
Partíció probléma rekurzíómemorizálással

A partíciószám rekurzív algoritmusa Ω(2
√

n) műveletet végez, pedig a megoldandó részfeladatatok száma sokkal
kisebb O(n2).

A probléma, hogy bizonyos már megoldott részfeladatokat az algoritmus nagyon sokszor újra kiszámol.
Megoldás: jegyezzük fel a kiszámolt értéket, és ha már megvan nincs szükség rekurzív hívásra.

PARTÍCIÓRM(n)
Return P2(n,n)

P2RM(n,k)
if T[n,k]>0 then return T[n,k]
if (k=1) Or (n=1) then {T[n,k]:=1

return 1}
else if k>=n then {T[n,k]:=P2RM(n,n-1)+1

return T[n,k]}
else {T[n,k]:=P2RM(n,k-1)+P2RM(n-k,k)

return T[n,k]}

A futási idő és tárigény O(n2).
Partíció négyzetes táblázatkitöltéssel

A rekurziót teljesen kiküszöbölhetjük táblázat-kitöltéssel. A T2[n,k] táblázatelem tartalmazza a P2(n,k) részprob-
léma megoldását.

A táblázat első sora azonnal kitölthető, mert P2(n,1) = 1. Olyan kitöltési sorrendet keresünk, hogy minden (n,k),
k > 1 részprobléma kiszámítása esetén azok a részproblémák, amelyek szükségesek P2(n,k) kiszámításához, már
korábban kiszámítottak legyenek.

Általánosan, rekurzív összefüggéssel definiált problémamegoldás esetén egy r (rész)probléma összetevői azok a
részproblémák, amelyek megoldásától r megoldása függ. Tehát a táblázatkitöltés alkalmazásához meg kell állapítani a
részproblémáknak egy olyan sorrendjét, hogy minden r részprobléma minden összetevője előrébb álljon a sorrendben,
mint r.

A rekurzív összefüggések megadják az összetevőket:

• P2(1,k) = 1, P2(n,1) = 1,

• P2(n,n) = 1+P2(n,n-1),

• P2(n,k) = P2(n,n) ha n < k,

• P2(n,k) = P2(n,k-1)+P2(n-k,k) ha k < n.

Összetevők:

• P2(1,k)-nak és P2(n,1)-nek nincs összetevője,

• P2(n,n) összetevője P2(n,n-1),

• P2(n,k) összetevője P2(n,n), ha (n < k),

• P2(n,k) összetevői: P2(n,k-1) és P2(n-k,k), ha (k < n).

Tehát a táblázat kitöltése (k-szerint) soronként balról jobbra haladó lehet. Az algoritmus futási ideje és tárigénye
is O(n2).

1

ParticioDin
for i:=1 to n T[i,1]:=1
for j:=2 to n

{T[j,j]=T[j,j-1]+1
for r:=j+1 to n

{p:=min(r-j,j)
T[r,j]:=T[r,j-1]+T[r-j,p]}}

return T[n,n]

1. táblázat. A partíció algoritmus táblázata
- - - - 7
- - - 5 6
- - 3 4 5
- 2 2 3 3
1 1 1 1 1

2. táblázat. A partíció algoritmus teljes táblázata
1 2 3 5 7
1 2 3 5 6
1 2 3 4 5
1 2 2 3 3
1 1 1 1 1

Partíció lineáris táblázatkitöltéssel
Látható, hogy elegendő lenne a táblázatnak csak két sorát tárolni, mert minden (n,k) részprobléma összetevői

vagy a k-adik, vagy a k-1-edik sorban vannak. Sőt, elég egy sort tárolni balról jobbra (növekvő n-szerint) haladó
kitöltésnél, mert amelyik részproblémát felülírjuk (n-k,k), annak később éppen az új értéke kell összetevőként.

