
7. Dinamikus programozás

7.1. Rekurzió memorizálással.

Láttuk, hogy a partíció probléma rekurzív algoritmusa Ω(2
√

n) eljáráshívást végez, pedig a lehetséges részproblémák száma csak
n2 (vagy n(n+ 1)/2, ha csak az n≤ k eseteket vesszük.) Ennek az az oka, hogy ugyanazon részprobléma megoldása több
más részprobléma megoldásához kell, és az algoritmus ezeket mindig újra kiszámítja. Tehát egyerűen gyorsíthatjuk a számítást,
ha minden részprobléma (azaz P2(n,k)) megoldását tároljuk egy tömbben. Ha hivatkozunk egy részprobléma megoldására,
akkor először ellenőrizzük, hogy kiszámítottuk-e már, és ha igen, akkor kiolvassuk az értéket a táblázatból, egyebként rekurzívan
számítunk, és utána tároljuk az értéket a táblázatban.
A táblázat inicializálásához válasszunk egy olyan értéket, amely nem lehet egyetlen részprobléma megoldása sem. Esetünkben
ez lehet a 0.

public class ParticioRM{
private static long[][] T2;

public static long P(int n){
T2=new long[n+1][n+1];
return P2(n,n);

}//P
private static long P2(int n, int k){

if (T2[n][k]!=0) //P2(n,k)-t már kiszámítottuk
return T2[n][k]; //értéke a T2 táblázatban

long Pnk;
if (k==1 || n==1) //rekurzív számítás

Pnk=1;
else if (k>=n)

Pnk=P2(n,n-1)+1;
else

Pnk=P2(n, k-1)+P2(n-k, k);
T2[n][k]=Pnk; //memorizálás
return Pnk;

}//P2
}

Nyilvánvaló, hogy az algoritmus futási ideje Θ(n2), és a tárigénye is Θ(n2) lesz, ha csak n2 méretű táblázatnak foglalunk
memóriát dinamikusan az aktuális paraméter függvényében.

7.2. A partíció probléma megoldása táblázat-kitöltéssel.

A rekurziót teljesen kiküszöbölhetjük táblázat-kitöltéssel. Az 1. árán szemléltetett táblázatot használjunk a részproblémák megol-
dásainak tárolására. Tehát a T2[n,k] táblázatelem tartalmazza a P2(n,k) részprobléma megoldását. A táblázat első sora azonnal
kitölthető, mert P2(n,1) = 1. Olyan kitöltési sorrendet keresünk, hogy minden (n,k),k > 1 részprobléma kiszámítása esetén azok
a részproblémák, amelyek szükségesek P2(n,k) kiszámításához, már korábban kiszámítottak legyenek.

Általánosan, rekurzív összefüggéssel definiált problémamegoldás esetén egy r (rész)probléma összetevői azok a részproblé-
mák, amelyek megoldásától r megoldása függ. Tehát a táblázat-kitöltéssel alkalmazásához meg kell állapítani a részproblémáknak
egy olyan sorrendjét, hogy minden r részprobléma minden összetevője előbb álljon a sorrendben, mint r . A

1. P2(1,k) = 1, P2(n,1) = 1,

2. P2(n,n) = 1+P2(n,n−1),

3. P2(n,k) = P2(n,n) ha n < k,

4. P2(n,k) = P2(n,k−1)+P2(n−k,k) ha k < n.

rekurzív összefüggések megadják az összetevőket:

1

1

1

N

1 1 1 1 1 1 1 1 1 1111 1

p

p

p

p

p

p

p

p

p

p

p

??

?
!

!!

k

n n

k
N

T2[n,k]=P2(n,k)

!!

n−k

k−1

1. ábra. Táblázat a Partíció probléma megoldásához.

1. P2(1,k)-nak és P2(n,1)-nek nincs összetevője,

2. P2(n,n) összetevője P2(n,n−1),

3. P2(n,k) összetevője P2(n,n), ha (n < k),

4. P2(n,k) összetevői: P2(n,k−1) és P2(n−k,k), ha (k < n).

Tehát a táblázat kitöltése (k-szerint) soronként balról jobbra haladó lehet.
Az algoritmus futási ideje és tárigénye is Θ(n2).

