
6. Fabejáró algoritmusok

Fa bejárásán olyan algoritmust értünk, amelynek bemenete egy F fa és egy M művelet, és az algoritmus adott sorrendben ponto-
san egyszer végrehajtja az M műveletet a fa pontjaiban lévő adatokra. A preorder bejárási sorrend azt jelenti, hogy F minden p
és q pontjára p megelőzi q-t a bejárási sorrendben, ha
1. q fia p-nek,
2. p bal-testvére q-nak.
Tehát ha a p gyökerű fa fiai sorrendben az f1, . . . , fk fák, akkor

preorder(p) =
{

〈p〉 ha k = 0
〈p, preorder(f1), . . . , preorder(fk)〉 ha k > 0

p

f1
. . .

fi fk
. . .

1. ábra. Fa preorder bejárása.

6 8

4 5

3

2

1

7

9

10 12 13

11

14

15

2. ábra. Preorder bejárási sorrend.

6.1. Rekurzív preorder bejárás (els őfiú-testvér ábrázolásra)

public static <E> void Preorder(FaPont<E> p, Muvelet<E> M){
if (p==null) return;
M.muvelet(p.elem);
FaPont<E> q=p.elsofiu;
while (q!=null){

Preorder(q, M);
q=q.testver;

}
}

Rekurzív preorder bejárás változata

1

public static <E> void Preorder2(FaPont<E> p, Muvelet<E> M){
if (p==null) return;
M.muvelet(p.elem);
if (p.elsofiu!=null)

Preorder2(p.elsofiu, M);
if (p.testver!=null)

Preorder2(p.testver, M);
}

A Preorder2 algoritmus helyessége.

1. Alaplépés. Akkor és csak akkor nincs rekurzív hívás, ha a p pontnak se fia, se testvére nincs. Ekkor helyesen működik, mert
végrehajtja az M műveletet a p pont adatára és terminál.
2. Rekurzív lépés. Bizonyítandó, hogy ha mindkét rekurzív hívás helyes, akkor helyes lesz a p gyökerű fára is. Az első rekurzív
hívás az f1 fa (helyes) preorder bejárását végzi el, majd a második rekurzív hívás pedig a p.testverpontból az elso f iués testver
kapcsolatok szerint elérhető pontokra végez helyes preorder bejárást, tehát a p gyökerű fa preorder bejárását kapjuk.

6.2. Nem-rekurzív preorder bejárás

Feltesszük, hogy minden pont tartalmaz apakapcsolatot.

1.

2.
3.

apa

elsofiu

testver

3. ábra. Továbblépési stratégia.

A bejárás során a továbblépési sorrendben:
1. Első-fiúra, ha van
2. Testvérre, ha van
3. Apára (visszalépés), ha van.
A műveletet a pont első érintésekor hajtjuk végre.

public static <E> void PreorderN(FaPont<E> p, Muvelet<E> M){
while (p!=null){

M.muvelet(p.elem);
while (p.elsofiu!=null){

p=p.elsofiu;
M.muvelet(p.elem);

}
while ((p!=null) && (p.testver==null))

p=p.apa;
if (p!=null)

p=p.testver;
}

}
public static <E> void Postorder(FaPont<E> p, Muvelet<E> M){

if (p==null) return;

2

a1

a2

a3 a6

a7

a8 a10 a13

a5a4 a9

a11

a15a12

a14

4. ábra. Fa nem-rekurzív preorder bejárása.

FaPont<E> aktpont=p;
p=p.elsofiu;
while (p!=null){

Postorder(p, M);
p=p.testver;

}
M.muvelet(aktpont.elem);

}

6.3. Nem-rekurzív bejárás veremmel

public void PreorderV(FaPont<E> F, Muvelet<E> M){
// Preorder bejárás veremmel.

Verem<FaPont<E>> V=new VeremL<FaPont<E>>();
V.VeremBe(F);
FaPont<E> p;
while (V.NemUres()){

p=V.VeremBol();
M.muvelet(p.elem);
if (p.testver!=null)

V.VeremBe(p.testver);
if (p.elsofiu!=null)

V.VeremBe(p.elsofiu)
}

}

A PREORDERV algoritmus helyességének bizonyítása.
Tekintsük a while ciklus végrehajtásának egy adott pillanatát.
Legyen B= 〈p1, . . . , pk〉 a fa azon pontjainak halmaza, amelyeket már bejártunk, abban a sorrendben, ahogy a veremből kikerültek.
Legyen V = 〈q1, . . . ,qm〉 a V verem tartalma, ezek az aktív pontok.
A következő négy állítás konjunkciója ciklusinvariáns lesz.
1. Az B sorozatban a pontok helyes preorder sorrendben vannak.
2. A preorder bejárásban pk-t közvetlenül qm követi.
3. A preorder sorrendben qi megelőzi qi−1-et (i = 2, . . . ,m).
4. B∩V = /0 és a fa bármely p /∈ B pontjára, pontosan egy olyan q∈V pont van, hogy p leszármazottja q-nak az elsőfiú-testvér
fában.

