szamok sorozata}
8 N: word; { a tabla mérete}

9 Opt:array[1..MaxN,1..MaxN] of word;

10 Lt:array[1..MaxN,1..MaxN] of char; {az 1. jatékos optimalis lépései}
11

12 procedure Beolvas; var i:word; begin

13 Assign (InpF, ’input. txt’); Reset(InpF);

14 ReadLn (InpF ,N);

15 for i:=1 to N do

16 Read (InpF ,A[i]);

17 Close (InpF);

18 end;

19 procedure Elofeldolgoz;
20 var i,j:word;
21 Pont , PontBal , PontJobb :word;

22 begin

23 for j:=1 to N do begin

24 Optlj,jl:=0;

25 for i:=j—1 downto 1 do begin

26 if Odd(j—i+1) then begin{2. jatékos lép}
27 if Opt[i+1,j]<Opt[i,j—1] then

28 Opt[i,jl:=O0pt[i+1,j]

29 else

30 Opt[i,jl:=0pt[i,j—1]

31 end else begin{l. jatékos lép}

32 PontBal:=A[i]+Opt[i+1,j];

33 PontJobb:=A[j]+Opt[i,j—1];

34 if PontBal>PontJobb then begin

35 Opt[i,j]l:=PontBal; Lt[i,j]:="L"
36 end else begin

37 Opt[i,j]l:=PontJobb; Lt[i,j]:="R’
38 end

39 end;

40 end{for i};

41 end{for j};
42 end {Elofeldolgoz};

43 procedure Jatszas;
44 var

13

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67

Bal, Jobb:word;
L1,L2: Char;
begin
Bal:=1; Jobb:=N;
while Bal<=Jobb do begin
MyMove(Lt[Bal, Jobb]);
if Lt[Bal, Jobb]="L’ then
Inc(Bal)
else
Dec(Jobb);
L2:=YourMove;
if L2="L’ then
Inc (Bal)
else
Dec(Jobb);
end H
end H

begin
Beolvas;
Elofeldolgoz;
StartGame;
Jatszas;

end.

4.9. Feladat: Vagas

Adott egy fémrid, amelyet megadott szimu darabra kell felvagni tigy, hogy a vagdsok pontos helyét is tudjuk. A vagasok helyét a
rud egyik végétol mért, milliméterben kifejezett értékek adjdk meg. Olyan vagdgéppel kell a feladatot megoldani, amely egyszerre
csak egy vagast tud végezni. A vagasok tetszSleges sorrendben elvégezhetbek. Egy vagas koltsége megegyezik annak a darabnak
a hosszdval, amit éppen (két darabra) vagunk. A célunk optimalizalni a miveletsor teljes koltséget.

[rjunk olyan programot, amely kiszdmitja a vagasi miiveletsor optimalis 6sszkoltségét, és megad egy olyan vagdsi sorrendet,
amely optimdlis koltséget eredményez.

Bemenet

A vag.be szdveges dllomény elsd sora egyetlen egész szamot tartalmaz, a vdgandé rdd h hosszéat (0 < & < 1000). A mdsodik
sorban az elvégzendd vdgdsok n szdma van (1 < n < 1000). A harmadik sor n darab egész szdmot tartalmaz egy-egy szokozzel
elvélasztva, az elvégzendd vagasok helyeit. A szdmok szigordan monoton névekvd sorozatot alkotnak, és mindegyik nagyobb,
mint 0 és kisebb, mint /.

Kimenet

A vag.ki szoveges dllomdny elsd sordba egyetlen szamot, a vagasi miiveletsor optimalis 0sszkoltségét kell irni! A masodik sor
n darab egész szdmot tartalmazzon, ami a vagési helyek sorszdmainak egy olyan felsoroldsa legyen, hogy ebben a sorrendben
elvégezve a vagasokat, az 6sszkoltség optimdlis lesz.

Példa bemenet és kimenet

Bemenet Kimenet
24 70
Megoldés 2143756

1@9&%@1 is fﬂ g%%%gsﬁ%lkg gst%)aekg\l;cz % et geL n torlgemhe%vga érakkor az elsé darabon a vo,vy,..., Vi1,V a
Eon pecﬁg & Ve Vi1 v h vagdaso tlm sna e feRnic V°2
Az optimalis megoldas értékének rekurziv klfejezese.
Legyen minden i, j parra, (0 <i< j <n+1) Opt(i, j) a v;, vagasi helytSl a v;, vagasi hely dltal meghatdrozott riiddarab optimalis
vagéasinak koltsége.
i,j)= e . . .
PiLJ vj—v,-—l—mlni:gH(Opt(z,k)+Opt(k,]) hai< j+1

14

—_——
— O 0 0NN AW~

—_ e = =
AN AW

16. abra.

