6. Fabejaro algoritmusok

Fa bejarasan olyan algoritmust értlink, amelynek bemenete egy F fa és egy M mlvelet, és az algoritmus adott sorrendben ponto-
san egyszer végrehajtja az M m(iveletet a fa pontjaiban lévd adatokra. A preorder bejarasi sorrend azt jelenti, hogy F minden p
és g pontjara p megel6zi g-t a bejarasi sorrendben, ha

1. qfia p-nek,

2. p bal-testvére g-nak.

Tehat ha a p gyokerti fa fiai sorrendben az fy, ..., fx fak, akkor

preorder(p) = (p) hak=0
(p, preorder(fy),..., preorder(fy)) hak>0

STATA

1. dbra. Fa preorder bejarasa.

1

Dgf %HD ] 1]
! o]

2. abra. Preorder bejarasi sorrend.

6.1. Rekurziv preorder bejaras (els 6fiu-testvér abrazolasra)

public static <E> void Preorder (FaPont<E> p, Muvelet<E> M) {
if (p==null) return;
M.muvelet (p.elem);
FaPont<E> g=p.elsofiu;
while (g!=null) {
Preorder (g, M);
g=q.testver;

}

Rekurziv preorder bejaras valtozata



public static <E> void Preorder2 (FaPont<E> p, Muvelet<E> M) {
if (p==null) return;
M.muvelet (p.elem);
if (p.elsofiu!=null)
Preorder2(p.elsofiu, M);
if (p.testver!=null)
Preorder2 (p.testver, M);

}

A Preorder2 algoritmus helyessége.

1. Alaplépés. Akkor és csak akkor nincs rekurziv hivas, ha a p pontnak se fia, se testvére nincs. Ekkor helyesen m(ikodik, mert
végrehajtia az M miveletet a p pont adatara és terminal.

2. Rekurziv Iépés. Bizonyitandd, hogy ha mindkét rekurziv hivas helyes, akkor helyes lesz a p gyokerd fara is. Az els6 rekurziv
hivas az f; fa (helyes) preorder bejarasat végzi el, majd a masodik rekurziv hivas pedig a p.testverpontbdl az elsofiués testver
kapcsolatok szerint elérhetd pontokra végez helyes preorder bejarast, tehat a p gyokerd fa preorder bejarasat kapjuk.

6.2. Nem-rekurziv preorder bejaras

Feltesszik, hogy minden pont tartalmaz apakapcsolatot.
apa

3.

——= testver

1.

elsofiu

3. dbra. Tovabblépési stratégia.

A bejaras soran a tovabblépési sorrendben:
1. Els6-fidra, ha van
2. Testvérre, ha van
3. Apéra (visszalépés), ha van.
A mliveletet a pont els6 érintésekor hajtjuk végre.

public static <E> void PreorderN (FaPont<E> p, Muvelet<E> M) {
while (p!=null) {

M.muvelet (p.elem);

while (p.elsofiu!=null) {
p=p.elsofiu;
M.muvelet (p.elem);

}

while ((p'!=null) && (p.testver==null))
p=p.apa;

if (p!=null)
p=p.testver;

}
public static <E> void Postorder (FaPont<E> p, Muvelet<E> M) {

if (p==null) return;



al \
a2 a7 %////////// all
Y
alZ%//////
al4

a3 a6 a8 alQ al3 als

a4 as a9

4. dbra. Fa nem-rekurziv preorder bejérasa.

FaPont<E> aktpont=p;

p=p.elsofiu;

while (p!=null) {
Postorder (p, M);
p=p.testver;

}

M.muvelet (aktpont.elem);

6.3. Nem-rekurziv bejaras veremmel

public void PreorderV (FaPont<E> F, Muvelet<E> M) {
// Preorder bejarads veremmel.
Verem<FaPont<E>> V=new VeremL<FaPont<E>>();
V.VeremBe (F);
FaPont<E> p;
while (V.NemUres()) {
p=V.VeremBol () ;
M.muvelet (p.elem);
if (p.testver!=null)
V.VeremBe (p.testver);
if (p.elsofiu!=null)
V.VeremBe (p.elsofiu)

}

A PREORDERYV algoritmus helyességének bizonyitasa.

Tekintsik a while ciklus végrehajtasanak egy adott pillanatat.

