
Algoritmizálás

Horváth Gyula
Szegedi Tudományegyetem

Természettudományi és Informatikai Kar
horvath@inf.u-szeged.hu

6. Gráfos feladatok

6.1. Feladat: Kiút keresés labirintusban.
Egy négyzetrácsos hálózattal leírható labirintusban adott start helyről adott cél helyre kell eljutni a lehető legrövidebb úton. A
labirintusban minden mező vagy fal, vagy közlekedésre használható folyosó egy részlete. Egy lépésben szomszédos mezőre
léphetünk, balra, jobbra, felfelé vagy lefelé.

1

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10

11

12

8

7

6

5

4

3

2

1. ábra.

1

8

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10

11

12

8

7

6

5

4

3

2

1

0

1

1

1

1

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4 5

5

5

5

5

5

5

5

5

5

5

5 6

66

6

6

6

6

6

6

6

6

6

6

7

7

7

7

7

7

7

7 7

7

7

8

8

8

8

8

88

8

8

8

8

4

5

6

6

7

7

8

8

7

Megoldás
Modell:
Tfh. a labirintus sorainak száma n, oszlopainak száma m. Tekintsük azt a G = (V,E) gráfot, ahol
V = {(x,y) : 1≤ x≤ n∧1≤ y≤ m∧ (x,y)nem fal}
(x,y)→ (x,y) ∈ E akkor és csak akkor, ha |x− x|+ |y− y|= 1 valamint (x,y) és (x,y) nem fal.
Vagyis az (x,y) mezőről egyetlen lépéssel juthatunk az (x,y) mezőre.
Tehát a feladat nem más, mint egy (Xk,Y k) (Xc,Xc) legrövidebb út keresése, ha a start mező (Xk,Y k) a célmező pedig
(Xc,Xc).
A feladat tehát megoldható szélességi kereséssel, a labirintus gráf számított-gráf ábrázolását használva.

(x−1,y)

(x,y)

(x+1,y)

(x,y−1) (x,y+1)

1

2

3

4

1

2

3

4

(−1,0)

(0,1)

(1,0)

(0,−1)

2. ábra. A lehetséges lépések

2

1 program L a b i r i n t u s ;
2 c o n s t
3 MaxMN=200; { sorok és osz lopok max . száma }
4 Lep : array [1 . . 4] o f record x , y : −1 . . 1 end={ a l é p é s e k e l ő r e }
5 ((x :−1; y : 0) , (x : 0 ; y : 1) , (x : 1 ; y : 0) , (x : 0 ; y :−1)) ;
6 VLep : array [1 . . 4] o f record x , y : −1 . . 1 end={ a l é p é s e k v i s s z a }
7 ((x : 1 ; y : 0) , (x : 0 ; y :−1) , (x :−1; y : 0) , (x : 0 ; y : 1)) ;
8 SorMeret=MaxMNΛMaxMN;
9 type

10 Koord = 0 . .MaxMN;
11 P o z i c i o =record x , y : Byte end ;
12 L a b i r i n t =array [0 . . MaxMN, 0 . .MaxMN] of i n t e g e r ;
13 Sor=record Tar : array [1 . . SorMeret] o f P o z i c i o ; e l e j e , vege :Word end ;
14 var
15 M,N:Word; { a sorok és osz lopok száma }
16 K:Word; { a f a l a k száma }
17 Xk , Yk : 1 . .MaxMN; { a kezdő mező k o o r d i n á t á i }
18 Xc , Yc : 1 . .MaxMN; { a c é l mező k o o r d i n á t á i }
19 L: L a b i r i n t ; { a l a b i r i n t u s mátrixa }
20 S : Sor ; { Sor a bejáráshoz }
21 x , y :Word;

22 procedure Beolvas ;
23 { Global : M, N, }
24 var
25 Bef : Text ;
26 i , x , y :Word;
27 begin
28 Assign (Bef , ’ l a b i r i n t . be ’) ; Reset (Bef) ;
29 ReadLn (Bef , M, N, K) ;
30 f o r x :=1 to M do
31 f o r y :=1 to N do L[x , y] : = 0 ;
32 ReadLn (Bef , Xk , Yk , Xc , Yc) ;
33 f o r i :=1 to K do begin
34 ReadLn (Bef , x , y) ;
35 L[x , y]:=−1;
36 end { f o r K} ;
37
38 Close (Bef) ;
39 end { Beolvas } ;