public static long P(int n){
long[][] T2=new long[n+1][n+1];

for (int i=1; i<=n; i++)
T2[i][1]=1; //az első sor kitöltése

for (int ki=2; ki<=n; ki++){ //az ki. sor kitöltése
T2[ki][ki]=T2[ki][ki-1]+1; //P2(n,n)=P2(n,n-1)+1
for (int ni=ki+1; ni<=n; ni++){ //P2(ni,ki)=T2[ni,ki] számítása

int n1=(ni-ki<ki) ? ni-ki : ki; //P2(n,k)=P2(n,n), ha k>n
T2[ni][ki]=T2[ni][ki-1]+T2[ni-ki][n1];//P2(n,k)=P2(n,k-1)+P2(n-k,k)

}
}
return T2[n][n];

}

7.3. A partíció probléma megoldása lineáris táblázat-kitöltéssel.

Látható, hogy elegendő lenne a táblázatnak csak két sorát tárolni, mert minden (n,k) részprobléma összetevői vagy a k-adik,
vagy a k− 1-edik sorban vannak. Sőt, elég egy sort tárolni balról-jobbra (növekvő n-szerint) haladó kitöltésnél, mert amelyik
részproblémát felülírjuk ((n−k,k)), annak később éppen az új értéke kell összetevőként.

2

public static long P(int n){
long[] T=new long[n+1];

for (int i=1; i<=n; i++) //az első sor kitöltése
T[i]=1;

for (int ki=2; ki<=n; ki++){ //az ki. sor kitöltése
++T[ki]; //P2(n,n)=P2(n,n-1)+1
for (int ni=ki+1; ni<=n; ni++){ //

T[ni]=T[ni]+T[ni-ki]; //P2(n,k)=P2(n,k-1)+P2(n-k,k)
}

}
return T[n];

}

P(405)= 9147679068859117602

7.4. A pénzváltás probléma.

Probléma: Pénzváltás
Bemenet: P = {p1, ..., pn} pozitív egészek halmaza, és E pozitív egész szám.
Kimenet: Olyan S⊆ P, hogy ∑p∈S = E.
Megjegyzés: A pénzek tetszőleges címletek lehetnek, nem csak a szokásos 1, 2, 5 10, 20, stb., és minden pénz csak egyszer
használható a felváltásban.
Először azt határozzuk meg, hogy van-e megoldás.
A megoldás szerkezetének elemzése.
Tegyük fel, hogy

E = pi1 + . . .+ pik, i1 < .. . < ik

egy megoldása a feladatnak. Ekkor
E− pik = pi1 + . . .+ pik−1

megoldása lesz annak a feladatnak, amelynek bemenete a felváltandó E− pik érték, és a felváltáshoz legfeljebb a első ik−1
(p1, . . . , pik−1) pénzeket használhatjuk.
Részproblémákra bontás.
Bontsuk részproblémákra a kiindulási problémát: Minden (X, i)(1≤ X ≤ E,1≤ i ≤ N) számpárra vegyük azt a részproblémát,
hogy az X érték felváltható-e legfeljebb az első p1, . . . , pi pénzzel. Jelölje V(X, i) az (X, i) részprobléma megoldását, ami logikai
érték; V(X, i) = Igaz, ha az X összeg előállítható legfeljebb az első i pénzzel, egyébként Hamis.
Összefüggések a részproblémák és megoldásaik között.
Nyilvánvaló, hogy az alábbi összefüggések teljesülnek a részproblémák megoldásaira:
1. V(X, i) = (X = pi), ha i = 1
2. V(X, i) = V(X, i−1)∨ (X > pi)∧V(X− pi , i−1) ha i > 1
Rekurzív megoldás.
Mivel a megoldás kifejezhető egy V(X,i) logikai értékű függvénnyel, ezért a felírt összefüggések alapján azonnal tudunk adni egy
rekurzív függvényeljárást, amely a pénzváltás probléma megoldását adja.

public boolean V(int X, int i){
// Globális:P
// Módszer: Rekurzív megoldás
return (X==P[i]) ||

(i>1) && V(X,i-1) ||
(i>1) && (X>P[i]) && V(X-P[i],i-1);

}

Ez a megoldás azonban igen lassú, legrosszabb esetben a futási idő Ω(2n).
Megoldás a részproblémák megoldásainak táblázatos tárolásával.
Vegyünk egy VT táblázatot, amelyben minden lehetséges részprobléma megoldását tároljuk. Mivel minden részproblémát két
érték határoz meg, X és i, ezért téglalap alakú táblázat kell. VT[X, i] az (X, i) részprobléma megoldását tartalmazza. A

3

1

1

N

?

!!