Vi v Vn Vay1 =h

17. dbra. A vagési helyek: vo =0,v,41 =h

Legyen S(i, j) az a k, amelyre a minimum adédik.

n+l / 0
n 0
0

J Vix|x|x|o

X 0

X 0

x| 0

0

0
0
110
0
0 1 i n n+l

18. dbra. T4blazat-kitoltési sorrend: 4tlésan, vagy alulrél-felfelé,jobbrol-balra haladva.

Program Vag;

const
MaxN=100;{a vagasi helyek max. szama}
MaxM=500; {a maximalis riudhossz}
Inf=200000000;

var
H:1..MaxM;
N:byte; {a vagasok szama}
V:array [0..MaxN+1] of 0..MaxM;{a vagasi helyek}
Kolts:longint;
S:array[0..MaxN+1,0..Maxn+1] of 0..MaxN;

procedure Beolvas;
var
BeF: Text;
i,x,y:byte;
begin{Beolvas}

15

17
18
19
20
21
22
23
24

25
26
27
28
29
30
3]
32
33
34
35
36
37
38
39
40
41
4
43
44
45
46
47
48
49

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

Assign (BeF, ’vag.be’); Reset(BeF);
ReadLn(BeF, H);
ReadLn(BeF, N);
for i:=1 to N do
Read (BeF, V[i]);
Close (BeF);
V[0]:=0; V[N+1]:=H;
end{ Beolvas};

procedure Szamit; {Global: N, V, S}
var
Opt:array [0..MaxN+1,0..MaxN+1] of longint;
i,j,k,u,G:word;
Min,Uj:longint;
begin{Szamit }
for i:=0 to N do begin{inicializalas}
Opt[i,i+1]:=0; S[i,i+1]:=0;
end{for i};
for u:=2 to N+1 do begin{j—i=u}
for i:=0 to N—u+l1 do begin
j:=i+u; Min:=Inf;
for k:=i+1 to j—1 do begin
Uj:=Opt[i,k]+Opt[k,j];
if Uj <Min then begin
Min:=Uj;
G:=k;
end;
end{k};
Optl[i,jl:=Min+V[j]-V[il;
S[i,jl:=G;
end{i};
end{for u};
Kolts:=Opt[0 ,N+1];
end{Szamit};

procedure Kilr;
var
KiF: Text;
Ind,i:word;
procedure Bejar(i,j:word);
var k:word;
begin
if j<=i+1 then Exit;
k:=S[i,j];
write (KiF, k,’ ’);
Bejar (i ,k);
Bejar (k, j);
end{ Bejar};

begin { Kilr }
Assign (KiF, ’vag.ki’); Rewrite (KiF);
WriteLn (KiF, Kolts);
Ind:=0;
Bejar (0 ,N+1);
WriteLn (KiF);
Close (KiF);
end{ Kilr};

16

72
73
74
75
76

begin
Beolvas;
Szamit;
Kilr;
end.

4.10. Feladat: Torony épitése kockakbol.

EpitSkockdkbdl tigy lehet stabil tornyot épiteni, hogy kisebb kockdra nem lehet nagyobbat, illetve konnyebb kockdra nem lehet
nehezebbet tenni.
Adjunk olyan algoritmust, amely adott N darab kocka alapjan megadja a bel6liik épithetd legmagasabb tornyot!

Bemenet

A torony.be dllomdny els§ sordban a kockdk n (1 <n < 1000) szdma van, a tovdbbi n sorban, pedig az egyes kockdk oldalhossza
és sulya (mindketté 20000-nél kisebb pozitiv egész szam), egyetlen szokozzel elvdlasztva. Nincs két kocka, amelynek oldalhossza
és a sulya is megegyezne.

Kimenet

A torony.ki dllomény els6 sordba a legmagasabb torony k kockaszamat kell irni, a kdvetkez6 k sorba pedig az €pités szerint
alulrdl felfelé sorrendben a felhasznalt kockdk oldalhosszat és sulyat.

Példa bemenet és kimenet

Bemenet Kimenet
5 3

10 3 20 5

20 5 10 3

15 6 10 2

15 1

10 2

Az optimalis megoldas szerkezetének vizsgalata.

A kockak oldalhosszai: hy,...,h,, silyai pedig sq,...,s,.

Elemezziik az optimalis megoldds szerkezetét.

