7. Dinamikus programozas

7.1. Rekurzié memorizalassal.

Lattuk, hogy a particié probléma rekurziv algoritmusa Q(ZW) eljarashivast végez, pedig a lehetséges részproblémak szama csak
n? (vagy n(n+1)/2, ha csak az n < k eseteket vessziik.) Ennek az az oka, hogy ugyanazon részprobléma megoldéasa tobb
mas részprobléma megoldasahoz kell, és az algoritmus ezeket mindig UGjra kiszamitja. Tehat egyerlien gyorsithatjuk a szamitast,
ha minden részprobléma (azaz P2(n,k)) megoldasat taroljuk egy tdmbben. Ha hivatkozunk egy részprobléma megoldasara,
akkor el6szor ellenérizzik, hogy kiszamitottuk-e mar, és ha igen, akkor kiolvassuk az értéket a tablazatbol, egyebként rekurzivan
szamitunk, és utana taroljuk az értéket a tablazatban.

A tablazat inicializalasahoz valasszunk egy olyan értéket, amely nem lehet egyetlen részprobléma megoldasa sem. Esetiinkben
ez leheta 0.

public class ParticioRM({
private static long[][] T2;

public static long P (int n) {
T2=new long[n+l] [n+1];
return P2 (n,n);

}//P
private static long P2 (int n, int k) {
if (T2[n][k]!=0) //P2(n,k)-t mar kiszdmitottuk
return T2[n] [k]; //értéke a T2 tébléazatban
long Pnk;
if (k==1 || n==1) //rekurziv szamités
Pnk=1;

else if (k>=n)
Pnk=P2 (n,n-1)+1;
else
Pnk=P2 (n, k-1)+P2(n-k, k);
T2 [n] [k]=Pnk; //memorizaléas
return Pnk;

}/ /P2

Nyilvanval6, hogy az algoritmus futasi ideje ©(n?), és a tarigénye is ©(n?) lesz, ha csak n? méret(i tablazatnak foglalunk
memoriat dinamikusan az aktualis paraméter fliggvényében.

7.2. A particié probléma megoldasa tablazat-kitdltéssel.

A rekurzi6t teljesen kikiiszoboélhetjik tablazat-kitoltéssel. Az 1. aran szemléltetett tablazatot hasznaljunk a részproblémak megol-
déasainak tarolasara. Tehat a T2[n, k] tablazatelem tartalmazza a P2(n, k) részprobléma megoldasat. A tablazat els6 sora azonnal
kitdlthetd, mert P2(n, 1) = 1. Olyan kitoltési sorrendet keresiink, hogy minden (n,k),k > 1 részprobléma kiszamitasa esetén azok
a részproblémak, amelyek sziikségesek P2(n, k) kiszamitasahoz, méar korabban kiszamitottak legyenek.

Altalanosan, rekurziv 6sszefiiggéssel definialt problémamegoldas esetén egy r (rész)probléma ésszetevsi azok a részproblé-
mék, amelyek megoldasatol r megoldasa fligg. Tehét a tablazat-kitoltéssel alkalmazasahoz meg kell allapitani a részprobléméknak
egy olyan sorrendjét, hogy minden r részprobléma minden 6sszetevdje elébb alljon a sorrendben, mintr. A

1. P2(1,k)=1,P2(n,1) =1,

)

3. P2(n P2(n,n) han <k,

)

(LK)
2. P2(n,n) =1+4+P2(n,n—1),
(n,k)
4. P2(n,k) = P2(n,k—1)+P2(n—k,k) hak < n.

)

rekurziv 6sszefliggések megadjak az 6sszetevoket:

kA T2[n,k]=P2(n,k)
N p
p
P ?
p !
p
P
p
P
p
k P i 7”
k-1 "
1 |1yt 11 frjrj1r|rp1111]1
1 n-k n N n>

1. dbra. Tablazat a Particié probléma megoldasahoz.

