
11. Mélységi keresés

1. ábra. A példa irányított gráf

1

Procedure MelyKeres(Const G: Graf.Tipus;
Var Apa: Fuggveny1.Tipus;
Var D : Fuggveny2.Tipus;
Var F : Fuggveny3.Tipus);

{
Bemenet: G=(V,E) gráf
Kimenet: Apa, D, F függvények,
D(p): a p pont elérési ideje
F(p): a p pont elhagyási ideje
Apa(p): (Apa(p),p) feszítőfa él
}
Const
Null=??? {:Graf.PontTip};

Type
Paletta=(Feher, Szurke, Fekete);

Var
Szin: Fuggveny4;{Szin: V->Paletta}
Ido:Longint; {az elérési-elhagyási idő számításához}
P:Graf.PontTip;

Procedure MelyBejar(P : Graf.Ponttip);
{Bejárja a gráfban a P pontból elérhető, még érintetlen pontokat}
{P még érintetlen, azaz Szin(P)=Feher}
Var

Q : Graf.Ponttip;
Begin{MelyBejar}
Szin[P]:=Szurke; {P az új aktív pont}
Inc(Ido);
D[P]:=Ido; {P elérési időjének beállítása}
For Q In Ki(G,P) Do {minden P->Q élre}

If Szin[Q]=Feher Then Begin {Q még érintetelen}
Apa[Q]:=P; {a (P,Q) él felvétele a feszítőfába}
MelyBejar(Q); {a Q-ból elérhető pontok bejárása}

End
Szin[P]:=Fekete; {P bevégzett lett}
Inc(Ido);
F[P]:=Ido; {P elhagyási időjének beállítása}

End{MelyBejar};

Begin{MelyKeres}
Letesit(Apa);
Letesit(D);
Letesit(F);
Letesit(Szin);
For P In V Do Do Begin

Apa[P]:=Null;
Szin[P]:=Feher;

End;
Ido:= 0;
For P In V Do
If Szin[P]= Feher Then

MelyBejar(P);

Megszuntet(Szin);
End{MelyKeres};

A MELYKERES algoritmus futási ideje Θ(V +E). (Feltéve, hogy

2

For Q In Ki(G,P)

iteráció lineáris időben (Θ(Ki(G,P))) megvalósítható.)
Mélységi bejárás irányítatlan gráfra.

2. ábra. Példa irányítatlan gráf

11.1. A mélységi bejárás tulajdonságai

Mélységi feszít ő erd ő (MFE).

MFE = (V,F) : F = {(p,q) : Apa(q) = p}
A MELYKERES algoritmus által kiszámított d és f függvényekre teljesül:

(∀u∈V)(d(u) < f (u))

(∀u 6= v∈V)(d(u) 6= d(v)∧ f (u) 6= f (v))

11.1. tétel. (Zárójelezési tétel) Mélységi keresést alkalmazva a G = (V,E) gráfra, a következő három feltétel közül pontosan az
egyik teljesül minden u és v pontra:

1. A [d(u), f (u)] és [d(v), f (v)] intervallumok diszjunktak és egyik sem leszármazottja a másiknak a MFE-ben.

2. A [d(v), f (v)]⊆ [d(u), f (u)] és v leszármazottja u-nek a MFE-ben.

3. A [d(u), f (u)]⊆ [d(v), f (v)] és u leszármazottja v-nek a MFE-ben.

Bizonyítás. Legyen d(u) < d(v). Két eset lehet:
a.) d(v) < f (u)
Ekkor v elérésekor u színe szürke volt, tehát v leszármazottja MFE-ben u-nak. Továbbá, v-t előbb elhagyjuk, mielőtt visszatérnénk
u-hoz, tehát f (v) < f (u). Tehát:d(v) < d(v) < f (v) < f (u)
b.) d(v)≥ f (u)
Ekkor d(u) < f (u) < d(v) < f (v), tehát a két intervallum diszjunkt. Ebből következik, hogy mind u, mind v elérésekor a másik nem
lehetett szürke, tehát nem leszármazottjai egymásnak MFE-ben. �

3

11.2. következmény. A v pont akkor és csak akkor leszármazottja az u pontnak MFE-ben, ha d(u) < d(v) < f (v) < f (u)

11.3. tétel. (Fehér út tétel) Minden v pont akkor és csak akkor leszármazottja az u pontnak MFE-ben, ha a d(u) időben (u eléré-
sekor) van csupa fehér pontokon át haladó u v út G-ben.