40 procedure S o r L e t e s i t ;
41 begin
42 S . e l e j e : = 1 ; S . vege : = 1 ;
43 end { S o r L e t e s i t } ;
44 procedure Sorba (p : P o z i c i o) ;
45 begin
46 S . Tar [S . vege] : = P ;
47 Inc (S . vege) ;
48 end { Sorba } ;
49 procedure Sorbol (Var p : P o z i c i o) ;
50 begin
51 p:=S . Tar [S . e l e j e] ;
52 i n c (S . e l e j e) ;
53 end { Sorbol } ;
54 Funct ion NemUres () : Boolean ;
55 begin
56 NemUres :=S . e l e j e <S . vege ;

3

57 end { NemUres } ;

58 procedure Bejar (x , y : Koord) ;
59 { Global : Xc , Yc , L}
60 var
61 i :Word;
62 p , q : P o z i c i o ;
63 begin { Bejar }
64 S o r L e t e s i t ;
65 p . x := x ; p . y := y ;
66 Sorba (p) ;
67 whi le NemUres Do begin
68 Sorbol (p) ;
69 i f (p . x=Xc)And(p . y=Yc) then Break ; { c é l b a értünk }
70 f o r i :=1 to 4 Do begin { l é p é s a négy l e h e t s é g e s szomszéd f e l é }
71 q . x :=p . x+Lep [i] . x ;
72 q . y :=p . y+Lep [i] . y ;
73 i f L[q . x , q . y]=0 then begin { i t t még nem jártunk }
74 L[q . x , q . y] : = i +1; { a l é p é s b e j e g y z é s e }
75 Sorba (q) ; {q−t b e t e s s z ü k az a k t í v pontok sorába }
76 end ;
77 end { f o r i } ;
78 end { whi l e } ;
79 end { Bejar } ;

80 procedure UtKiIro ;
81 { Global : Xc , Yc , L}
82 Var KiF : Text ;
83 Ut : array [1 . .MaxMN] of 1 . . 4 ;
84 Tav , x , y , i : i n t e g e r ;
85 begin
86 Assign (Kif , ’ l a b i r i n t . k i ’) ; Rewrite (Kif) ;
87 i f L[Xc , Yc] >0 then begin { van út a c é l b a }
88 Tav : = 0 ;
89 x :=Xc ; y :=Yc ;
90 whi le L[x , y] >1 do begin
91 l e p e s :=L[x , y]−1;
92 x := x+VLep [l e p e s] . x ;
93 y := y+VLep [l e p e s] . y ;
94 i n c (Tav) ;
95 Ut [Tav] : = l e p e s ;
96 end { whi l e } ;
97 WriteLn (Kif , Tav) ; { az út hosszának k i í r a t á s a }
98 f o r i := Tav downto 1 do
99 w r i t e (KiF , Ut [i] , ’ ’) ;

100 writeLn (KiF) ;
101 end Else
102 WriteLn (Kif , ’ Nincs út ’) ;
103 Close (Kif) ;
104 end { UtKiIro } ;

105 begin { Program }
106 Beolvas ;
107
108 f o r x :=1 to M Do begin { i n i c i a l i z á l á s }
109 L[x , 0] : = 1 ; L[x ,M+1]:=−1; { k e r e t a t á b l a köré }
110 end ;
111 f o r y :=1 to N Do begin

4

112 L[0 , y] : = 1 ; L[N+1 , y]:=−1;
113 end ;
114 L[Xk , Yk] : = 1 ; { a kezdőpontban már jártunk }
115
116 Bejar (Xk , Yk) ;
117
118 UtKiIro ;
119 end .