1. P2(1,k)-nak és P2(n,1)-nek nincs dsszetevdje,

N
0

- P2(L k-
. P2(n,n) ésszetevje P2(n,n—1),

3. P2(n,k)

4. P2(n k) osszetevdi: P2(n k— 1) és P2(n—k, k), ha (k < n).

)

osszetevbje P2(n,n), ha (n < k),

Tehat a tablazat kitoltése (k-szerint) soronként balrél jobbra haladé lehet.
Az algoritmus futasi ideje és tarigénye is O(n?).

public static long P(int n){
long[][] T2=new long[n+l][n+l];

for (int i=1; i<=n; i++)

T2[1]1[11=1; //az elsd sor kitdltése
for (int ki=2; ki<=n; ki++){ //az ki. sor kitdltése
T2[ki] [ki]=T2[ki] [ki-1]+1; //P2(n,n)=P2 (n,n-1)+1
for (int ni=ki+l; ni<=n; ni++) { //P2(ni,ki)=T2[ni,ki] szamitdsa
int nl=(ni-ki<ki) ? ni-ki : ki; //P2(n,k)=P2(n,n), ha k>n

T2 [ni] [ki]=T2[ni] [ki-1]+T2[ni-ki] [n1];//P2(n,k)=P2 (n,k-1)+P2 (n-k, k)

}

return T2[n] [n];

7.3. A particié probléma megoldasa lineéris tablazat-kitoltéssel.

Lathat6, hogy elegendd lenne a tablazatnak csak két sorat tarolni, mert minden (n,K) részprobléma ésszetevéi vagy a k-adik,
vagy a k— l-edik sorban vannak. Sé&t, elég egy sort tarolni balrél-jobbra (névekvé n-szerint) halado kitoltésnél, mert amelyik
részproblémat felulirjuk ((n — Kk, K)), annak késébb éppen az (j értéke kell sszetevoként.

public static long P(int n){
long[] T=new long[n+l];

for (int i=1; i<=n; i++) //az elsd sor kitdltése
T[i]=1;
for (int ki=2; ki<=n; ki++) { //az ki. sor kitdltése
++T [ki]; //P2(n,n)=P2(n,n-1)+1
for (int ni=ki+l; ni<=n; ni++){ //
T[ni]=T[ni]+T[ni-ki]; //P2(n,k)=P2 (n,k-1)+P2 (n-k, k)

}

return T[n];

}

P(405)=9147679068859117602

7.4. A pénzvaltas probléma.

Probléma: Pénzvaltas
Bemenet: P ={pi,..., pn} pozitiv egészek halmaza, és E pozitiv egész szam.
Kimenet: Olyan SC P, hogy y hes=E.
Megjegyzés: A pénzek tetszéleges cimletek lehetnek, nem csak a szokasos 1, 2, 5 10, 20, stb., és minden pénz csak egyszer
hasznéalhato a felvaltasban.
El6szor azt hatarozzuk meg, hogy van-e megoldas.
A megoldéas szerkezetének elemzése.
Tegyuk fel, hogy
E=p,+...+p, i1 <... <k

egy megoldasa a feladatnak. Ekkor
E—pi,=pi,+---+Piy

megoldasa lesz annak a feladatnak, amelynek bemenete a felvaltandé E — p;, érték, és a felvaltdshoz legfeljebb a els6 iy — 1
(P1, ..., Piy—1) pénzeket hasznalhatjuk.
Részproblémékra bontas.
Bontsuk részprobléméakra a kiindulasi problémat: Minden (X,i)(1 < X < E,1 <i < N) szamparra vegyik azt a részproblémat,
hogy az X érték felvalthato-e legfeliebb az elsd pa, ..., pi pénzzel. Jeldlie V(X,i) az (X,i) részprobléma megoldasat, ami logikai
érték; V (X,i) = lgaz ha az X dsszeg elballithato legfeliebb az elsd i pénzzel, egyébként Hamis
Osszefiiggések a részproblémak és megoldasaik kozott.
Nyilvanvalo, hogy az aldbbi 6sszefiiggések teljesiilnek a részprobléméak megoldasaira:
LVX,i)=(X=p), hai=1
2VXi)=VX,i—1) V(X > p)AV(X—=pj,i—1) hai>1
Rekurziv megoldas.
Mivel a megoldas kifejezhet6é egy V(X,i) logikai értéki fuggvénnyel, ezért a felirt 6sszefiiggések alapjan azonnal tudunk adni egy
rekurziv fuggvényeljarast, amely a pénzvaltas probléma megoldaséat adja.

public boolean V(int X, int 1) {
// Glob&lis:P
// Mbdszer: Rekurziv megoldés
return (X==P[i]) ||
(i>1) && V(X,1-1) ||
(i>1) && (X>P[1i]) && V(X-P[1i],1i-1);
}

Ez a megoldas azonban igen lassu, legrosszabb esetben a futasi idé Q(2").