Bizonyítás. ⇒: Tfh. u v a MFE-ben. Legyen w ezen út egy tetszőleges pontja. Az 11.2. következmény szerint d(u) < d(w),
tehát w fehér a d(u) időben.
⇐: Tfh. van olyan u→ v1 → ··· → vk = v út, hogy minden vi fehér a d(u) időben, de v nem lesz leszármazotja u-nak MFE-ben.
Feltehetjük, hogy ∀i < k-ra vi leszármazottja lesz u-nak MFE-ben. Mivel vk−1 leszármazottja u-nak, ezért 11.2. következmény
miatt f (vk−1) < f (u). De d(u) < d(v) < f (vk−1), így
d(u) < d(v) < f (vk−1) < f (u),
tehát az 11.2. következmény miatt v leszármazottja u-nak MFE-ben.

�

Élek osztályozása

1. Faél: (u,v) ∈V faél, ha bekerül a MFE élei közé, azaz Apa(v) = u.

2. Visszaél: (u,v) ∈V visszaél, ha u leszármazottja v-nek a MFE-ben.

3. Előreél: (u,v) ∈V visszaél, ha v leszármazottja u-nek a MFE-ben és nem faél.

4. Keresztél: Minden más esetben (u,v) ∈V keresztél.

Állítás

1. (u,v) ∈V akkor és csak akkor faél, ha az u→ v él vizsgálatakor v színe fehér.

2. (u,v) ∈V akkor és csak akkor visszaél ha az u→ v él vizsgálatakor v színe szurke.

3. (u,v) ∈V akkor és csak akkor előreél ha az u→ v él vizsgálatakor v színe fekete és d(u) < d(v).

4. (u,v) ∈V akkor és csak akkor keresztél ha az u→ v él vizsgálatakor v színe fekete és d(u) > d(v).

3

4

5 6

7 8
9

1110

13

141

12
2

16 17

1815

3. ábra. Az élek osztályozása. zöld:faél, piros:visszaél, kék:előreél, fekete:kereszél.

11.4. tétel. Ha G irányítatlan gráf, akkor bármely mélységi keresésre minden éle vagy fa-él, vagy vissza-él.

4

Bizonyítás. Tfh. d(u) < d(v). Mivel v∈ Ki(G,u), ezért valamikor végrehajtódik az u→ v él vizgálata, és ekkor Szin(u) = Szurke.
Milyen lehet v színe?

1. Szin(v) = Feher: Ekkor (u,v) faél lesz.

2. Szin(v) = Szurke: Ekkor (u,v) visszaél lesz.

3. Szin(v) = Fekete: Nem lehet, mert ez azt jelentené, hogy f (v) < d(u).

�

1

3

5

6

7 8

9

10

11 12

13

144 15

16172

18

4. ábra. Az élek osztályozása irányítatlan gráf mélységi bejárására. zöld:faél, piros:visszaél.

Topologikus rendezés

Def. Egy G = (V,E) irányított gráf topologikus rendezésén a V pontjainak egy olyan 〈v1,v2, . . . ,vn〉 (n = |V|) felsorolását értjük,
amelyre teljesül:
Minden (u,v) ∈ E élre, u előbb áll a felsorolásban, mint v.

11.5. lemma. A G = (V,E) irányított gráfnak akkor és csak akkor van topologikus rendezése, ha G körmentes.

11.6. lemma. A G = (V,E) irányított gráfban akkor és csak akkor van kör, ha van visszaéle.