6.2. Feladat: Mérőkannák
Egy gazdának két kannája van, az egyik A literes, a másik pedig B. Szeretne kimérni pontosan L liter vizet. Az alábbi műveleteket
lehet végezni a kimérés során:

1. Az A-literes kanna teletöltése

2. A B-literes kanna teletöltése

3. Az A-literes kanna kiürítése

4. A B-literes kanna kiürítése

5. Áttöltés az A-literesből a B-literesbe (amíg az tele nem lesz, ill. van A-ban)

6. Áttöltés a B-literesből az A-literesbe (amíg az tele nem lesz, ill. van B-ben)

Adjunk olyan algoritmust, amely meghatároz egy (legkevesebb lépésből álló) kimérést!

Bemenet
A kimer.be szöveges állomány első sora a két egész számot tartalmaz, a két kanna ürtartalmát: AB(0 < A,B <= 200). A második
sor a kimérendő mennyiséget tartalmazza.

Kimenet
A kimer.ki szöveges állomány első sora a kimérés lépéseinek (minimális) m számát tartalmazza. A második sor pontosan m
egész számot tartalmazzon egy-egy szóközzel elválasztva, a kimérés lépéseit.

Példa bemenet és kimenet
bemenet

9 4
6

kimenet

8
1 5 4 5 4 5 1 5

5

kezdő állapot: (0,0)
1 öntéssel kapható állapotok: (9,0) (0,4)
2 öntéssel kapható állapotok: (9,4) (5,4) (4,0)
3 öntéssel kapható állapotok: (5,0) (4,4)
4 öntéssel kapható állapotok: (1,4) (8,0)
5 öntéssel kapható állapotok: (1,0) (8,4)
6 öntéssel kapható állapotok: (0,1) (9,3)
7 öntéssel kapható állapotok: (9,1) (0,3)
8 öntéssel kapható állapotok: (6,4) (3,0)
9 öntéssel kapható állapotok: (6,0) (3,4)
10 öntéssel kapható állapotok: (2,4) (7,0)
11 öntéssel kapható állapotok: (2,0) (7,4)
12 öntéssel kapható állapotok: (0,2) (9,2)

Megoldás
Minden állapot azonosítható egy (x,y) számpárral (0≤ x≤ A, 0≤ y≤ B).
A kezdő állapot (0,0).
Az öntögetés során tudnunk kell, hogy adott (x,y) állapotot elértük-e már?
Továbbá, ha elő is kell állítani egy öntési sorrrendet, akkor most nem elég azt tudni, hogy egy állapot melyik lépéssel keletkezett.
Valóban, pl. ha a (6,4) állapot az 5. lépéssel keletkezett, akkor az előző állapot lehetett (9,1),(8,2) vagy (7,3). Tehát minden
elért állapothoz tároljuk azt az állapotot, amelyből keletkezett. Vegyünk egy EA tömböt, és EA[x,y].x = 0, ha az (x,y) állapotot
még nem értük el, egyébkét az állapotot, amelyből keletkezett.

1 program MeroKannak ;
2 c o n s t
3 MaxV=200;
4 SorMeret =5000;
5 type
6 A l l a p o t = record x , y : i n t e g e r end ;
7 Sor=record
8 e l e j e , vege :Word; Tar : array [1 . . SorMeret] o f A l l a p o t ;
9 end ;

10 var
11 A, B , L:Word;
12 EA: array [0 . . MaxV , 0 . . MaxV] of A l l a p o t ;
13 S : Sor ;
14
15 procedure Sorba (var S : Sor ; v : A l l a p o t) ;
16 begin
17 S . Tar [S . vege] : = v ; Inc (S . vege) ;
18 end ;
19 procedure Sorbol (var S : Sor ; var v : A l l a p o t) ;
20 begin
21 v :=S . Tar [S . e l e j e] ; Inc (S . e l e j e) ;
22 end ;

23 procedure Beolvas ;
24 var
25 BeF : Text ;
26 begin
27 Assign (BeF , ’ kimer . be ’) ; Reset (BeF) ;
28 ReadLn (BeF , A, B) ;
29 ReadLn (BeF , L) ;
30 Close (BeF) ;
31 end { Beolvas } ;

32 procedure Szamit ;

