Partici6é probléma rekurziémemorizalassal

A particiészam rekurziv algoritmusa Q(Zﬁ) miiveletet végez, pedig a megoldandé részfeladatatok szama sokkal
kisebb O(n?).

A probléma, hogy bizonyos mar megoldott részfeladatokat az algoritmus nagyon sokszor tjra kiszamol.

Megoldas: jegyezziik fel a kiszdmolt értéket, €s ha mar megvan nincs sziikség rekurziv hivésra.

PARTICIORM (n)
Return P2 (n,n)
P2RM (n, k)
if T[n,k]>0 then return T[n,k]
if (k=1) Or (n=1) then {T[n,k]:=1
return 1}
else if k>=n then {T[n,k]:=P2RM(n,n-1)+1
return T[n,k]}
else {T[n,k]:=P2RM(n,k-1)+P2RM (n-k, k)
return T[n,k]}

A futdsi id6 és tarigény O(n?).

Partici6 négyzetes tablazatkitoltéssel

A rekurzidt teljesen kikiiszobolhetjiik tdblazat-kitoltéssel. A T2[n,k] tdblazatelem tartalmazza a P2(n,k) részprob-
léma megoldésat.

A tablazat elsG sora azonnal kitSlthetd, mert P2(n, 1) = 1. Olyan kitoltési sorrendet keresiink, hogy minden (n, k),
k > 1 részprobléma kiszdmitdsa esetén azok a részproblémdk, amelyek sziikségesek P2(n,k) kiszdmitdsdhoz, mdr
korabban kiszamitottak legyenek.

Altaldnosan, rekurziv 6sszefiiggéssel definidlt problémamegoldds esetén egy r (rész)probléma Ssszetevsi azok a
részproblémak, amelyek megoldasitdl r megoldasa fiigg. Tehdt a tdblazatkitoltés alkalmazdsahoz meg kell allapitani a
részproblémaknak egy olyan sorrendjét, hogy minden r részprobléma minden 6sszetevGje elorébb alljon a sorrendben,
mint r.

A rekurziv 6sszefiiggések megadjdk az Osszetevoket:

P2(1,k) =1, P2(n,1) =1,

P2(n,n) = 1+P2(n,n-1),

P2(n,k) = P2(n,n) han <k,

P2(n,k) = P2(n,k-1)+P2(n-k,k) ha k < n.

Osszetevok:

e P2(1,k)-nak és P2(n,1)-nek nincs dsszetevije,

e P2(n,n) 0sszetevdje P2(n,n-1),

e P2(n,k) 6sszetevdje P2(n,n), ha (n < k),

e P2(n,k) 6sszetevdi: P2(n,k-1) és P2(n-k,k), ha (k < n).

Tehét a tdblazat kitoltése (k-szerint) soronként balrdl jobbra haladé lehet. Az algoritmus futési ideje €s tarigénye
is O(n?).

ParticioDin
for i:=1 ton T[i,1]:=1
for j:=2 to n
{T[jlj]:T[jlj_l]-l—l
for r:=j+1 to n
{p:=min(r-3j,J)
Tlr,J]1:=T[r,3-11+T[r-J,p]}}
return T[n,n]

1. tdblazat. A partici6 algoritmus tabldzata

“T-T-T7-17
T-1T-1576
“T-131475
12712133
T[]t]1

2. tablazat. A partici6 algoritmus teljes tdbldzata

112357
112[3|5]6
11213415
1122|313
{1111

Particio linearis tablazatkitoltéssel

Lathat6, hogy elegendd lenne a tablazatnak csak két sorat tarolni, mert minden (n,k) részprobléma Osszetevoi
vagy a k-adik, vagy a k-1-edik sorban vannak. S&t, elég egy sort tarolni balrdl jobbra (névekvd n-szerint) haladé
kitoltésnél, mert amelyik részproblémit feliilirjuk (n-k,k), annak késébb éppen az 1) értéke kell 6sszetevoként.

ParticioDin2
for i:=1 ton do T[i]:=1
for j:=2 to n
{T[J1=T[31+1
for r:=j+1 to n T[r]:=T[r]+T[r-7]}
return T[n]

Matrixszorzas probléma

Ha egy i x j méretli matrixot és egy j x k méreti matrixot szorzunk 0ssze a skaldr miveletek szdma i jk.