Bizonyítás. ⇒: Tfh. u→ v visszaél. Ekkor v u→ v, tehát van kör G-ben.
⇐: Tfh. v1 → v2 → ···vk−1 → vk = v1 kör, továbbá a kör pontjai közül v1-et érjük el először a mélységi bejárás során. Tehát d(v1)
időben van csupa fehér pontolon át haladó v1 vk út. A fehér út tétel miatt vk leszármazottja lesz a v1-nek a MFE-ben, tehát
vk → v1 visszaél lesz. �

11.7. tétel. Ha a G irányított gráf körmentes, akkor pontjainak minden olyan 〈v1, . . .vn〉 felsorolása, amelyre

f (vi) > f (vi+1); i = 1, . . .n−1

G egy topologikus rendezése lesz bármely mélységi bejárással kiszámított f elhagyási függvényre.

Bizonyítás. Legyen u→ v∈ E tetszőleges él.
a.) d(u) < d(v), azaz u-t előbb érem el, mint v-t. Ekkor a fehér út tétel miatt v leszármazottja lesz u-nak a MFE-ben, tehát
d(u) < d(v) < f (v) < f (u).
b.) d(u) > d(v), azaz v-t előbb érem el, mint u-t. Mivel nincs v u út G-ben, ezért v-t befejezem, mielőtt u-t elérném, tehát
f (v) < d(u) < f (u). �

5

{Globális programelemek a Topologikus rendezéshez:}
Const
MaxN=???; {a gráf pontjainak max. száma}

Type
PontTip=1..MaxN;
Vektor=Array[PontTip] Of 0..MaxN;

Procedure TopRend(Const G: Graf;
Var S: Vektor);

Var
Szin: Array[PontTip] of (Feher,Szurke,Fekete);
VanKor:Boolean;
p:1..MaxN;
SorInd:Longint;

Procedure MelyBejar(P : PontTip);
Var

Q:Graf.Ponttip;
Begin{MelyBejar}
Szin[P]:=Szurke;
For Q In Ki(G,P) Do Begin

If Szin[Q]=Feher Then
MelyBejar(Q);

Else If Szin[Q]=Szurke Then Begin{kör!}
VanKor=True;
Exit

End;
If VanKor Then Exit;

End{for Q}
Szin[P]:=Fekete;
Dec(SorInd);
S[SorInd]:=P;

End {MelyBejar};

Begin{Toprend}
For P:=1 To N Do

Szin[P]:=Feher;
VanKor:=False;
SorInd:=N+1;
For P:=1 To N Do Begin
If Szin[P]=Feher Then

MelyBejar(P);
If VanKor Then Begin

S[1]:=0;
Break

End;
End{for P};

End {TopRend};

A TOPREND algoritmus futási ideje Θ(V +E). (Feltéve, hogy

For Q In Ki(G,P)

iteráció lineáris időben (Θ(Ki(G,P))) megvalósítható.)

6

11.2. Erősen összefügg ő komponensek

Def. u∼ v ha u v és v u
Def. Egy u pontot tartalmazó erősen összefüggő komponens: C(u) = {v∈V : u∼ v}

1

2 2

2 2 2

3

1

1

5. ábra. Erősen összefüggő komponensek

Def. A G = (V,E) gráf transzponáltja: GT = (V,ET); ahol ET = {(p,q) : (q, p) ∈ E}
Elvi algoritmus
1. Számítsuk ki a MELYKERES algoritmussal az f (u) elhagyási értékeket.
2. A GT transzponált gráfra alkalmazzuk a MELYKERES eljárást úgy, hogy a pontokra a MELYBEJÁR eljárást f szerint csökkenő
sorrendben hívjuk.
3. A 2. pontban az egy mélységi feszítőfába kerülő pontok alkotnak egy erősen összefüggő komponenst.

Procedure GEOK(Const G: Graf.Tipus;
Var H: Halmazok.Tipus);

Var
V : Verem.Tipus;
Bejart: Halmaz.Tipus;
P : Graf.Ponttip;
PNev : Halmazok.NevTip;

Procedure MelyBejar(P : Graf.Ponttip);
Var
Q : Graf.Ponttip;

Begin{MelyBejar}
Bovit(Bejart,P);
For Q In Ki(G,P) Do
If Not Eleme(Bejart,Q) Then

MelyBejar(Q);
VeremBe(V,P);

End{MelyBejar};