6

33 var
34 x , y :Word;
35 U,V: A l l a p o t ;
36 begin { }
37 f o r x :=0 to A do
38 f o r y :=0 to B do EA[x , y] . x :=−1;
39 S . e l e j e : = 1 ; S . vege : = 1 ;
40 EA[0 , 0] . x : = 0 ;
41 U. x : = 0 ; U. y : = 0 ;
42 Sorba (S ,U) ;
43 whi le (S . e l e j e <S . Vege) do begin
44 Sorbol (S ,U) ;
45 i f (U. x=L) then break ; { kész , a kímérendő van a A−kannában }
46 i f EA[A,U. y] . x<0 then begin { 1 . l é p é s }
47 V. x :=A; V. y :=U. y ;
48 EA[V. x ,V. y] : =U;
49 Sorba (S ,V) ;
50 end ;
51 i f EA[U. x , B] . x<0 then begin { 2 . l é p é s }
52 V. x :=U. x ; V. y :=B;
53 EA[V. x ,V. y] : =U;
54 Sorba (S ,V) ;
55 end ;

56 i f EA[0 ,U. y] . x<0 then begin { 3 . l é p é s }
57 V. x : = 0 ; V. y := y ; EA[V. x ,V. y] : =U;
58 Sorba (S ,V) ;
59 end ;
60 i f EA[U. x , 0] . x<0 then begin { 4 . l é p é s }
61 V. x :=U. x ; V. y : = 0 ; EA[V. x ,V. y] : =U; Sorba (S ,V) ;
62 end ;
63 i f U. x+U. y<=B then begin { ö n t é s A−ból B−be }
64 V. x : = 0 ; V. y :=U. x+U. y ;
65 end e l s e begin
66 V. x :=U. x−(B−U. y) ; V. y :=B;
67 end ;
68 i f EA[V. x ,V. y] . x<0 then begin { 5 . l é p é s }
69 EA[V. x ,V. y] : =U; Sorba (S ,V) ;
70 end ;
71 i f U. x+U. y<=A then begin { ö n t é s B−bő l A−ba }
72 V. y : = 0 ; V. x :=U. x+U. y ;
73 end e l s e begin
74 V. y :=U. y−(A−U. x) ; V. x :=A;
75 end ;
76 i f EA[V. x ,V. y] . x<0 then begin { 6 . l é p é s }
77 EA[V. x ,V. y] : =U; Sorba (S ,V) ;
78 end ;
79 end { whi l e az S sor nem üres } ;
80 end { Szamit } ;

81 procedure KiIr ;
82 c o n s t
83 maxA=10000;
84 var KiF : Text ;
85 x , y ,m, i , l e p e s : i n t e g e r ;
86 Lehet : boolean ;
87 szep : s t r i n g ;
88 U,V: A l l a p o t ;

7

89 Lepsor : array [1 . . MaxA] of A l l a p o t ;
90 begin
91 Assign (KiF , ’ kimer . k i ’) ; Rewrite (KiF) ;
92 l e h e t := f a l s e ;
93 f o r y :=0 to B do i f EA[L , y] . x>0 then begin
94 l e h e t := true ; U. y := y ;
95 break ;
96 end ;
97 i f not l e h e t then begin
98 w r i t e l n (KiF , 0) ;
99 c l o s e (KiF) ; e x i t ;

100 end ;
101 U. x :=L; m: = 0 ;
102 whi le (U. x < >0) or (U. y < >0) do begin
103 i n c (m) ;
104 LepSor [m] : =U;
105 U:=EA[U. x ,U. y] ;
106 end ;
107 U. x : = 0 ; U. y : = 0 ;
108 w r i t e l n (KiF ,m) ;
109 szep := ’ ’ ;
110 f o r i :=m downto 1 do begin
111 V:= LepSor [i] ;
112 i f (V. x=A) and (U. y=V. y) then begin
113 l e p e s : = 1 ;
114 end e l s e i f (U. x=V. x) and (V. y=B) then begin
115 l e p e s : = 2 ;
116 end e l s e i f (V. x =0) and (U. y=V. y) then begin
117 l e p e s : = 3 ;
118 end e l s e i f (U. x=V. x) and (V. y =0) then begin
119 l e p e s : = 4 ;
120 end e l s e i f (V. x =0) and (V. y=U. x+U. y) or (V. x=U. x−(B−U. y)) and (V. y=B) then begin
121 l e p e s : = 5 ;
122 end e l s e begin
123 l e p e s : = 6 ;
124 end ;
125 w r i t e (KiF , szep , l e p e s) ;
126 szep := ’ ’ ;
127 U:=V;
128 end { f o r i−} ;
129 w r i t e l n (KiF) ; Close (KiF) ;
130 end { KiIr } ;

131
132 begin
133 Beolvas ;
134 Szamit ;
135 KiIr ;
136 end .