Tegyiik fel, hogy a iy,...,i; sorszdmu kockdk ebben a sorrendben egymadsra rakasival kapjuk a legmagasabb tornyot. Ekkor
i,...,ix torony a lehetd legmagasabb olyan torony, amelynek legalsé kockdja i. Mert ha lenne magasabb torony, amelynek
legals6 kock4ja i, akkor ezt a i; kockdra rarakhatndnk, hisz a i; kocka biztosan nem szerepelhet olyan toronyban, amelynek
legals6 kockaja ip, és igy magasabb tornyot kapndnk, mint a iy, ...,i. Ez azért igaz, mert az a graf, amelynek pontjai a kockdk
(sorszdmai), és €lei azok a (i, j) parok, amelyekre igaz, hogy az i-edik kockdra rarakhaté a j-edik, (h; > h ;A\ si > sj) kdrmentes
graf.

Részproblémakra és Gsszetevokre bontas.

Minden i-re (1 <i < n) vegyiik azt a részproblémadt, hogy mekkora a magassdga a legmagasabb olyan toronynak, amelynek
legals6 kockdja az i. Jelolje M (i) ezt a legmagasabb toronymagassagot, tehat a részprobléma optimélis megolddsdnak az értékét.
A részproblémak megoldasanak kifejezése az osszetevok megoldasaival.

M(i) = hi+max(M(j) :i # jAh; > hjAs; ZS/)

A részproblémak kiszamitasi rekurziéval, memorizalva.

Az optimdlis megoldas értékét rekurzidval szamitjuk a fenti kifejezés alapjan, de ha egy részproblémara kiszamitottuk, akkor
azt eltaroljuk egy tabldzatban, és ha késébb ismét sziikség lesz rd, akkor a tablazatbol olvassuk ki az értéket. Ehhez el6szor a
tablazatot olyan értékkel kell feltolteni, amely azt jelzi, hogy a megfeleld részprobléma értékét még nem szamitottuk ki. Ez az
érték lehet 0, mivel minden megoldds tartalmazza azt a kockat, tehat az optimalis megoldas értéke > 0.

Ezzel a mddszerrel elkeriilhet6 a részproblémak megfeleld sorrendjének kiszdmitdsa. Ez csokkentheti a kivitelezési id6t és néha
a futasi id6t is. Az algoritmus tarigénye n-el aranyos, futdsi ideje pedig legrosszabb esetben n’-el.

17

0NN BN =

26
27
28
29
30
3]
32
33
34
35
36
37
38
39
40
41
4
43
44
45
46
47
48
49
50

procedure Kocka(const H,S:Tomb; N:word;var Also:word; var Ra:Tomb);

const MaxN=1000;

var
MagasMem: array [1..MaxN] of longint;
MaxM: longint ; {az épithetd max.
i:integer;

function Magas(i:word):longint; {Global:N, S, H, MagasMem }

var
Mi,Mj,j:longint;
begin { Magas }

if MagasMem[i]>0 then begin {p-re mar kiszamitottuk}
{tablazatbé6l vesszik }

Magas:= MagasMem[i]; Exit
end ;
Mi:=0;

for j:=1 to N do { minden g-ra, amely rakhaté p-re }
if (i<>j)and(H[i]>=H[j])and(S[i]>=S[j]) then begin
Mj:=Magas(j); { Magas(q) rekurziv

toronymagassag }

if Mj>Mi then begin { Maximum szamitas }

Mi:=Mj;

Ra[i]:=j; { bejegyzés: i—re j—t kell
end;
end;
MagasMem[i]:=Mi+H[i]; { Memorizalas }

Magas:= MagasMem[i];
end { Magas} ;

szamitasa }

akni

var
KiF: Text; k:integer;
begin{ kocka }
for i:=1 to N do {inicializalas , még semmit nem}

MagasMem[i]:=0
MaxM:=0;
for i:=1 to N do begin
Magas(i);
if MaxM<MagasMem|[i] then begin{ hol
MaxM:=MagasMem[i] ;
Also:=i;
end ;
end{for i};
assign (KiF, ’kocka.ki’); rewrite (KiF);
k:=0; i:=Also;
while i>0 do begin
inc(k); i:=Raf[i];
end ;
writeln (KiF,k);
while Also>0 do begin
write (KiF, Also,’_ ’);
Also:=Ra[Also];
end ;
writeln (KiF); close (KiF);
end; {kocka}

{szamitottunk Kki}

a maximum?