ParticioDin2
for i:=1 to n do T[i]:=1
for j:=2 to n

{T[j]=T[j]+1
for r:=j+1 to n T[r]:=T[r]+T[r-j]}

return T[n]

Mátrixszorzás probléma

Ha egy i× j méretű mátrixot és egy j× k méretű mátrixot szorzunk össze a skalár műveletek száma i jk.
A mátrixok szorzása asszociatív, az elvégzendő skalár műveletek száma függ a zárójelezéstől.
Példa:
Legyenek A1,A2,A3 méretei 2×3, 3×4, 4×5. Ekkor:
- (A1A2)A3 24+40=64 műveletet hajt végre
- A1(A2A3) pedig 60+30=90 műveletet.
A mátrixszorzás probléma feladata egy adott szorzás optimális zárójelezésének megtalálása. Az input: A1,A2, . . .An,

ahol Ai mérete pi−1× pi.

2

Részprobléma: Ai . . .A j optimális zárójelezése minden i, j párra, a megoldás értéke legyen m[i, j]. Nyilvánvaló,
hogy m[i, i] = 0.

Rekurzív összefüggés: Ha a szorzásnál az első zárójelpár hátsó zárójele az Ak után kerül, akkor a költség: m[i,k]+
m[k +1, j]+ pi−1 pk p j. Ezen lehetőségek közül választjuk a legjobbat, így ha i < j, akkor

m[i, j] = mini≤k< j{m[i,k]+m[k +1, j]+ pi−1 pk p j}.
Táblázatkitöltés: m[i,j]-hez használjuk az m[i,k] és m[k+1,j] értékeket, ezeknek kell meglenni az m[i,j] érték

számításánál. Így a helyes kitöltési sorrend átlónként megy (elsőként a j=i, értékek, aztán j=i+1, majd j=i+2 és így
tovább).

A megoldás meghatározását feljegyzéses módszerrel oldjuk meg, S[i,j]-ben feljegyezzük, hogy mi volt az opti-
mális döntés m[i,j] számításakor.

MATRIXSZORZAS
for i:=1 to n m[i,i]=0
for l:=2 to n

{for i:=1 to n-l+1
{j:=i+l-1
m[i,j]:=INF
for k:=i to j-1

{q:= m[i,k]+m[k+1,j]+p(i-1)p(k)p(j)
If q<m[i,j]

then {m[i,j]:=q
S[i,j]:=k}}}}

A fenti a szakasz kitölti az m és S táblázatokat, a kiíratás S alapján egy rekurzív algoritmussal megtehető.

KIIR(i,j)
If j>i
Then Print "("

KIIR(i,S[i,j])
KIIR(S[i,j]+1,j)
Print ")"

Else Print "A(i)"

Példa:
A1(6×7), A2(7×3), A3(3×1), A4(1×2), A5(2×4)

3. táblázat. Az m[i,j] értékek táblázata
0 0 0 0 0
0 0 0 0 8
0 0 0 6 20
0 0 21 35 57
0 126 63 75 95

m[1,3] = min{[m[1,1]+m[2,3]+6 ·7 ·1,m[1,2]+m[3,3]+6 ·3 ·1}= 63
m[2,4] = min{[m[2,2]+m[3,4]+7 ·3 ·2,m[2,3]+m[4,4]+7 ·1 ·2}= 35
m[3,5] = min{[m[3,3]+m[4,5]+3 ·1 ·4,m[3,4]+m[5,5]+3 ·2 ·4}= 20
m[1,4] = min{[m[1,1]+m[2,4]+6 ·7 ·2,m[1,2]+m[3,4]+6 ·3 ·2,m[1,3]+m[4,4]+6 ·1 ·2}= 75

3

4. táblázat. Az S[i,j] értékek táblázata
0 0 0 0 0
0 0 0 0 4
0 0 0 3 3
0 0 2 3 3
0 1 1 3 3

Megoldás: ((A1)(A2A3))(A4A5)
A dinamikus programozás stratégiája.

A dinamikus programozás, mint probléma-megoldási stratégia az alábbi öt lépés végrehajtását jelenti.

1. Az [optimális] megoldás szerkezetének elemzése.

2. Részproblémákra és összetevőkre bontás úgy, hogy az összetevőktől való függés körmentes legyen. Minden
részprobléma [optimális] megoldása kifejezhető legyen (rekurzívan) az összetevők [optimális] megoldásaival.

3. Részproblémák [optimális] megoldásának kifejezése (rekurzívan) az összetevők [optimális] megoldásaiból.

Az 1-3 pontok lényegében egy rekurzív algoritmus megtervezését jelentik.