EX

i

i-1

X-P[i]

2. ábra. A pénzváltás táblázata

részproblémák kiszámítási sorrendje.
Olyan kiszámítási sorrendet kell megállapítani, amelyre teljesül, hogy amikor az (X, i) részproblémát számítjuk, akkor ennek
összetevőit már korábban kiszámítottuk. Mivel az (X,1) részproblémáknak nincs összetevőjük, ezért közvetlenül kiszámíthatóak,
azaz a táblázat első sorát számíthatjuk először. Ha i > 1, akkor az (X, i) részprobléma összetevői az (X, i−1) és (X− pi , i−1),
ezért az i-edik sor bármely elemét ki tudjuk számítani, ha már kiszámítottuk az i−1-edik sor minden elemét. Tehát a táblázat-
kitöltés sorrendje: soronként (alulról felfelé), balról-jobbra haladó lehet. Egy megoldás el őállítása a megoldás visszafejtésével.
Akkor és csak akkor van megoldása a problémának, ha a VT táblázat kitöltése után VT[E,N] értéke igaz. Ekkor az (1-2.) képletek
szerint a legnagyobb i indexű pi pénz, amely szerepelhet E előállításában, az a legnagyobb index, amelyre

VT[E, i] = True∧ (VT[E, i−1] = False)

De ekkor VT[E−P[i], i−1] igaz, tehát E− pi előállítható az első i−1 pénz felhasználásával. Tehát a fenti eljárást folytatni kell
E := E− pi , i := i−1-re mindaddig, amíg E 0 lesz.

public class PenzValt1{

public static int[] Valto(int E, int[] P){
int n=P.length;
int MaxE=1000;
boolean VT[][]=new boolean[E+1][n+1];
int i,x;

for (x=1; x<=E; x++) //inicializálás
VT[x][0]=false;

VT[0][0]=true;
VT[P[0]][0]=true;
for (i=1; i<n; i++)

for (x=1; x<=E; x++)
VT[x][i]=P[i]==x ||

VT[x][i-1] ||
x>=P[i] && VT[x-P[i]][i-1];

int db=0; x=E; i=n-1;
if (!VT[E][n-1]) return null;
int C[]=new int[n];
do{ //megoldás visszafejtés

while (i>=0 && VT[x][i])
i--;

C[db++]=++i;
x-=P[i];

4

}while(x>0);
for (i=db; i<n; i++)

C[i]=0;
return C;

}
}

Ha csak arra kell válaszolni, hogy létezi-e megoldása a problémának, akkor elég a táblázat egy sorát tárolni, mert soronként vissza-
felé (x-szerint csökkenő sorrendben) haladó kitöltést alkalmazhatunk.

public class PenzValt1L{
public static boolean Valto(int E, int[] P){
int n=P.length;
boolean VT[]=new boolean[E+1];
int i,x;

for (x=1; x<=E; x++)
VT[x]=false;

VT[0]=true;
if (P[0]<=E) VT[P[0]]=true;

for (i=1; i<n; i++)
for (x=E; x>0; x--)

VT[x]=P[i]==x ||
VT[x] ||
x>=P[i] && VT[x-P[i]];

return VT[E];
}
}

7.5. Az optimális pénzváltás probléma.

Probléma: Optimális pénzváltás
Bemenet: P = {p1, ..., pn} pozitív egészek halmaza, és E pozitív egész szám.
Kimenet: Olyan S⊆ P, hogy ∑p∈S = E és |S| → minimális
Először is lássuk be, hogy az a mohó stratégia, amely mindig a lehető legnagyobb pénzt választja, nem vezet optimális megoldás-
hoz. Legyen E = 8 és a pénzek halmaza legyen {5,4,4,1,1,1}. A mohó módszer a 8 = 5+ 1+ 1+ 1 megoldást adja, míg az
optimális a 8 = 4+4.
Az optimális megoldás szerkezetének elemzése.
Tegyük fel, hogy