A matrixok szorzdsa asszociativ, az elvégzendd skaldr miveletek szama fiigg a zardjelezéstol.

Példa:

Legyenek A1,A7,A3 méretei 2 x 3, 3 x4, 4 x 5. Ekkor:

- (A1A2)A3 24+40=64 miiveletet hajt végre

- A1(A2A3) pedig 60+30=90 miiveletet.

A matrixszorzdas probléma feladata egy adott szorzds optimélis zaréjelezésének megtaldldsa. Az input: Aj,A2,...A,,
ahol A; mérete p;—1 X p;.

Részprobléma: A;...A; optimdlis zdrdjelezése minden i, j parra, a megoldds értéke legyen mli, j|. Nyilvanvalo,
hogy ml[i,i] = 0.

Rekurziv dsszefiiggés: Ha a szorzdsndl az elsG zardjelpar hatso zdrdjele az Ay utan keriil, akkor a koltség: m[i, k] +
mlk+1, j]+ pi—1pkp;j. Ezen lehetSségek koziil vélasztjuk a legjobbat, igy ha i < j, akkor

mli, j] = minj<x< j/{mi,k] + mk+1, j] + pi_1prp;}-

Téblazatkitoltés: ml[i,j]-hez haszndljuk az m[i,k] és m[k+1,j] értékeket, ezeknek kell meglenni az ml[i,j] érték
szamitdsanal. Igy a helyes kitoltési sorrend 4tlénként megy (elsSként a j=i, értékek, aztin j=i+1, majd j=i+2 és igy
tovabb).

A megoldds meghatdrozasat feljegyzéses mddszerrel oldjuk meg, S[i,j]-ben feljegyezziik, hogy mi volt az opti-
malis dontés m[i,j] szdmitasakor.

MATRIXSZORZAS
for i:=1 to n m[1i,1]=0
for 1:=2 to n
{for i:=1 to n-1+1
{jr=1i+1-1
m[i,] :=INF
for k:=1 to j-1
{g:= m[i,k]+m[k+1, J]+p(i-1)p (k) p(])
If g<m(i, J]
then {m[i,]]:=qg
S[i,31:=k}}})

A fenti a szakasz kitolti az m és S tdblazatokat, a kiiratds S alapjan egy rekurziv algoritmussal megtehetd.

KIIR(1i,)
If 3>i
Then Print " ("
KIIR(i,S[1i,3])
KIIR(S[i,3]1+1,73)
Print ")"
Else Print "A(i)"

Példa:
A1(6%x7), Ay(7 % 3), A3(3 x 1), A4(1 X 2), As(2 x 4)

3. tdblazat. Az m[i,j] értékek tabldzata
0} 0 0101]0O0
0} 0 0|08
0] 0 0| 6|20
0
0

0 | 213557
126 | 63 | 75| 95

m[1,3] = min{[m[1,1]+m[2,3] +6-7-1,m[1,2] + m[3,3]+6-3-1} =63
m[2,4] = min{[m[2,2] +m[3,4] +7-3-2,m[2,3] + m[4,4]+7-1-2} =35
m[3,5] = min{[m[3,3] 4+ m[4,5] +3-1-4,m[3,4] +m[5,5] +3-2-4} =20
m(1,4] = min{[m[1, 1]+ m[2,4]+6-7-2,m[1,2] +m[3,4] +6-3-2,m[1,3] +m[4,4] +6-1-2} =5

4. tablazat. Az S[i,j] értékek tdblazata

0/0]0]0|0
0/0/0({04
0/0/0|3]3
0012|313
0Oj1]1]3/3

Megoldas: ((A1)(A243))(A4As5)
A dinamikus programozas stratégiaja.

A dinamikus programozas, mint probléma-megoldési stratégia az alabbi 6t 1€pés végrehajtasat jelenti.
1. Az [optimalis] megoldas szerkezetének elemzése.

2. Részproblémadkra és 0sszetevOkre bontds ugy, hogy az dsszetevoktdl valo fliggés kormentes legyen. Minden
részprobléma [optimdlis] megoldasa kifejezhetd legyen (rekurzivan) az dsszetevok [optimdlis] megolddsaival.

3. Részproblémdk [optimalis] megoldasanak kifejezése (rekurzivan) az 6sszetevok [optimélis] megoldésaibdl.
Az 1-3 pontok lényegében egy rekurziv algoritmus megtervezését jelentik.