Megoldas a részproblémak megoldasainak tablazatos tarolaséval.

Vegylnk egy VT tablazatot, amelyben minden lehetséges részprobléma megoldasat taroljuk. Mivel minden részproblémat két
érték hataroz meg, X és i, ezért téglalap alaki tablazat kell. VT[X,i] az (X,i) részprobléma megoldasat tartaimazza. A

1 X-PIi] X E

2. dbra. A pénzvaltas tablazata

részproblémak kiszamitasi sorrendje.

Olyan kiszamitasi sorrendet kell megallapitani, amelyre teljesul, hogy amikor az (X,i) részproblémat szamitjuk, akkor ennek
Osszetevdit mar korabban kiszamitottuk. Mivel az (X, 1) részproblémaknak nincs dsszetevdjik, ezért kozvetlenul kiszamithatoak,
azaz a tablazat els sorat szamithatjuk el6szor. Ha i > 1, akkor az (X, i) részprobléma Gsszetevéi az (X,i —1) és (X — pi,i — 1),
ezért az i-edik sor barmely elemét ki tudjuk szamitani, ha mar kiszamitottuk az i — 1-edik sor minden elemét. Tehat a tablazat-
kitoltés sorrendje: soronként (alulrdl felfelé), balrél-jobbra haladé lehet. Egy megoldéas el Gallitasa a megoldas visszafejtésével.
Akkor és csak akkor van megoldasa a problémanak, ha a V' T tablazat kitdltése utan V T[E, N] értéke igaz. Ekkor az (1-2.) képletek
szerint a legnagyobb i index(i p; pénz, amely szerepelhet E el6allitdsaban, az a legnagyobb index, amelyre

VTIE,i] =TrueA (VT[E,i — 1] = False)

De ekkor VT[E — PJi],i — 1] igaz, tehat E — p; el6allithaté az els6 i — 1 pénz felnasznalasaval. Tehat a fenti eljarast folytatni kell
E :=E— p;,i ;=i — 1-re mindaddig, amig E 0 lesz.

public class PenzValtl{

public static int[] Valto(int E, int[] P){
int n=P.length;
int MaxE=1000;
boolean VT[] []=new boolean[E+1] [n+l];
int i,x;

x<=E; x++) //inicializalas
O0]l=false;

for (x=
X

0
]

I — ~e

T[0
T[P

for

1;
]
]=true;
1[0]=true;
1; i<n; i++)
(x=1; x<=E; x++)
T[x][1]=P[i]==x ||
VI[x][i-1] ||
x>=P[1] && VT[x-P[1]][i-1];
int db=0; x=E; i=n-1;
if (!VT[E][n-1]) return null;
int C[]=new int[n];
do{ //megoldéds visszafejtés
while (i>=0 && VT[x][i])
i--;
Cldb++]=++1;
x==P[1];

(
VT [
1
[0
(i
for

VT [x

twhile (x>0);
for (i=db; i<n; i++)
C[i]1=0;
return C;
}
}

Ha csak arra kell valaszolni, hogy Iétezi-e megoldasa a problémanak, akkor elég a tablazat egy sorat tarolni, mert soronként vissza-
felé (x-szerint csokkend sorrendben) haladé kitoltést alkalmazhatunk.

public class PenzValtlL{

public static boolean Valto(int E, int[] P){
int n=P.length;
boolean VT[]=new boolean[E+1];
int 1,x;

for (x=1; x<=E; x++)
VT [x]=false;
VI[0]=true;
if (P[0]<=E) VT[P[O]]=true;

for (i=1; i<n; i++)
for (x=E; x>0; x—-)
VT [x]=P[i]==x []|
VTIx] ||
x>=P[1] && VT[x-P[1]];

return VT[E];