3

Megmutatjuk, hogy ha a feltételek teljesülnek a ciklusmag végrehajtása előtt, és az ismétlési feltétel igaz, azaz a verem nem
üres, akkor a ciklusmag végrehajtása után is teljesülni fognak.
Először kivesszük a qm pontot a veremből az p változóba és végrehajtjuk rá az M műveletet, majd betesszük a verembe qm t
testvérét, ha létezik, aztán betesszük a verembe qm e első fiát, ha létezik. Tehát B = 〈p1, . . . , pk,qm〉 lesz és a verem tartalmára

f1

. . .

f0

qm

fu

t

e

5. ábra. qm a veremből éppen kivett pont.

az alábbi négy eset lehetséges.

a. V = 〈q1, . . . ,qm−1〉

b. V = 〈q1, . . . ,qm−1,e〉

c. V = 〈q1, . . . ,qm−1, t〉

d. V = 〈q1, . . . ,qm−1, t,e〉

Az 1. feltétel teljesül, mert a 2. feltétel teljesült a ciklusmag előtt.
A 2. feltétel azért teljesül, mert qm preorder követője az a. esetben qm−1, a b. és d. esetben e, a c. esetben pedig t.
Mivel qm megelőzi a preorder sorrendben qm−1-et, ezért qm minden leszármazottja, így e és t is megelőzi, továbbá e megelőzi t-t,
tehát a 3. feltétel is teljesül.
A 4. feltétel nyilvánvalóan teljesül, hiszen qm átkerült az B sorba, és qm bármely leszármazottja vagy e-nek, vagy t-nek leszárma-
zottja az Elsőfiú-testvér fában.
Az 1-4. feltételek mindegyike teljesül a ciklus végrehajtása előtt, mert S= 〈〉 és V csak a fa F gyökerét tartalmazza (V = 〈F〉).
Tehát a while ciklus bizonyítási szabálya szerint a while ciklus után V = 〈〉 és teljesül az 1-4. feltételek mindegyike. Ez azt jelenti,
hogy B a fa minden pontját tartalmazza helyes preorder sorrendben.

6.4. Szintszerinti bejárás

A szintszerinti bejárási sorrend. Egy F fa bármely két, p és q pontjára p akkor és csak akkor előzi meg q-t a szintszerinti
bejárásban, ha

d(p) < d(q)∨d(p) = d(q)∧ (∃p̄, q̄)(p̄bal-testvére q̄−nak∧ pE p̄∧qE q̄)

public static <E> void SzintBejar(FaPont<E> F, Muvelet<E> M){
if (F==null) return;
Sor<FaPont<E>> S = new SorL<FaPont<E>>();
FaPont<E> p;
S.SorBa(F);

while (S.Elemszam()!=0){
p=S.SorBol();
M.muvelet(p.elem);
p=p.elsofiu;
while (p!=null){

S.SorBa(p);
p=p.testver;

4

2

1

4

5 87

12 13

9

14 15

11106

3

6. ábra. Fa szintszerinti bejárási sorrendje.

}
}

}

A SZINTFABEJAR algoritmus működésének szemléltetése.

� � � �
� � � �
� � � �

� � � �
� � � �
� � � �

q1

7. ábra. Az ciklus első végrehajtása előtt.

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

1

q1 q2 q3

8. ábra. Az ciklus első végrehajtása után.

A SZINTFABEJAR algoritmus helyességének bizonyítása.
Tekintsük a külső while ciklus végrehajtásának egy adott pillanatát.
Legyen B = 〈p1, . . . , pk〉 a fa azon pontjainak halmaza, amelyeket már bejártunk, abban a sorrendben, ahogy a sorból kikerültek.
Legyen S= 〈q1, . . . ,qm〉 a Ssor aktuális tartalma, ezek az aktív pontok.
A következő öt állítás konjunkciója ciklusinvariáns lesz.
1. Az B sorozatban a pontok szintszerinti sorrendben vannak.
2. Az Ssorban a pontok szintszerinti sorrendben vannak.
3. d(qm)≤ d(q1)+1

5

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

	 	 	
	 	 	
	 	 	

� � �
� � �
� � �

1

q2 q32

q4 q5

9. ábra. Az ciklus második végrehajtása után.

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � � � � �

� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

	 	 	
	 	 	
	 	 	

� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �

1

32 q3

q4 q5 q6 q7

10. ábra. Az ciklus harmadik végrehajtása után.

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

	 	 	
	 	 	
	 	 	

� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �

� � �
� � �
� � �

� � � �
� � � �
� � � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �

1

32 4

q4 q5 q6 q7 q8 q9 q10

11. ábra. Az ciklus negyedik végrehajtása után.