Procedure MelyBejarT(P,Pnev:Graf.Ponttip);
Var

Q : Graf.Ponttip;
Begin{MelyBejarT}

7

Bovit(Bejart,P);
For Q In Be(G,P) Do Begin
If Not Eleme(Bejart,Q) Then Begin

Halmazok.Bovit(H,PNev,Q);
MelyBejarT(Q,Pnev);

End;
End{MelyBejarT};

Begin {GEOK}
Halmazok.Letesit(H);
Halmaz.Letesit(Bejart);
Verem.Letesit(V);
For P In V Do

If Not Eleme(Bejart,P) Then
MelyBejar(P);

Uresit(Bejart);
While Not Urese(V) Do Begin
{ A transzponált gráf mélységi bejárása csökkenő F érték,
azaz a V veremben levő sorrend szerint }
VeremBol(V,P);
If Not Eleme(Bejart,P) Then Begin

Bovit(H, P, P); { új komponens }
MelyBejarT(P,P);

End;
End;

Halmaz.Megszuntet(Bejart);
Verem.Megszuntet(V);

End{GEOK};

11.8. lemma. Legyen C és C′ a G = (V,E) irányított gráf két különböző erősen összefüggő komponense. Továbbá, u,v∈C és
u′,v′ ∈C′. Ha létezik u u′ út, akkor nem létezhet v′ v út.

Terjesszük ki a d és f függvényeket V részhalmazaira, U ⊆V:

d(U) = min
u∈U

{d(u)}

f (U) = max
u∈U

{ f (u)}

11.9. lemma. Legyen C és C′ a G = (V,E) irányított gráf két különböző erősen összefüggő komponense. Ha létezik olyan u→ v
él, hogy u∈C és v∈C′, akkor f (C) > f (C′).

Bizonyítás. a.) d(C) < d(C′). Legyen x∈C, amelyre d(x) minimális, azaz az elsőnek elért pont C-ben. Tehát bármely w∈C′

pontra a d(x) időben létezik csupa fehér pontokon át haladó
x u→ v w út. Tehát a fehér út tétel miatt C és C′ minden pontja leszármazottja lesz x-nek a MFE-ben. Így a 11.2. következ-
mény miatt f (x) = f (C) > f (C′).
b.) d(C) > d(C′). Legyen y∈C′, amelyre d(y) minimális, azaz az elsőnek elért pont C’-ben. Mint az elző esetben, a fehér út tétel
miatt f (y) = f (C′). Mivel van u→ v él, ezért az előző lemma miatt nem lehet C′ egyetlen pontjából sem eljutni C-beli pontba, így
y-ból sem. Tehát f (y) időben C minden pontja fehér, tehát f (w) > f (y) minden w∈C. Tehát f (C) > f (C′). �

11.10. következmény. Legyen C és C′ a G = (V,E) irányított gráf két különböző erősen összefüggő komponense. Ha létezik
olyan u→ v∈GT él, hogy u∈C és v∈C′, akkor f (C) < f (C′).

Bizonyítás. u→ v∈GT ⇒ v→ u∈ E. Mivel G és GT erősen összefüggő komponensei megegyeznek, így az előző lemma miatt
f (C) < f (C′). �

11.11. tétel. Az EOK algoritmus helyes.

8

Bizonyítás. Legyenek G E.Ö. komponensei:
C(r1), · · · ,C(rk), hogy f (r1) > f (r2) > · · ·> f (rk) és
f (r i) = f (C(r i)), i = 1, . . . ,k
Legyen F(r i),(i = 1, · · · ,k) a GT bejárásával kapott r i -gyökerű mélységi feszítőfa pontjainak halmaza.
Megmutatjuk, hogy C(r i) = F(r i). A bizonyítást i-szerinti indukcióval végezzük. Tfh. az első i−1 komponensre az állítás igaz.
C(r i−1) GT bejárása után MelyBejarT(r i) hívás következik.
f (r i) = f (C(r i)), ezért a fehér út tétel miatt (GT -ben) C(r i) minden pontja bekerül F(r i)-be. Továbbá, a 11.10. következmény
miatt minden él, amely C(r i)-ből kivezet, csak olyan C′ komponensbeli pontba vezethet, amelyre f (C′) > f (C(r i)), tehát ez már
korábban bejárt komponens. �

11.3. Euler-kör és Euler-út

A 〈p1, p2, . . . , pk〉 sétát a G = (V,E) (irányított, vagy irányítatlan) gráf Euler-útjának nevezzük, ha a séta a gráf minden élét ponto-
san egyszer tartalmazza. Azaz (∀(u,v) ∈ E)(∃!i)(u = pi ∧v = pi+1).
A 〈p1, p2, . . . , pk〉 séta Euler-kör, ha Euler-út és p1 = pk.