7.5. Az optimalis pénzvaltas probléma.

Probléma: Optimalis pénzvaltas
Bemenet: P={pu,..., pn} pozitiv egészek halmaza, és E pozitiv egész szam.
Kimenet: Olyan SC P, hogy ¥ pcs = E és |§ — minimalis
El6szor is lassuk be, hogy az a mohé stratégia, amely mindig a leheté legnagyobb pénzt valasztja, nem vezet optimalis megoldas-
hoz. Legyen E = 8 és a pénzek halmaza legyen {5,4,4,1,1,1}. A moh6 médszer a 8 =5+ 1+ 1+ 1 megoldast adja, mig az
optimdlisa8=4+4.
Az optimalis megoldas szerkezetének elemzése.
Tegyuk fel, hogy
E=pj,+...+pP, i1 <... <lk

egy optimalis megoldasa a feladatnak. Ekkor
E-p,=p+. .- +0Pi,

optimalis megoldasa lesz annak a feladatnak, amelynek bemenete a felvaltand6 E — p;, érték, és a felvaltashoz legfeljebb a elsé
ik—1(p1,.- ., Pi—1) pénzeket hasznalhatjuk. Ugyanis, ha lenne kevesebb pénzbél all6 felvaltasa E — pj, -nak, akkor E-nek is lenne
k-nal kevesebb pénzbdl all6 felvaltasa. Részproblémakra és Osszetev Gkre bontas.

A részproblémak legyenek ugyanazok, mint az el6z6 esetben. Minden (X,i) (1 < X < E,1 <i < N) szamparra vegyik azt a
részproblémat, hogy legkevesebb hany pénz ésszegeként lehet az X értéket elGallitani legfeliebb az els6 i {pi, ..., pi} pénz fel-
hasznalasaval. Ha nincs megoldas, akkor legyen ez az érték N + 1. Jeldlje az (X, i) részprobléma optiméalis megoldasanak értékét
Opt(X,i). Definidljuk az optimalis megoldas értékét X = O-ra és i = O-ra is, azaz legyen Opt(X,0) = N+ 1 és Opt(0,i) = 0. igy
Opt(X,i)-re az alabbi rekurziv dsszefiiggés irhaté fel. A részproblémak optimalis megoldasanak kifejezése az Gsszetev 6k
optimalis megoldasaival.

N+1
0

OPIX.D =9 op(x,i—1)

min(Opt(X,i —1),14+ Opt(X — pi,i — 1))

public class OptPenzValt ({
public static int[] Valto(int E, int[] P){

int n=P.length;

int [] Opt=new int[E+1l];

int V[][]=new int[E+1] [n+1];
int i,x,ropt;

for (x=1; x<=E; x++){
Opt [x]=n+1l;
V[x][0]=n+1;

for (i=1; i<n; i++)
for (x=E; x>0; x—-){
if (x>=P[i]
ropt=0pt [x-P[1]]+1;
else
ropt=n+l;
if (ropt<Opt[x]) {
Opt [x]=ropt;
VIx][i]=1;
telse
VIx][1]=VIx] [i-1];
}

int db=0; x=E; i=n-1;
if (Opt[E]>n) return null;

do{
i=V[x][i];
dbt+;
x-=P[1];
__i;

}while (x>0);
int C[]=new int[db];
db=0; x=E; i=n-1;
dof{
1=V[x][i];
Cldb++]=1i;
x-=P[i];
__i;
}while (x>0);

return C;

ha
ha
ha
ha

i=0AX>0
X=0
X<p
X>pi

@

A dinamikus programozés stratégidja.
A dinamikus programozas, mint probléma-megoldasi stratégia az alabbi 6t 1épés végrehajtasat jelenti.

1. Az [optimalis] megoldas szerkezetének elemzése.
2. Részproblémakra és 0sszetevdkre bontas gy, hogy:

e a) Az dsszetevoktdl valo fliggés kdrmentes legyen.

e b) Minden részprobléma [optimalis] megoldasa kifejezhet6 legyen (rekurzivan) az 6sszetevok [optimalis] megoldasaival.
3. Részproblémak [optimalis] megoldasanak kifejezése (rekurzivan) az 6sszetevék [optimalis] megoldasaibdl.
4. Részproblémak [optimalis] megoldasanak kiszamitasa alulrél-felfelé haladva:

e a) A részproblémék kiszamitasi sorrendjének meghatarozasa. Olyan sorba kell rakni a részproblémékat, hogy minden
p részprobléma minden ésszetevlje (ha van) el6bb szerepeljen a felsorolasban, mint p.

e b) A részproblémak kiszamitasa alulrél-felfelé haladva, azaz tablazat-kitoltéssel.