6

4. A szintszerinti bejárásban pk megelőzi q1-et.
5. B∩S= /0 és B∪S= F .

Megmutatjuk, hogy ha a feltételek teljesülnek a ciklusmag végrehajtása előtt, és az ismétlési feltétel igaz, azaz az Ssor nem
üres, akkor a ciklusmag végrehajtása után is teljesülni fognak.
Először kivesszük a sorból a q1 pontot az F változóba és végrehajtjuk rá az M műveletet, majd betesszük a sorba q1 fiait a
〈 f1, . . . , fu〉 fabeli sorrendjükben.
Az 1. feltétel teljesül, mert a 2. és 4. feltétel teljesült a ciklusmag előtt.
Mivel q1 megelőzi q2-t, ezért d(q1) ≤ d(q2), tehát d(fu) = d(q1) + 1 ≥ d(q2) + 1, tehát a 3. feltétel is teljesül. A 4. feltétel
következik abból, hogy előtte teljesült a 2. feltétel.
Az 5. feltétel nyilvánvalóan teljesül, hiszen q1 átkerült az B halmazba, és q1 bármely leszármazottja valamelyik fi leszármazottja.
A 2. feltétel teljesülésének bizonyítása maradt hátra. Ha m= 1, akkor az Ssor új tartalma éppen a q1 pont fiai lesznek. Ha m> 1,
akkor elég azt bizonyítani, hogy qm megelőzi f1-et a szintszerinti sorrendben. A 3. feltétel miatt teljesül a d(f1) = d(q1)+ 1≥
d(qm). Ha d(f1) > d(qm), akkor qm a definíció szerint megelőzi f1-et. Ha d(f1) = d(qm), akkor legyen qm := Apa(qm), tehát
d(q1) = d(qm). Mivel qm csak úgy kerülhetett be az S sorba, hogy kivettük apját, tehát qm már B-ben van, tehát qm előbb van a
sorrendben, mint q1. Mivel d(q1) = d(qm), ezért a definíció szerint van olyan r1 és r2 pont, hogy r1-nek jobb-testvére r2 és q1

leszármazottja r1-nek, qm pedig leszármazottja r2-nek. De így f1 leszármazottja r1-nek és qm is leszármazottja r2-nek, továbbá
d(f1) = d(qm), tehát f1 megelőzi qm-et.

Az 1-5. feltételek mindegyike teljesül a ciklus végrehajtása előtt, mert S= 〈〉 és V csak a fa F gyökerét tartalmazza (V = 〈F〉).
Tehát a while ciklus bizonyítási szabálya szerint a while ciklus után V = 〈〉 és teljesül az 1-5. feltételek mindegyike. Ez azt jelenti,
hogy B a fa minden pontját tartalmazza helyes preorder sorrendben. Vegyük észre, hogy nem fontos a szintszerinti bejárási
sorrend, a fenti algoritmusban az aktív pontok tárolására minden olyan absztrakt adattípus használható lenne, amely biztosítaná
az alábbi specifikációban adott műveleteket.
Értékhalmaz: Adagolo= {A : A⊆ E}
Műveletek:

A : Adagolo, x : E

{Igaz} Letesit(A) {A = /0}
{A = A} Megszuntet(A) {Igaz}
{A = A} Uresit(A) {A = /0}
{A = A} Betesz(A,x) {A = Pre(A)∪{x}}
{A 6= /0} Kivesz(A,x) {x∈ Pre(A)∧Pre(A) = A∪{x}}
{A = A} Elemszam(A) {Elemszam= |A|}

public static <E> void AdBejar(FaPont<E> F, Muvelet<E> M){
if (F==null) return;
Adagolo<FaPont<E>> A = new Adagolo<FaPont<E>>();
FaPont<E> p;
A.Betesz(F);

while (A.Elemszam()!=0){
p=A.Kivesz();
M.muvelet(p.elem);
p=p.elsofiu;
while (p!=null){

A.Betesz(p);
p=p.testver;

}
}

}

7

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

	�	
	�	
	�	

�

�

�

���
���
���

���
���
���

�

�

�

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

 �
 �
 �

!�!
!�!
!�!

"�"
"�"
"�"

#�#
#�#
#�#

$�$
$�$
$�$

%�%
%�%
%�%

&�&
&�&
&�&

'�'
'�'
'�'

(�(
(�(
(�(

)�)
)�)
)�)

�
�
�

+�+
+�+
+�+

,�,
,�,
,�,

-�-
-�-
-�-

.�.
.�.
.�.

/�/
/�/
/�/

0�0
0�0
0�0

1�1�1
1�1�1
1�1�1

2�2�2
2�2�2
2�2�2

3�3�3
3�3�3
3�3�3

4�4�4
4�4�4
4�4�4

5�5�5
5�5�5
5�5�5

6�6�6
6�6�6
6�6�6

7�7
7�7
7�7

8�8
8�8
8�8

12. ábra. A fa pontjai adagolós bejárás során.

8