E = pi1 + . . .+ pik, i1 < .. . < ik

egy optimális megoldása a feladatnak. Ekkor
E− pik = pi1 + . . .+ pik−1

optimális megoldása lesz annak a feladatnak, amelynek bemenete a felváltandó E− pik érték, és a felváltáshoz legfeljebb a első
ik−1 (p1, . . . , pik−1) pénzeket használhatjuk. Ugyanis, ha lenne kevesebb pénzből álló felváltása E− pik-nak, akkor E-nek is lenne
k-nál kevesebb pénzből álló felváltása. Részproblémákra és összetev őkre bontás.
A részproblémák legyenek ugyanazok, mint az előző esetben. Minden (X, i) (1≤ X ≤ E,1≤ i ≤ N) számpárra vegyük azt a
részproblémát, hogy legkevesebb hány pénz összegeként lehet az X értéket előállítani legfeljebb az első i {p1, . . . , pi} pénz fel-
használásával. Ha nincs megoldás, akkor legyen ez az érték N+1. Jelölje az (X, i) részprobléma optimális megoldásának értékét
Opt(X, i). Definiáljuk az optimális megoldás értékét X = 0-ra és i = 0-ra is, azaz legyen Opt(X,0) = N+1 és Opt(0, i) = 0. Így
Opt(X, i)-re az alábbi rekurzív összefüggés írható fel. A részproblémák optimális megoldásának kifejezése az összetev ők
optimális megoldásaival.

5

Opt(X, i) =


N+1 ha i = 0∧X > 0
0 ha X = 0
Opt(X, i−1) ha X < pi

min(Opt(X, i−1),1+Opt(X− pi , i−1)) ha X ≥ pi

(1)

public class OptPenzValt {
public static int[] Valto(int E, int[] P){
int n=P.length;
int [] Opt=new int[E+1];
int V[][]=new int[E+1][n+1];
int i,x,ropt;

for (x=1; x<=E; x++){
Opt[x]=n+1;
V[x][0]=n+1;

}
Opt[0]=0;
if (P[0]<=E){

Opt[P[0]]=1;
V[P[0]][0]=0;

}

for (i=1; i<n; i++)
for (x=E; x>0; x--){

if (x>=P[i])
ropt=Opt[x-P[i]]+1;

else
ropt=n+1;

if (ropt<Opt[x]) {
Opt[x]=ropt;
V[x][i]=i;

}else
V[x][i]=V[x][i-1];

}

int db=0; x=E; i=n-1;
if (Opt[E]>n) return null;

do{
i=V[x][i];
db++;
x-=P[i];
--i;

}while(x>0);
int C[]=new int[db];
db=0; x=E; i=n-1;
do{

i=V[x][i];
C[db++]=i;
x-=P[i];
--i;

}while(x>0);

return C;
}
}

6

A dinamikus programozás stratégiája.
A dinamikus programozás, mint probléma-megoldási stratégia az alábbi öt lépés végrehajtását jelenti.

1. Az [optimális] megoldás szerkezetének elemzése.

2. Részproblémákra és összetevőkre bontás úgy, hogy:

• a) Az összetevőktől való függés körmentes legyen.

• b) Minden részprobléma [optimális] megoldása kifejezhető legyen (rekurzívan) az összetevők [optimális] megoldásaival.

3. Részproblémák [optimális] megoldásának kifejezése (rekurzívan) az összetevők [optimális] megoldásaiból.

4. Részproblémák [optimális] megoldásának kiszámítása alulról-felfelé haladva:

• a) A részproblémák kiszámítási sorrendjének meghatározása. Olyan sorba kell rakni a részproblémákat, hogy minden
p részprobléma minden összetevője (ha van) előbb szerepeljen a felsorolásban, mint p.

• b) A részproblémák kiszámítása alulról-felfelé haladva, azaz táblázat-kitöltéssel.

5. Egy [optimális] megoldás előállítása a 4. lépésben kiszámított (és tárolt) információkból.

7.6. Optimális bináris keres őfa el őállítása

A F = (M,R,Adat) absztrakt adatszerkezetet bináris keresőfának nevezzük, ha
1. F bináris fa,
2. Adat : M → Elemtipés Elemtip-on értelmezett egy ≤ lineáris rendezési reláció,
3. (∀x∈M)(∀p∈ Fbal(x))(∀q∈ Fjobb(x))(Adat(p)≤ Adat(x)≤ Adat(q))
A BINKERFAKERES függvényeljárás egy nyilvánvaló megoldása a fában keresés feladatnak.

x

p qa1

a2

a3

3. ábra. Bináris keresőfa

public BinFa<E> BinKerFaKeres(E a, BinFA F){
while (F!=null) && (a!=F.elem)

if (a<F.elem)
F=F.bal

else
F=F.jobb;

return F;
}

Tegyük fel, hogy ismerjük minden ki kulcs keresési gyakoriságát, ami pi (i = 1, . . . ,n) Továbbá ismert azon k kulcsok (sikertelen)
keresési gyakorisága, amelyre ki < k < ki+1, ami qi (i=1,. . . ,n), és q0 a k < k1 kulcsok keresési gyakorisága.