4. Részproblémák [optimális] megoldásának kiszámítása alulról-felfelé haladva. (A részproblémák kiszámítási
sorrendjének meghatározása. Olyan sorba kell rakni a részproblémákat, hogy minden p részprobléma minden összetevője
előrébb szerepeljen a felsorolásban, mint p. A részproblémák kiszámítása a sorrendnek megfelelően haladva, azaz
táblázat-kitöltéssel.

5. Egy [optimális] megoldás előállítása a 4. lépésben kiszámított (és tárolt) információkból. Visszafejtéses vagy
feljegyzéses módszer.

Mikor érdemes dinamikus programozást használni?

Optimális résztruktúrájú feladat: a probléma egy részfeladatának optimális megoldása önmagán belül a további
részfeladatok optimális megoldásait is tartalmazza.

Átfedő részfeladatok: egy rekurzív algoritmus, ismételten visszatér ugyanazokra a részfeladatokra. (Oszd meg
és uralkodj típusú rekurzív algoritmusoknál általában nincs ilyen probléma.)

Leghosszabb közös részsorozat

Egy sorozat, akkor részsorozata egy másiknak, ha abból elemeinek elhagyásával megkapható. A feladat két
sorozat X = (x1, . . . ,xm) és Y = (y1, . . . ,yn) leghosszabb közös részsorozatának meghatározása.

A továbbiakban Xi az X sorozat i hosszú prefixét jelöli Xi = (x1, . . . ,xi) és hasonlóan jelöljük a prefixeket az Y és
Z sorozatokra is.

Lemma: Legyen X = (x1, . . . ,xm) és Y = (y1, . . . ,yn) két sorozat és Z = (z1, . . . ,zk) ezek LKR-je. Ekkor:
- Ha xm = yn, akkor zk = xm = yn és Zk−1 az Xm−1 és Yn−1 sorozatok egy LKR-je.
- Ha xm 6= yn, akkor Z az Xm−1 és Y vagy az X és Yn−1 sorozatok egy LKR-je.
Megoldás dinamikus programozással:
Részprobléma: Xi és Yj LKR-je. Az LKR hossza legyen c[i,j]. Nyilvánvalóan c[0,j]=c[i, 0]= 0.
Rekurzív összefüggés: A lemma alapján

c[i, j] =


0, ha i = 0 vagy j = 0,

c[i−1, j−1]+1, ha xi = y j,

max{c[i−1, j],c[i, j−1] egyébként,

4

Táblázatkitöltés: c[i,j]-hez használjuk az c[i,j-1] és c[i-1,j] értékeket, ezeknek kell meglenni a c[i,j] érték számításánál.
Így a helyes kitöltési sorrend soronként minden sorban a nagyobb j érték felé.

A megoldás meghatározását feljegyzéses módszerrel oldjuk meg, S[i,j]-ben feljegyezzük, hogy mi volt az opti-
mális döntés c[i,j] számításakor.

LKR
for i:=0 to m c[i, 0]:=0
for j:=1 to n c[0,j]:= 0
for i=:1 to m

{for j:=1 to n
{if x[i]=y[j]

then {c[i,j]:=c[i-1,j-1]+1
S[i,j]:=2}

else if c[i-1,j]>= c[i,j-1]
then {c[i,j]:=c[i-1,j]

S[i,j]:=1}
else {c[i,j]:=c[i,j-1]

S[i,j]:= 0}}}

Megoldás meghatározása
Ez a szakasz kitölti a c és S táblázatokat, a kiíratás S alapján egy rekurzív algoritmussal megtehető.

KIIR(i,j)
if i=0 or j=0 then return
if S[i,j]=2

then {KIIR(i-1,j-1)
Print "x[i]"}

else if S[i,j]=1 then KIIR(i-1,j)
else KIIR(i,j-1)

Példa Határozzuk meg az (a,b,b,a,b,a,b,a) és (b,a,b,a,a,b,a,a,b) sorozatok leghosszabb közös részsorozatát!