11.12. tétel. A G = (V,E) irányítatlan gráfban akkor és csak akkor van Euler-út, ha G összefüggő, és vagy minden pont páros
fokszámú, vagy pontosan két olyan pontja van, amelyek páratlan fokúak.

11.13. tétel. A G = (V,E) irányítatlan gráfban akkor és csak akkor van Euler-kör, ha G összefüggő, és minden pont páros fok-
számú.

11.14. tétel. A G = (V,E) irányított gráfban akkor és csak akkor van Euler-út, ha G összefüggő, és vagy minden v ∈ V pontra
KiFok(G,v) = BeFok(G,v),
vagy van a,b ∈ V, hogy BeFok(G,a) + 1 = KiFok(G,a) és KiFok(G,b) + 1 = BeFok(G,b) és minden v 6= a,b ∈ V pontra
KiFok(G,v) = BeFok(G,v).

11.15. tétel. A G = (V,E) irányított gráfban akkor és csak akkor van Euler-kör, ha G összefüggő, és minden v ∈ V pontra
KiFok(G,v) = BeFok(G,v).

Program EulerKor; {Euler-kör keresés irányított gráfra}
Const
MaxP=100000; {a pontok max. száma}

Type
Pont=0..MaxP;
Lanc=^Cella;
Cella=Record

P:Pont;
csat:Lanc

End;
Graf=Array[1..MaxP] Of Lanc; { a gráfábrázolás típusa }

Var
N, { a pontok száma }
E:Longint; { az élek száma}
G:Graf;
KiFok,BeFok:Array[1..MaxP] of 0..MAxP;
El:Array[1..MaxP] of Lanc; { El[p] az első aktív él }
Kor:Lanc; { a körséta pontjai }

Procedure Beolvas; Var InF:Text;
u,v:Pont;
i:Longint;
Guv:Lanc;

Begin
Assign(InF, ’eulerkor.be’); Reset(InF);
ReadLn(InF, N, E);
For u:=1 To N Do Begin {Inicializálás}

9

G[u]:=Nil;
KiFok[u]:=0;
BeFok[u]:=0;

End;
For i:=1 To E Do Begin {az input beolvasása}
ReadLn(InF, u,v);
New(Guv);
Guv^.p:=v;
Guv^.csat:=G[u];
G[u]:=Guv;
Inc(KiFok[u]); Inc(BeFok[v]);

End{for i};

Close(InF);
End{Beolvas};

Procedure KiIr; Var
KiF:Text;
L:Lanc;

Begin
Assign(KiF,’eulerkor.ki’); Rewrite(KiF);
L:=Kor;
While L<> Nil Do Begin

Write(KiF, L^.P,’ ’);
L:=L^.csat;

End;
Writeln(kiF);
Close(KiF);

End{KiIr};

Procedure EulerKorEpit;
Var

i:Longint;
VanKor:Boolean;
EInd:Longint;

Procedure Seta(p:Pont);
Var q:Pont;
L:Lanc;

Begin
While El[p]<>Nil Do Begin {amíg van p->q benemjárt él}

q:=El[p]^.P;
El[p]:=El[p]^.csat; {q->p passzívá tétele}
Seta(q);

End{while}; {tovább a p->q élen}

New(L);
L^.P:=p; L^.csat:=Kor; {p bevétele a sétába}
Kor:=L;
Inc(EInd); {a bejárt élek számának növelése}

End{Seta};

Begin{EulerKorEpit}
VanKor:=True;
For i:=1 To N Do Begin

If (KiFok[i]=0)Or (KiFok[i]<>BeFok[i]) Then

10

VanKor:=False;
El[i]:=G[i]; {nincs Euler-kör}

End;
Kor:=Nil;
EInd:=0;
If VanKor Then Begin
Seta(1); {Eurel-kör építés}

VanKor:=EInd=E+1; {összefüggő-e a gráf?}
End;
If Not VanKor Then Kor:=Nil;
KiIr;

End{EulerKorEpit};

Begin{Program}
Beolvas;

EulerKorEpit;
End.