7

k3

k1

k2

k4 k6

k8

k7 k9

x3

x1 x4

x2

x6

x8

x7 x9

x5 k5

x10 k10

4. ábra. 10 adatot (kulcsot) tartalmazó bináris keresőfa

k5

k3

k1

k2

k4

k10

k6

k8

k7 k9

x5

x3

x1 x4

x2

x10

x6

x8

x7 x9

y0

y1 y2

y3

y4 y5

y6 y7 y8 y9

y10

5. ábra. Bináris keresőfa kiegészítve sikertelen keresési pontokkal

8

Átlagos keresési id ő (költség):

V(F) =
n

∑
i=1

pi dF(xi)+
n

∑
i=0

qi dF(yi)

, ahol dF(p) a p pont mélysége az F fában. Probléma: Optimális bináris keresőfa előállítása.
Bemenet: P = 〈p1, . . . , pn〉 sikeres és Q = 〈q0, . . . ,qn〉 sikertelen keresési gyakoriságok.
Kimenet: Olyan F bináris keresőfa, amelynek a V(F) költsége minimális.
Az optimális megoldás szerkezete.
Tegyük fel, hogy a 〈k1, . . . ,kn〉 kulcsokat tartalmazó F bináris keresőfa optimális, azaz V(F) minimális. Jelölje xr a fa gyöke-
rét. Ekkor az F1 = Fbal(xr) fa a 〈k1, . . . ,kr−1〉 kulcsokat, az F2 = Fjobb(xr) fa pedig a 〈kr+1, . . . ,kn〉 kulcsokat tartalmazza. Mivel

F1 F2

kr

inorder(F2) = 〈kr+1, ...,kn〉inorder(F1) = 〈k1, ...kr−1〉

6. ábra. Ha az optimális fa gyökerében a kr kulcs van.

dF(x) = dF1(x)+1 és dF(x) = dF2(x)+1.

V(F) =
n

∑
i=1

pi dF(xi)+
n

∑
i=0

qi dF(yi)

=
r−1

∑
i=1

pi dF(xi)+
r−1

∑
i=0

qi dF(yi)+ pr +
n

∑
i=r+1

pi dF(xi)+
n

∑
i=r

qi dF(yi)

=
r−1

∑
i=1

pi (dF1(xi)+1)+
r−1

∑
i=0

qi (dF1(yi)+1)+ pr

+
n

∑
i=r+1

pi (dF2(xi)+1)+
n

∑
i=r+1

qi (dF2(yi)+1)

=
n

∑
i=1

pi +
n

∑
i=0

qi +
r−1

∑
i=1

pi dF1(xi)+
r−1

∑
i=0

qi dF1(yi)

+
n

∑
i=r+1

pi dF2(xi)+
n

∑
i=r

qi dF2(yi)

=
n

∑
i=1

pi +
n

∑
i=0

qi +V(F1)+V(F2)

Tehát

V(F) =
n

∑
i=1

pi +
n

∑
i=0

qi +V(F1)+V(F2) (2)

Az F1 fa a 〈k1, . . . ,kr−1〉 kulcsokat tartalmazó optimális bináris keresőfa a 〈p1, . . . , pr−1〉 sikeres és 〈q0, . . . ,qr−1〉 sikertelen ke-
resési gyakoriságokra, az F2 fa pedig 〈kr+1, . . . ,kn〉 kulcsokat tartalmazó optimális bináris keresőfa a 〈pr+1, . . . , pn〉 sikeres és
〈qr , . . . ,qn〉 sikertelen keresési gyakoriságokra. A bizonyítás a kivágás-és-beillesztés módszerrel végezhető. Ha lenne olyan F1

bináris keresőfa a 〈p1, . . . , pr−1〉 sikeres és 〈q0, . . . ,qr−1〉 sikertelen keresési gyakoriságokra, hogy V(F1) < V(F1), akkor az F
fában F1 helyett az F1 részfát véve olyan fát kapnánk a 〈p1, . . . , pn〉 sikeres és 〈q0, . . . ,qn〉 sikertelen keresési gyakoriságokra,
amelynek költsége ∑n

i=1 pi + ∑n
i=0qi +V(F1) +V(F2) < V(F). Ugyanígy bizonyítható, hogy F2 is optimális fa a 〈kr+1, . . . ,kn〉

kulcsokra a 〈pr+1, . . . , pn〉 sikeres és 〈qr , . . . ,qn〉 sikertelen keresési gyakoriságokra.
Részproblémákra bontás.