4. Részproblémak [optimdlis] megolddsdnak kiszdmitdsa alulrdl-felfelé haladva. (A részproblémak kiszdmitési
sorrendjének meghatdrozdsa. Olyan sorba kell rakni a részproblémakat, hogy minden p részprobléma minden dsszetevdje
elorébb szerepeljen a felsoroldsban, mint p. A részproblémdk kiszdmitdsa a sorrendnek megfeleléen haladva, azaz
tablazat-kitoltéssel.

5. Egy [optimdlis] megoldas elballitdsa a 4. 1épésben kiszamitott (és tarolt) informdcidkbol. Visszafejtéses vagy
feljegyzéses modszer.
Mikor érdemes dinamikus programozast hasznalni?

Optimalis résztruktiraji feladat: a probléma egy részfeladatanak optimalis megolddsa nmagan beliil a tovabbi
részfeladatok optimalis megoldasait is tartalmazza.
Atfed§ részfeladatok: egy rekurziv algoritmus, ismételten visszatér ugyanazokra a részfeladatokra. (Oszd meg
€s uralkodj tipusu rekurziv algoritmusoknal dltaldban nincs ilyen probléma.)
Leghosszabb kozos részsorozat

Egy sorozat, akkor részsorozata egy madsiknak, ha abbdl elemeinek elhagydsaval megkaphatd. A feladat két
sorozat X = (x1,...,x,) ésY = (y1,...,yn) leghosszabb kozos részsorozatanak meghatarozasa.

A tovédbbiakban X; az X sorozat i hosszu prefixét jeloli X; = (x1,...,x;) és hasonldan jeloljiik a prefixeket az Y és
Z sorozatokra is.

Lemma: Legyen X = (x1,...,xy) ésY = (y1,...,yn) két sorozat és Z = (zj,...,z;) ezek LKR-je. Ekkor:
- Ha x,,, = yp,, akkor z; = x,, = y,, €s Zy_1 az X;,—1 és Y,,—1 sorozatok egy LKR-je.

- Ha x,, # y,,, akkor Z az X,,,_| és Y vagy az X és Y¥,,_; sorozatok egy LKR-je.

Megoldas dinamikus programozassal:

Részprobléma: X; és Y; LKR-je. Az LKR hossza legyen c[i,j]. Nyilvanval6an c[0,j]=c[i, 0]= 0.

Rekurziv 0sszefiiggés: A lemma alapjan

0, hai=0vagy j =0,
cli,jl=qcli—1,j—1]+1, hax; =yj,
max{cli—1,/],c[i,j— 1] egyébként,

4

Tablazatkitoltés: c[i,j]-hez hasznéljuk az c[i,j-1] és c[i-1,j] értékeket, ezeknek kell meglenni a c[1,]] érték szamitidsanal.
Igy a helyes kitoltési sorrend soronként minden sorban a nagyobb j érték felé.

A megoldas meghatarozasat feljegyzéses modszerrel oldjuk meg, S[i,j]-ben feljegyezziik, hogy mi volt az opti-
malis dontés c[i,j] szdmitdsakor.

LKR
for i:=0 tom c[i, 0]:=0
for j:=1 ton <¢[0,3]1:=0
for i=:1 tom

{for j:=1 to n

{if x[i]=y[]]
then {c[i,j]l:=c[i-1,3-1]+1
S[i,3]1:=2}
else if c[i-1,3]>= cli, j-1]
then {cl[i,j]:=c[i-1, 7]
S[i,3]:=1}
else {c[i,3]:=c[i, 1]
S[i,3]1:= 0}}}

Megoldas meghatarozasa
Ez a szakasz kitolti a c és S tdblazatokat, a kifratds S alapjan egy rekurziv algoritmussal megtehetd.

KIIR (i,)
if i=0 or j=0 then return
if S[i,j]1=2

then {KIIR(i-1,3j-1)
Print "x[i]"}
else if S[i,j]=1 then KIIR(i-1,73)
else KIIR(i,j-1)

Példa Hatarozzuk meg az (a,b,b,a,b,a,b,a) és (b,a,b,a,a,b,a,a,b) sorozatok leghosszabb kdzos részsorozatit!