6.3. Gráf adattípus, gráfok ábrázolása6.3.1. Definíciók

1. Irányítatlan gráf:G = (V,E)
E rendezetlen {a,b},a,b ∈V párok halmaza.
2. Irányított gráf:G = (V,E)
E rendezett (a,b) párok halmaza; E ⊆V ×V .
3. Multigráf:

8

2

1

4

5 6 7

8

3

3. ábra. Példa gráf

G = (V,E, Ind,Érk), Ind,Érk : E→V
Ind(e) az e él induló, Érk(e) az érkező pontja.
Címkézett (súlyozott) gráf:G = (V,E,C)
C : E→ Címke
Minden irányítatlan G = (V,E) gráf olyan irányított gráfnak tekinthető, amelyre teljesül, hogy (∀p,q ∈V)((p,q) ∈ E⇒ (q, p) ∈
E).
Jelölések
KiEl(G, p) = {q ∈V : (p,q) ∈ E}
BeEl(G, p) = {q ∈V : (q, p) ∈ E}
KiFok(G, p) = |Ki(G, p)|
BeFok(G, p) = |Be(G, p)|

6.3.2. Műveletek gráfokon

A továbbiakban feltételezzük, hogy a gráf pontjait természetes számokkal azonosítjuk, pontosabban V ⊆ {1, . . . ,n}
Milyen műveleteket akarunk gráfokon végezni?

• Pontokszama

• Elekszama

• KiFok(p)

• BeFok(p)

• PontBovit(p)

• PontTorol(p)

• ElBovit(p, q)

• ElTorol(p, q)

• VanEl(p, q)

• for q in KiEl(p) do M(p,q)

6.3.3. Gráfok ábrázolásai

Szempontok az adatszerkezet megválasztásához.

1. Az adott probléma megoldásához ténylegesen mely műveletek szükségesek.

2. Melyek a releváns műveletek, amelyek alapvetően befolyásolják az algoritmus futási idejét.

3. A tárigény az adott probléma esetén.

9

2

1

4

5 6 7

8

3

4. ábra. Példa gráf

1 2

3

3

1 2

1 3

2 3

3 5

.

1 2

31

32 2
3 5

Graf.txt

3 6

4

4

1

7

5 2
5

5

6

8

6 2
7
8

6
6

7 3

8 7

1

ESz=15

3 6

4

4 7

7

8 7

3

8

5 2
5 6

5

0 0

3 6

4 1

4 7

5 2

5 6

5 8

6 2

6 7

6 8

7 3

8 7.

3 5

1

8

26
6

6

7

Éltömb Éllánc

5. ábra. Élhalmaztömb és élhalmazlánc

10

1. Élhalmaztömb és élhalmazlánc

2. Kapcsolatmátrix (szomszédsági mátrix)

1

3

4

5

6
7

8
9

1 3 7

2

2 4 65 8 9

1 1
1

G

1 1

1 1

1 1 1

1 1 1

1

1

6. ábra. Kapcsolatmátrix

1 c o n s t
2 maxP=1000; / / a pontok max . száma
3 type
4 Graf=array [1 . . maxP , 1 . . maxP] o f boolean ;
5 CGraf=array [1 . . maxP , 1 . . maxP] o f i n t e g e r ;

(p,q) akkor és csak akkor éle a gráfnak, ha G[p,q] = true.
Címkézett gráf esetén választani kell egy nem ∈Cimke értéket, amely nem fordul elő semmilyen él címkéjeként. (p,q) akkor és
csak akkor éle a címkézett gráfnak, ha G[p,q]! = nem, és a (p,q) él címkéjének értéke G[p,q].
3. Élhalmaz-tömb