Legyen B= (py, ..., pk) afa azon pontjainak halmaza, amelyeket mar bejartunk, abban a sorrendben, ahogy a verembdl kikerultek.
LegyenV = (q,...,0qm) @V verem tartalma, ezek az aktiv pontok.

A kovetkezd négy allitas konjunkcioja ciklusinvarians lesz.

1. Az B sorozatban a pontok helyes preorder sorrendben vannak.

2. A preorder bejarasban pg-t kozvetlendl g koveti.

3. A preorder sorrendben g megel6zi g_1-et (i = 2,...,m).

4. BNV =0 és a fa barmely p ¢ B pontjara, pontosan egy olyan g € V pont van, hogy p leszarmazottja g-nak az elséfit-testvér
faban.



Megmutatjuk, hogy ha a feltételek teljesiilnek a ciklusmag végrehajtasa el6tt, és az ismétlési feltétel igaz, azaz a verem nem
ures, akkor a ciklusmag végrehajtdsa utan is teljestini fognak.
El6szor kivesszik a gm pontot a verembdl az p valtozéba és végrehajtiuk rd az M mlveletet, majd betesszik a verembe gm t
testvérét, ha létezik, aztan betessziik a verembe gm € elsé fiat, ha létezik. Tehat B = (pa,..., Pk, Om) lesz és a verem tartalmara

gm| = |—=

e

(@)

5. dbra. gm a verembdl éppen kivett pont.

az alabbi négy eset lehetséges.

= q17~~~7Qm—1>

a. V=

b. V={(di,...,0m-1,€)
c. V=(0s....0m1,1)
d. V=

=0,.. 'aqul7tae>

Az 1. feltétel teljesil, mert a 2. feltétel teljesiilt a ciklusmag el6tt.

A 2. feltétel azért teljesil, mert gy, preorder kdvet6je az a. esetben gn_1, a b. és d. esetben €, a c. esetben pedig t.

Mivel gm megel6zi a preorder sorrendben gy—1-€t, ezért gm minden leszarmazottja, igy € és t is megel6zi, tovabba e megel6zi t-t,
tehat a 3. feltétel is teljesil.

A 4. feltétel nyilvanvaléan teljesul, hiszen gn, atkerilt az B sorba, és gm barmely leszarmazottja vagy e-nek, vagy t-nek leszarma-
zottja az Elséfia-testvér faban.

Az 1-4. feltételek mindegyike teljesul a ciklus végrehajtasa el6tt, mert S= () ésV csak a fa F gyokerét tartalmazza (V = (F)).
Tehat a while ciklus bizonyitasi szabalya szerint a while ciklus utan V = () és teljestl az 1-4. feltételek mindegyike. Ez azt jelenti,
hogy B a fa minden pontjat tartalmazza helyes preorder sorrendben.

6.4. Szintszerinti bejaras

A szintszerinti bejarasi sorrend. Egy F fa barmely két, p és q pontjara p akkor és csak akkor el6zi meg -t a szintszerinti
bejarasban, ha

d(p) <d(a) vd(p) =d(a) A (3p,q)(pbal-testvéreq—nakA p< pAq<q)

public static <E> void SzintBejar (FaPont<E> F, Muvelet<E> M) {
if (F==null) return;
Sor<FaPont<E>> S = new SorL<FaPont<E>>();
FaPont<E> p;
S.SorBa (F);

while (S.Elemszam() !=0) {
p=S.SorBol();
M.muvelet (p.elem);
p=p.elsofiuy;
while (p!=null) {
S.SorBa(p);
p=p.testver;



ISD

6. abra. Fa szintszerinti bejarasi sorrendje.

}

A SZINTFABEJAR algoritmus mikddésének szemléltetése.
/qlT

] L]

7. dbra. Az ciklus els6 végrehajtasa el6tt.

q

q /
N

L]

8. abra. Az ciklus els6 végrehajtasa utan.

A SzINTFABEJAR algoritmus helyességének bizonyitasa.
Tekintslk a kiils6 while ciklus végrehajtasanak egy adott pillanatat.
Legyen B= (pa,..., Pk) a fa azon pontjainak halmaza, amelyeket mar bejartunk, abban a sorrendben, ahogy a sorbdl kikertiltek.
Legyen S= (Qu, . ..,qm) a Ssor aktudlis tartalma, ezek az aktiv pontok.
A kovetkez6 6t allitas konjunkcioja ciklusinvarians lesz.
1. Az B sorozatban a pontok szintszerinti sorrendben vannak.
2. Az Ssorban a pontok szintszerinti sorrendben vannak.
3.d(gm) <d(au)+1



/E
! Qi L] [
L] L]

9. dbra. Az ciklus masodik végrehajtasa utan.