5. táblázat. Az c[i,j] értékek táblázata
1 2 3 4 5 5 6 6 6
1 2 3 4 4 5 5 5 6
1 2 3 4 4 4 5 5 5
1 2 3 3 3 4 4 4 5
1 2 2 3 3 3 4 4 4
1 1 2 2 2 3 3 3 3
1 1 2 2 2 2 2 2 2
0 1 1 1 1 1 1 1 1

Tehát az LKR hossza 6. Az LKR-t megkapjuk, ha felírjuk az S táblázatot, vagy visszafejtéssel, ahol az átlós
érték növekszik, ott van közös betű. Az i-edik sor j-edik elemének, az X i-edik és az Y j-edik betűje felel meg.
Következésképp egy LKR (b,b,a,a,b,a).

Hátizsák feladat

Egy adott hátizsákba tárgyakat akarunk pakolni. Adott n tárgy minden tárgynak van egy fontossági értéke (f [i]),
és egy súlya (s[i]), a hátizsákba maximum összesen S súlyt pakolhatunk. Az s[i] és S értékek egészek. Szeretnénk

5

úgy választani tárgyakat, hogy az összfontosság maximális legyen. Tehát feladatunk, hogy kiválasszuk a tárgyaknak
olyan halmazai közül, amelyekre az összsúly nem haladja meg S-t azt, amelyre maximális az összfontosság.

Definiáljuk az F(i,W) függvényt, minden i = 1, . . . ,n, W = 0, . . . ,S értékre. Ez a függvény azon hátizsák probléma
optimális függvényértékét adja meg, amelyben a tárgyak listája az első i tárgyat tartalmazza, és a hátizsák mérete W .

Ekkor a kezdeti értékekre F(1,W) = f [1], ha s1 ≤W és 0 különben. Másrészt a következő rekurzió teljesül:

F(i+1,W) = max{F(i,W), f [i+1]+F(i,W − s[i+1])},

ha s[i+1]≤W .
Továbbá F(i+1,W) = F(i,W), ha s[i+1] > W ,
A rekurzió valóban fennáll. A részprobléma optimális megoldásában vagy szerepel az i+1-edik tárgy vagy nem,

és ezen két eset maximuma adja az optimális célfüggvényértéket.

Hatizsak
for x:=0 to s[1]-1 F[x,1]:=0
for x:=s[1] to S F[x,1]:=f[1]
for i:=2 to n

{for x:=0 to S
{F[x][i]:= F[x][i-1]
if (s[i]<=x and F[x][i]<F[x-s[i]][i-1]+f[i])
then F[x][i]:=F[x-s[i]][i-1]+f[i]}}

KIIR
while(F[x][i]>0)
{while (i>=1 and F[x][i]==F[x][i-1])

{i=i-1}
print "i"
x:=x-s[i]
i:=i-1}

Példa:
A tárgyak (súly, fontosság) párokban (4,6) (3,5) (2,3) (2,3) a hátizsák kapacitása 8.

6. táblázat. A partíció algoritmus teljes táblázata
0 0 3 5 6 8 9 11 12
0 0 3 5 6 8 9 11 11
0 0 0 5 6 6 6 11 11
0 0 0 0 6 6 6 6 6

Megoldás: 4,3,1.
Kérdések

• Partíció rekurziómemorizálással

• Partíció négyzetes táblázatkitöltéssel

• Mátrixszorzás (KIIR is)

• Leghosszabb Közös Részsorozat (KIIR is)

6

• Hátizsák feladat (KIIR is)

Szorgalmi feladat
Adott egy k×n-es tábla. Minden mezőre meg van adva egy ci j pozitív szám, ami a mezőről begyűjthető érték. Egy

játékos a bal alsó sarokból szeretne eljutni a jobb felső sarokba úgy, hogy csak jobbra vagy felfelé léphet szomszédos
mezőre. Az útja során, összegyűjtheti a mezőkről az értékeket. Továbbá egyetlen alkalommal megduplázhatja azt
az értéket, amit a mezőről begyűjtött. Adjunk egy dinamikus programozási algoritmus, ami meghatározza mi az az
útvonal, amivel a maximális összértéket tudja összegyűjteni.

Beküldés: cimreh@inf.u-szeged.hu,
Pszeudókod vagy forrás+magyarázat

• első két megoldó 15-15 pont

• harmadik, negyedik megoldó 10-10 pont

• ötödik hatodik megoldó 5-5 pont

A szerzett plusszpontok a vizsga minimumkövetelményébe nem számítanak bele.

7