1

2

3

4

5

6

7

8

9

2 3

31 2 4 5 6 7 8 9

3

0

0

0

KiFokG

2
1

1

0

2
3

5 6 0

1 7 0

2 6 8 0

03

7 0

1

2

0872 3

7. ábra. Gráf ábrázolása élhalmaz-tömbbel

1 c o n s t
2 maxP=1000; / / a pontok max . száma
3 type
4 Graf=array [1 . . naxP , maxP] o f i n t e g e r ;
5 KiFok=array [1 . . naxP] o f i n t e g e r ;

A Ki(G, p) halmaz bejárása:

11

1 f o r i :=1 to KiFok [p] do begin
2 q:=G[p , i] ;
3 M(p , q) ;
4 end ;

4. Élhalmaz-lánc

1

2

3

4

5

6

7

8

9

..

.

.

.

.

.

2 3

3

5

1

6 8

6

7

2

2

7 8 .

.

3

7

.

8. ábra. Gráf ábrázolása élhalmaz-lánccal

a.) Statikus élhalmaz-lánc

1 c o n s t
2 maxP=1000; / / a pontok max száma
3 maxE=100000; / / az é l e k max . száma
4 type
5 Lanc= l o n g i n t ;
6 C e l l a =record pont . i n t e g e r ; c s a t : Lanc end ;
7 Graf=array [1 . . naxP] o f Lanc ;
8 Elek : array [1 . . maxE] o f C e l l a ;

b.) Dinamikus élhalmaz-lánc

1 c o n s t
2 maxP=1000;
3 type
4 Lanc=^ C e l l a ;
5 C e l l a =record pont . i n t e g e r ; c s a t : Lanc end ;
6 Graf=array [1 . . naxP] o f Lanc ;

5. Számított gráf
Az élek halmazát explicite nem tároljuk, mert van olyan számítási eljárás, amely bármely két p,q∈V -re kiszámítja VanEl(p,q)-t.

12

Vagy, van olyan számítási eljárás, amely minden p ∈V -re kigenerálja a Ki(G, p) halmaz elemeit.

6.4. Elemi gráfalgoritmusok
6.4.1. Utak

Legyen G = (V,E) irányított (irányítatlan) gráf.

6.1. definíció. p,q ∈V -re egy p-ből q-ba vezető út G-ben, jele: π : p q, olyan
π = 〈p0, p1, · · · , pk〉 pontsorozat, ahol
pi 6= p j, ha i 6= j, p = p0 és q = pk, továbbá
p = q = p0, vagy (∀i ∈ {1, . . . ,k}) ((pi−1, pi) ∈ E).

6.2. definíció. A π = p q út hossza, |π|= |p q|= k

6.3. definíció. p-ből q-ba vezető legrövidebb út hossza, p és q távolsága:

δ(p,q) =
{

∞ ha nincs p q
Min{|π : p q|} π : p q (1)

6.4. definíció. A π = 〈p0, p1, · · · , pk〉 pontsorozatot a p0-ból pk-ba vezető sétának nevezzük, ha (∀i ∈ {1, . . . ,k})(pi−1, pi) ∈ E

6.5. definíció. Ha G = (V,E,C) élei a C : E→ R függvénnyel súlyozottak, akkor a p q út hossza
|p q|= ∑

k
i=1 C(pi−1, pi).

A p és q pont távolsága:

δ(p,q) =
{

∞ ha nincs p q
Min{|π : p q|} π : p q (2)

6.6. definíció. A G = (V,E) (irányítatlan) gráfnak az F = (V ,E) gráf a r ∈V gyökerű feszítőfája, ha
1. F részgráfja G-nek (V ⊆V,E ⊆ E,) és fa.
2. (∀p ∈V) ha van r p G-ben, akkor és csak akkor, ha van r p F-ben.

6.7. definíció. A G = (V,E) (irányítatlan, súlyozott) gráfnak az F = (V ,E) gráf a r ∈ V gyökerű legrövidebb utak feszítőfája
(LUF), ha
1. F r-gyökerű feszítőfája G-nek, és
2. ∀p ∈V -ra δG(r, p) = δF(r, p).

Útproblémák
1. Adott p,q ∈V -re van-e p q út?