10. 4bra. Az ciklus harmadik végrehajtasa utan.

q4

] [

11. dbra. Az ciklus negyedik végrehajtasa utan.



4. A szintszerinti bejarasban px megel6zi g -et.
5.BNS=0ésBUS=F.

Megmutatjuk, hogy ha a feltételek teljestinek a ciklusmag végrehajtasa el6tt, és az ismétlési feltétel igaz, azaz az S sor nem
ures, akkor a ciklusmag végrehajtasa utan is teljesiilni fognak.

El6szor kivesszik a sorbél a g1 pontot az F valtozéba és végrehajtjuk ra& az M mliveletet, majd betesszik a sorba q fiait a
(f1,..., fy) fabeli sorrendjikben.

Az 1. feltétel teljesul, mert a 2. és 4. feltétel teljesult a ciklusmag el6tt.

Mivel g1 megel6zi gp-t, ezért d(01) < d(q), tehat d(fy) = d(qr1) +1 > d(gp) + 1, tehat a 3. feltétel is teljestl. A 4. feltétel
kovetkezik abbdl, hogy elbtte teljesiilt a 2. feltétel.

Az 5. feltétel nyilvanvaloan teljesul, hiszen q; atkertlt az B halmazba, és (1 barmely leszarmazottja valamelyik f; leszarmazottja.
A 2. feltétel teljestlésének bizonyitdsa maradt hatra. Ha m= 1, akkor az Ssor (j tartalma éppen a g1 pont fiai lesznek. Ham> 1,
akkor elég azt bizonyitani, hogy gm megel6zi fi-et a szintszerinti sorrendben. A 3. feltétel miatt teljesul a d(f1) =d(q1) +1 >
d(0m). Ha d(f1) > d(gm), akkor gm a definicié szerint megel6zi fi-et. Ha d(f1) = d(qm), akkor legyen Om := Apa(Qm), tehat
d(q1) = d(Tm). Mivel gm csak gy kertlhetett be az S sorba, hogy kivettik apjat, tehat Gm mar B-ben van, tehat O, el6bb van a
sorrendben, mint ;. Mivel d(qi1) = d(Qm), ezért a definicid szerint van olyan rq és rz pont, hogy ri-nek jobb-testvére ro és g1
leszarmazottja r1-nek, Om pedig leszarmazottja ro-nek. De igy f; leszarmazottja ri-nek és g is leszarmazottja ro-nek, tovabba
d(f1) = d(dm), tehat f1 megel6zi gm-et.

Az 1-5. feltételek mindegyike teljestl a ciklus végrehajtasa el6tt, mert S= () ésV csak a fa F gyokerét tartalmazza (V = (F)).
Tehat a while ciklus bizonyitasi szabalya szerint a while ciklus utdn V = () és teljestl az 1-5. feltételek mindegyike. Ez azt jelenti,
hogy B a fa minden pontjat tartalmazza helyes preorder sorrendben. Vegylk észre, hogy nem fontos a szintszerinti bejarasi
sorrend, a fenti algoritmusban az aktiv pontok tarolasara minden olyan absztrakt adattipus hasznalhat6 lenne, amely biztositana
az alabbi specifikaciéban adott miiveleteket.

Ertékhalmaz: Adagolo= {A:ACE}
Miveletek:
A:Adagolaox: E

{lgaz} Letesi{A) {A=0}
{A=A} Megszuntdth) {lgaz}
{A=A} Uresit(A) {A=0}
{A=A} BetestA,x) {A=Pre(A)U{x}}
{A#0} KivesZA)X) {xe Pre(A) APre(A) =AU{x}}
{A=A} ElemszarfA) {Elemszam=|Aj}

public static <E> void AdBejar (FaPont<E> F, Muvelet<E> M) {
if (F==null) return;
Adagolo<FaPont<E>> A = new Adagolo<FaPont<E>>();
FaPont<E> p;
A.Betesz (F);

while (A.Elemszam() !=0) {
p=A.Kivesz();
M.muvelet (p.elem);
p=p.elsofiu;
while (p!=null) {
A.Betesz (p);
p=p.testver;