5. Egy [optimalis] megoldas el6allitasa a 4. 1épéshen kiszamitott (és tarolt) informaciokbol.

7.6. Optimalis binaris keres 6fa el 6allitasa

A F = (M,R /Adat) absztrakt adatszerkezetet binaris keres6fanak nevezzik, ha

1. F binéris fa,

2. Adat: M — Elemtipés Elemtipon értelmezett egy < linearis rendezési relacio,

3. (Yx € M)(Vp € Ryarx)) (V0 € Fjobbx)) (Adat(p) < Adat(x) < Adat(q))

A BINKERFAKERES fuggvényeljaras egy nyilvanvalé megoldésa a faban keresés feladatnak.

3. dbra. Binaris keresb6fa

public BinFa<E> BinKerFaKeres(E a, BinFA F){
while (F!=null) && (a!=F.elem)
if (a<F.elem)
F=F.bal
else
F=F. jobb;
return F;

}

Tegyuk fel, hogy ismerjik minden k; kulcs keresési gyakorisagat, ami pj (i = 1,...,n) Tovabba ismert azon K kulcsok (sikertelen)
keresési gyakorisaga, amelyre ki < k < ki1, ami q; (i=1,...,n), és Qo a k < Kk kulcsok keresési gyakorisaga.

Xs

4. dbra. 10 adatot (kulcsot) tartalmazé binaris kereséfa

5. dbra. Binaris kereséfa kiegészitve sikertelen keresési pontokkal

Atlagos keresésiid 6 (koltség):

F>=i_§lpi dp<m>+iiqidF<yi>

, ahol dr (p) a p pont mélysége az F faban. Probléma: Optimalis binaris kereséfa el6allitasa.

Bemenet: P=(pa,..., pn) sikeres és Q = (qp,...,0qn) sikertelen keresési gyakorisagok.

Kimenet: Olyan F binaris keres6fa, amelynek a V (F) kéltsége minimalis.

Az optimalis megoldés szerkezete.

Tegyuk fel, hogy a (ki,...,Kn) kulcsokat tartalmaz6 F binaris kereséfa optimdlis, azaz V (F) minimélis. Jeldlie X a fa gyoke-
rét. Ekkor az Fy = Ry) fa @ (Ky,...,kr—1) kulcsokat, az F = Fjoppy,) fa pedig a (K11, ..., kn) kulcsokat tartalmazza. Mivel

F P

inorder(F) = (k,...k—1) inorder(F) = (Kr41, ..., Kn)

6. dbra. Ha az optimalis fa gytkerében a k; kulcs van.

V(F) = i pi dr (X)) +_iQi dr (yi)

= zlpld': +ZjQ|dF Yi) +pr+ z pi dr (X +ZQ|dF Vi)
i=

r+1

= zipl (dry (%) +1) JFZOCII (dry(Yi) +1) +pr

+ Z Pi sz X)+1)+ Z i ng (yi)+1)
i=r+1 i=r+1

= Zl pi + _goQi + rg pi de, (%) + qui dr, (v5)

+ Z p|dF2 Xi +ZQ|dF2 (Vi)

i= r+1
= lei + Z)q +V(F)+V(R)
i= i=
Tehat
n n
Zpi+Zqu+V(F1)+V(F2) @
i= i=
Az F1 fa a (ky,...,k—_1) kulcsokat tartalmazo6 optimélis binaris keres6fa a (pi, ..., pr—1) sikeres és (qp,...,0r—1) sikertelen ke-
resési gyakorisagokra, az F, fa pedig (K41, ...,kn) kulcsokat tartalmazé optimdlis binaris keres6fa a (pry1,-.., Pn) Sikeres és
(OF,---,0n) sikertelen keresési gyakorisagokra. A bizonyitas a kivagas-és-beillesztés modszerrel végezhetd. Ha lenne olyan Fq
binaris keres6fa a (pu,...,Pr_1) sikeres és (do,...,0r_1) sikertelen keresési gyakorisagokra, hogy V (F1) < V(Fy), akkor az F
faban Fy helyett az F; részfat véve olyan fat kapnank a (ps,..., pn) sikeres és (Qp,...,0n) sikertelen keresési gyakorisagokra,

amelynek koltsége ST, pi+ 300 +V(F1) +V(R) < V(F). Ugyanigy bizonyithato, hogy F is optimalis fa a (kr11,...,Kn)
kulcsokra a (Pr1,.-., Pn) Sikeres és (q,...,0n) sikertelen keresési gyakorisagokra.
Részproblémékra bontas.