EULERKOREPIT algoritmus futási ideje: Θ(V +E)
Euler-kör keresés irányítatlan gráfban.

Program EulerKor; {Euler-kör keresés irányítatlan gráfra} Const
MaxP=100000; {a pontok max. száma}

Type
Pont=0..MaxP;
Lanc=^Cella;
Cella=Record

P:Pont;
Aktiv:Boolean;
Veg,csat:
Lanc

End;
Graf=Array[1..MaxP] Of Lanc; { a gráfábrázolás típusa }

Var
N, { a pontok száma }
E:Longint; { az élek száma }
G:Graf; { a gráf }
Fok:Array[1..MaxP] of 0..MAxP;{ fokszám }
El:Array[1..MaxP] of Lanc; { El[p] az első aktív él }
Kor:Lanc; { a körséta pontjai }

Procedure Beolvas; Var InF:Text;
u,v:Pont;
i:Longint;
Guv,Gvu:Lanc;

Begin
Assign(InF, ’eulerkor.be’); Reset(InF);
ReadLn(InF, N, E);
For u:=1 To N Do Begin {Inicializálás}

G[u]:=Nil;
Fok[u]:=0;

End;
For i:=1 To E Do Begin {az input beolvasása}

11

ReadLn(InF, u,v);
New(Guv); New(Gvu);
Guv^.p:=v; Guv^.Aktiv:=True; Guv^.Veg:=Gvu;
Gvu^.p:=u; Gvu^.Aktiv:=True; Gvu^.Veg:=Guv;
Guv^.csat:=G[u]; Gvu^.csat:=G[v];
G[u]:=Guv; G[v]:=Gvu;
Inc(Fok[u]); Inc(Fok[v]);

End{for i};

Close(InF);
End{Beolvas};

Procedure KiIr; Var
KiF:Text;
L:Lanc;

Begin
Assign(KiF,’eulerkor.ki’); Rewrite(KiF);
L:=Kor;
While L<> Nil Do Begin

Write(KiF, L^.P,’ ’);
L:=L^.csat;

End;
Writeln(kiF);
Close(KiF);

End{KiIr};

Procedure EulerKorEpit;
Var
i:Longint;
VanKor:Boolean;
EInd:Longint;

Procedure Seta(p:Pont);
{Global: G, El}
Var q:Pont;

L,Lq:Lanc;
Begin
While El[p]<>Nil Do Begin {amíg van p->q benemjárt él}

If El[p]^.Aktiv Then Begin{p->El[p]^.P aktív él}
q:=El[p]^.P;
El[p]^.Aktiv:=False; {p->q passzívá tétele}
Lq:=El[p]^.Veg;
Lq^.Aktiv:=False; {q->p passzívá tétele}
El[p]:=El[p]^.csat;
Seta(q); {tovább a p->q élen}

End Else {p->El[p]^.P passzív él}
El[p]:=El[p]^.csat;

End{while};

New(L);
L^.P:=p; L^.csat:=Kor; {p bevétele a sétába}
Kor:=L;
Inc(EInd); {a bejárt élek sz. növelése}

End{Seta};

Begin{EulerKorEpit}

12

VanKor:=True;
For i:=1 To N Do Begin

If (Fok[i]=0)Or Odd(Fok[i]) Then
VanKor:=False; {nincs Euler-kör}

El[i]:=G[i];
End;
Kor:=Nil;
EInd:=0;
If VanKor Then Begin
Seta(1); {Eurel-kör építés}

VanKor:=EInd=E+1; {összefüggő-e a gráf?}
End;
If Not VanKor Then Kor:=Nil;
KiIr;

End{EulerKorEpit};

Begin{Program}
Beolvas;

EulerKorEpit;
End.

EULERKOREPIT algoritmus futási ideje: Θ(V +E)

13