5. tdblazat. Az c[i,]] értékek tablazata
12 51666

5
4
4
3
3
2
2

— DI DN DN W W W[W
— NN W WA

1
1
1
1
1
1
0

— = =N N DN N
— DN W W K| KW
=N W BB W
=N W || W
=N W AW |

Tehat az LKR hossza 6. Az LKR-t megkapjuk, ha felirjuk az S tdblazatot, vagy visszafejtéssel, ahol az atlos
érték novekszik, ott van kozos betli. Az i-edik sor j-edik elemének, az X i-edik és az Y j-edik betiije felel meg.
Kovetkezésképp egy LKR (b,b,a,a,b,a).

Hatizsak feladat

Egy adott hdtizsakba targyakat akarunk pakolni. Adott n tirgy minden targynak van egy fontossagi értéke (f]i]),
és egy stlya (s[i]), a hatizsdkba maximum Osszesen S silyt pakolhatunk. Az s[i] és S értékek egészek. Szeretnénk

5

ugy valasztani targyakat, hogy az 6sszfontossdg maximdlis legyen. Tehat feladatunk, hogy kivalasszuk a targyaknak
olyan halmazai koziil, amelyekre az 6sszstily nem haladja meg S-t azt, amelyre maximalis az Osszfontossag.

Definiéljuk az F (i,W) fiiggvényt, mindeni =1,...,n, W =0,..., S értékre. Ez a fiiggvény azon hétizsék probléma
optimdlis fiiggvényértékét adja meg, amelyben a targyak listdja az els i targyat tartalmazza, és a hatizsak mérete W.
Ekkor a kezdeti értékekre F(1,W) = f[1], has; < W és 0 kiilonben. Mdsrészt a kovetkezd rekurzi6 teljesiil:

F(i+1,W)=max{F(i,W),fli+ 1]+ F(i,W —s[i+1])},

has[i+ 1] <W.

Tovébba F(i+1,W) =F(i,W),has[i+1] > W,

A rekurzi6 valoban fennall. A részprobléma optimélis megolddsaban vagy szerepel az i 4+ 1-edik targy vagy nem,
és ezen két eset maximuma adja az optimadlis célfiiggvényértéket.

Hatizsak
for x:=0 to s[1]-1 F[x,1]:=0
for x:=s[1] to S F[x,1]:=f[1]
for i:=2 to n
{for x:=0 to S
{F[x][i]:= F[x][i-1]
if (s[1]<=x and F[x]

[1]<F[x-s[1i]][1i-11+£f[1])
then F[x][1]:=F[x-s[1]

]
1[1-1]+£[1]}}

KIIR
while (F[x][1]1>0)
{while (i>=1 and F[x][i]==F[x][i-1])
{i=1i-1}
print "i"
X:=x-s[1]
i:=1-1}

Példa:
A targyak (suly, fontossig) parokban (4,6) (3,5) (2,3) (2,3) a hatizsdk kapacitésa 8.

6. tdblazat. A partici6 algoritmus teljes tabldzata

0/0(3|5|/6/8[9]11]12
0/0[3[5/6|8]9]|11]11
0/0[0|5/6|6]6]|11]11
0/0[{0|0|6|/6[|6]| 6 | 6
Megoldas: 4,3,1.
Kérdések

Particio rekurzidmemorizalassal

Partici6 négyzetes tablazatkitoltéssel

Matrixszorzas (KIIR is)

Leghosszabb Kozos Részsorozat (KIIR is)

e Hatizsak feladat (KIIR is)

Szorgalmi feladat

Adott egy k x n-es tdbla. Minden mez0re meg van adva egy ¢;; pozitiv szam, ami a mez0r0l begyiijtheto értek. Egy
Jatékos a bal als6 sarokbol szeretne eljutni a jobb felsd sarokba ugy, hogy csak jobbra vagy felfelé 1éphet szomszédos
mezdre. Az Utja sordn, Osszegy(jtheti a mezdkrdl az értékeket. Tovabba egyetlen alkalommal megdupldzhatja azt
az értéket, amit a mezor6l begy(jtott. Adjunk egy dinamikus programozasi algoritmus, ami meghatdrozza mi az az
utvonal, amivel a maximalis Osszértéket tudja dsszegyijteni.

Bekiildés: cimreh@inf.u-szeged.hu,

Pszeudokod vagy forras+magyarazat

o clsd két megold6 15-15 pont
e harmadik, negyedik megold6 10-10 pont

e 0tddik hatodik megoldé 5-5 pont

A szerzett plusszpontok a vizsga minimumkdvetelményébe nem szamitanak bele.