Minden (i, j) indexpérra 0 <i < j < ntekintstik azt a részproblémat hogy mi az optimalis binéris kereséfa az (pi;1,.. ., P;j) sikeres
és (Q;, . ..,Qqj) sikertelen keresési gyakorisagokra. Jeldlie Opt(i, j) az optimalis fa kéltségét az (i, j) részproblémara.

Az optimalis megoldas értékének rekurziv kiszamitasa.

Vezessiik be a

jelolést.

Minden (i, j)-re a (2) képlet miatt biztosan létezik olyan i < r < |, hogy

Opt(i, j) =W(i, j)+Opt(i,r — 1) +Opt(r, j), csak azt nem tudjuk, hogy melyik r-re. Tehat azt az r-et keressiik, amelyre a fenti
osszeg minimdlis lesz. Tehat Opt(i, j) a kovetkez6 rekurziv dsszefliggéssel szamithato.

. 0 ha i=]
Opt(hJ)Z{ W(i,)+ min (Opt(i,r — 1) +OPH(r,j)) ha i<] ©)

Az Osszetev 6k és a kiszamitasi sorrend meghatarozasa.

Az (i,i) részproblémaknak nincs 6sszetevéjik, mert Opt(i,i) = .

Az (i,]),1 < | részprobléma dsszetevéi az (i,r —1) és (r,j), r =i—+1,...,j részproblémak.
Tehat a tablazatot ki tudjuk tolteni atlésan haladva, a mredik atléban m=1,...,nazon

(i, j)részprobléméakat szamitjuk, amelyekre j —i =m.

Kiszamitas alulrél-felfelé haladva (tablazat-kitoltés).

7. dbra. Tablazat-kitoltési sorrend

Ahhoz, hogy egy optiméalis megoldast el tudjunk allitani, minden (i, j) részproblémara taroljuk egy G tablazat Gli, j]-elemében
azt az r értéket, amelyre a (3) képletben az minimum eldall. Ez az r lesz a (ki11,...,Kj) kulcsokat tartalmazé optimalis binaris
keres6fa gyokere. A Gli, j] értékeket felhasznalva a FASIT rekurziv eljaras allitia el6 ténylegesen az algoritmus kimenetét jelentd
keres6fat.

public class OptBinKerFa {
public class BinFapont({
int bal, Jjobb;
}
private void Fasit (int Apa, int i, int J){
// Eldallitja az i+l..7J elemek OB keres6fdjat a G értékekbdl}

10

// Globalis: G, F

if (Apa!=0){
F[Apa].bal = G[1i] [Apa-1];
F[Apa].jobb = G[Apa] [j];
Fasit (G[i] [Apa-1], 1, Apa-1);
Fasit (G[Apal []j], Apa, J);
}
}
private int[][] G;

private BinFapont[] F;

public BinFapont[] Epit (float[] P, float[] Q) {
int n=P.length-1;
F=new BinFapont [n+1];
float[][] Opt=new float[n+l][n+l];
float[][] W=new float[n+l][n+1];
G=new int[n+1] [n+1];

int optr;
float V, optV;

for (int i=0; i<=n; i++){ //inicializ&lés
Wil [1]1=Q[1];
G[i][1]=0;
Opt[i] [1i]=Q[1];
F[i]=new BinFapont ();

}

for (int m=1; m<=n; m++)
for (int i=0; i<=n-m; i++){

int j=i+m;
Wli) [3]1=W[i] [3-11+P[§1+Q[]];
optr=j;
optV=0pt [1] [3-11+Q[]]; //=0Opt[],]]
for (int r=i+l; r<=j-1; r++){

V = Opt[i] [r-1]+0pt[r][]];

if (V < optV){

optV=V; optr=r;

[J1=W[i] [j]+optV;

Fasit (G[0] [n], 0, n);
F[0].bal=G[0] [n];
return F;

}

}

A OPTBINKERFA algoritmus futési ideje ©(n3).
Bizonyitas nélkil megjegyezziik, hogy a

for (int r=i+l; r<=j-1; r++)

ciklusban elegend6 lenne az r ciklusvaltoz6t G[i, j-1]1+1 -t6l G[1+1, j]-ig futtatni, és ezzel az algoritmus futasi ideje @(nz) lenne.

11