{kiiratas}

18

}

4.11. Feladat: Kitalalos jaték

Adam és Eva kitaldl6s jatékot jatszik. Eva gondol egy 1 és n kozotti egész szdmot, amelyet Addmnak ki kell taldlnia. Adam
olyan kérdést tehet fel, hogy "A gondolt szam kisebb-e, mint x?". Eva vélasza "igen", vagy "nem" lehet. Hogy a jaték érdekesebb
legyen, megallapodtak abban, hogy Adam legfeljebb h-szor tehet fel olyan kérdést, amelyre a vilasz "nem", tehit ha mar &
kérdésére "nem" valaszt kapott, akkor tovabb nem kérdezhet.

frjon programot, amely n és h ismeretében kiszdmitja azt a legkisebb k értéket, amelyre teljesiil, hogy Addm barmely 1 és n
kozotti gondolt szamot ki tud taldlni legfeljebb k kérdéssel tigy, hogy legfeljebb h-szor kap "nem" vélaszt!

Bemenet

A be.txt szoveges dllomdny elsd sordban két egész szam van, az n értéke (1 < n <2000000000) és ah (2 < h < 100) értéke.

Kimenet

A ki.txt szoveges dllomany elsG és egyetlen sordaba egy szamot kell frni, azt a minimalis k értéket, amelyre teljesiil, hogy Adam
barmely 1 és n kozotti gondolt szadmot ki tud taldlni legfeljebb k kérdéssel ugy, hogy legfeljebb h-szor kap "nem" vélaszt!
Példa bemenet és kimenet

9 2 4
Megoldas
Minden olyan bindris fa, amely teljesiti az aldbbi harom feltételt, kifejez egy olyan kérdezési stratégiat, amely sordn legfeljebb
h kérdésre kaphatunk nem vélaszt. Forditva is igaz, tehat minden olyan kérdezési stratégia, amely sordn legfeljebb i kérdésre
kaphatunk nem valaszt, kifejezhetd ilyen faval.

e A fanak n levele van és ezek balrdl jobbra sorrendben az 1,...,n szdmokat tartalmazzak.

e A fanak n — 1 bels6 pontja van. Minden p belsé pont a p jobb-részfajdban 1évd levél értékek minimumat tartalmazza.

e Barmely gyokértdl levélig vezetd dton legfeljebb A-szor megyiink jobbra.

e,
b
@i@\@

A @ @ o

19. dbra. Egy 2-hibdz6 kérdezdfa a példa bemenetre.

Kérdez6fa a kovetkez8képpen haszndlhaté. Kezdetben a p aktudlis pont legyen a fa gyokere. Mindaddig, amig p nem levél,
kérdezziink rd a p-ben 1évs értékre. Ha a vdlasz igen, akkor p legyen a bal fia, egyébként a jobb fia. Az ismétlés befejezdése
utdn a gondolt szdm p-ben van.

Adott kérdezdfat haszndlva a legrosszabb esetben annyi kérdést kell feltenni, amennyi a fa magassdga. Tehat az a kérdés, hogy
adott n és h esetén mekkora a legkisebb magassagu olyan kérdez6fa magassdga, amelynek legaldbb n levele van és barmely
gyokértdl levélig vezets dton legfeljebb h-szor megyiink jobbra.

Jeldlje Fy j, alegtobb levelet tartalmaz6 k magassagii (legfeljebb k kérdéssel kitaldld) h-hibdzo kérdezofa, a leveleinek szama pedig
L(k,h).

Lk,1) = k+1
L(k,h) = L(k,k)hak<h
Lk,h) = Lk—1,h)+Lk—1,h—1)hak>1Ak>h

Tehdt a probléma megoldésa az a legkisebb k, amelyre L(k,h) > n

19

1 2

20. abra. F3;: 1-hibaz6 3 magas kérdezdfa.

21. abra. Fy j: k-magas h-hibdzo legtobb levelet tartalmazo kérdezdfa.

h =
J n?
!
1 3 k+1] Y |
1 » Kk

22. dbra. Részproblémak szamitasi sorrendje: oszloponként feliilrdl lefelé haladva.

20

0 J N N kW=

Lk—1,k)+L(k—1,k—1)=2L(k—1,k—1)

Lk,1) = k+1

L(k,j) = L(kk) hak<j
L(kk) =

L(k,)

function Lf(n:longint; h:integer):longint;
const
maxH=100;
var
L:array[1..maxH] of int64;
k,j,hh:integer;
begin
L[1]:=2; {az elsé oszlop}
k:=1;
repeat {a k. oszlop kiszamitasa}
inc(k);
if k<=h then begin
hh:=k;
L[k]:=L[k—1]+L[k—-1];
end else begin
hh:=h;
L[h]:=L[h]+L[h—-1];
end ;
for j:=hh—1 downto 2 do
L[jl:=L[j1+L[j—1];
L[1]:=k+1;
until L[hh]>=n;
Lf:=k;
end{Lf};

= Lk—1,j)+Lk—1,j—1)hak>1Aj<k

21