9

Minden (i, j) indexpárra 0≤ i ≤ j ≤ n tekintsük azt a részproblémát hogy mi az optimális bináris keresőfa az 〈pi+1, . . . , p j〉 sikeres
és 〈qi , . . . ,q j〉 sikertelen keresési gyakoriságokra. Jelölje Opt(i, j) az optimális fa költségét az (i, j) részproblémára.
Az optimális megoldás értékének rekurzív kiszámítása.
Vezessük be a

W(i, j) =
j

∑
u=i+1

pu +
j

∑
u=i

qu

jelölést.
Minden (i, j)-re a (2) képlet miatt biztosan létezik olyan i < r ≤ j , hogy
Opt(i, j) = W(i, j)+Opt(i, r −1)+Opt(r, j), csak azt nem tudjuk, hogy melyik r-re. Tehát azt az r-et keressük, amelyre a fenti
összeg minimális lesz. Tehát Opt(i, j) a következő rekurzív összefüggéssel számítható.

Opt(i, j) =

{
qi ha i = j
W(i, j)+ min

i<r≤ j
(Opt(i, r−1)+Opt(r, j)) ha i < j (3)

Az összetev ők és a kiszámítási sorrend meghatározása.
Az (i, i) részproblémáknak nincs összetevőjük, mert Opt(i, i) = qi .
Az (i, j), i < j részprobléma összetevői az (i, r−1) és (r, j), r = i +1, . . . , j részproblémák.
Tehát a táblázatot ki tudjuk tölteni átlósan haladva, a m-edik átlóban m= 1, . . . ,n azon
(i, j)részproblémákat számítjuk, amelyekre j− i = m.
Kiszámítás alulról-felfelé haladva (táblázat-kitöltés).

N

N

?

0

0 i

j

q0

q1

qi

qn

qj! ! !

!

!

!

!

!

!

!! !

7. ábra. Táblázat-kitöltési sorrend

Ahhoz, hogy egy optimális megoldást elő tudjunk állítani, minden (i, j) részproblémára tároljuk egy G táblázat G[i, j]-elemében
azt az r értéket, amelyre a (3) képletben az minimum előáll. Ez az r lesz a 〈ki+1, . . . ,k j〉 kulcsokat tartalmazó optimális bináris
keresőfa gyökere. A G[i, j] értékeket felhasználva a FASIT rekurzív eljárás állítja elő ténylegesen az algoritmus kimenetét jelentő
keresőfát.

public class OptBinKerFa {
public class BinFapont{

int bal, jobb;
}
private void Fasit(int Apa, int i, int j){
// Előallítja az i+1..j elemek OB keresőfáját a G értékekből}

10

// Globális: G, F
if (Apa!=0){

F[Apa].bal = G[i][Apa-1];
F[Apa].jobb = G[Apa][j];
Fasit(G[i][Apa-1], i, Apa-1);
Fasit(G[Apa][j], Apa, j);

}
}
private int[][] G;
private BinFapont[] F;

public BinFapont[] Epit(float[] P, float[] Q){
int n=P.length-1;
F=new BinFapont[n+1];
float[][] Opt=new float[n+1][n+1];
float[][] W=new float[n+1][n+1];
G=new int[n+1][n+1];

int optr;
float V, optV;

for (int i=0; i<=n; i++){ //inicializálás
W[i][i]=Q[i];
G[i][i]=0;
Opt[i][i]=Q[i];
F[i]=new BinFapont();

}

for (int m=1; m<=n; m++)
for (int i=0; i<=n-m; i++){

int j=i+m;
W[i][j]=W[i][j-1]+P[j]+Q[j];
optr=j;
optV=Opt[i][j-1]+Q[j]; //=Opt[j,j]
for (int r=i+1; r<=j-1; r++){

V = Opt[i][r-1]+Opt[r][j];
if (V < optV){

optV=V; optr=r;
}

};
Opt[i][j]=W[i][j]+optV;
G[i][j]=optr;
}

Fasit(G[0][n], 0, n);
F[0].bal=G[0][n];
return F;

}
}

A OPTBINKERFA algoritmus futási ideje Θ(n3).
Bizonyítás nélkül megjegyezzük, hogy a

for (int r=i+1; r<=j-1; r++)

ciklusban elegendő lenne az r ciklusváltozót G[i,j-1]+1 -től G[i+1,j]-ig futtatni, és ezzel az algoritmus futási ideje Θ(n2) lenne.

11