2. Adott p-re az Elr(p) = {q : p q} halmaz kiszámítása.

3. Adott p,q ∈V -re δ(p,q) és egy p q legrövidebb út kiszámítása.

4. Egy pontból induló legrövidebb utak : adott p-re minden q-ra δ(p,q) és egy p q legrövidebb út kiszámítása.

5. Minden p,q pontpárra δ(p,q) és egy p q legrövidebb út kiszámítása.

13

6.4.2. Szélességi keresés

Bemenet: G = (V,E) (irányított vagy irányítatlan) gráf és egy r ∈V pont.
Kimenet: D : V → N, Apa : V →V , hogy
D(p) = δ(r, p) és
az F = (V ,E) gráf, ahol
V = {p : Apa(p) 6= null∨ p = r},
E = {(p,q) : Apa(q) = p∧ p 6= null}
r-gyökerű LUF.

1 procedure S z e l t B e j a r (p : PontTip) ;
2 / / p−bő l ind u ló l e g r ö v i d e b b utak meghatározása
3 { Global :G, N, D, Apa }
4 var
5 S : SorTip ;
6 u , v : PontTip ;
7 i :Word;
8 begin { S z e l t B e j a r }
9 f o r u:=1 to N do D[u] : = I n f ; { i n i c i a l i z á l á s }

10 D[p] : = 0 ; Apa [p] : = 0 ;
11 U r e s i t (S) ;
12 Sorba (S , p) ;
13
14 whi le NemUres (S) do begin
15 SorBol (S , u) ;
16 f o r i :=1 To KiFok [u] Do Begin { u −> v é l r e }
17 v :=G[u , i] ;
18 i f D[v]= I n f then begin { ha v meg nem e l é r t }
19 Apa [v] : = u ;
20 D[v] : =D[u] + 1 ;
21 Sorba (S , v) ;
22 end ;
23 end { f o r u−>v } ;
24 end { whi l e } ;
25 end { S z e l t B e j a r } ;

6.4.3. Mélységi keresés

1 procedure MelyBejar (p : PontTip) ;
2 / / p−bő l e l é r h e t ő pontok meghatározása
3 { Global :G, N, Apa }
4 var
5 q : PontTip ;
6 i :Word;
7 begin { MelyBejar }
8 f o r i :=1 To KiFok [p] Do Begin { p −> q é l r e }
9 q:=G[u , i] ;

10 i f Apa [q] <0 then begin { ha q meg nem e l é r t }
11 Apa [q] : = p ;
12 MelyBejar (q) ;
13 end ;
14 end { f o r p−>q} ;
15 end { MelyBejar } ;

6.5. Feladat: Terv
Egy nagyszabású építkezés terve n különböző munka elvégzését írja elő. Minden munkát egy nap alatt lehet elvégezni. Egy napon
több munkát is el lehet végezni párhuzamosan, feltéve, hogy a megelőzési feltételt betartjuk. Ez ezt jelenti, hogy vannak olyan

14

előírások, hogy egy adott a munka elvégzése meg kell, hogy előzze más adott b munka elégzését. Tehát a b munkát csak akkor
lehet elkezdeni, ha már az a munkát befejeztük.

Kiszámítandó, hogy a teljes építkezést legkevesebb hány nap alatt lehet befejezni!

Bemenet
A terv.be szöveges állomány első sora két egész számot tartalmaz, az elvégzendő munkák n számát (1 ≤ n ≤ 200), és a
megelőzési előírások m számát (0≤ m≤ 10000).

Kimenet
A terv.ki szöveges állomány első sora az összes munka elvégzéséhez szükséges napok k számát tartalmazza. Ha a megelőzési
előírások miatt nem lehet elvégezni az összes munkát, akkor az első ás egyetlen sorba a 0 számot kell írni. A további k sor
mindegyike egy napon elvégzendő munkák sorszámait tartalmazza egy-egy szóközzel elválasztva.

Példa bemenet és kimenet
bemenet

12 16
4 2
5 2
7 3
7 8
2 1
2 11
2 12
3 12
3 10
3 6
3 8
1 10
6 9
8 9
10 11
10 9

kimenet

5
4 5 7
2 3
1 12 6 8
10
11 9

12

1

2

3

4

5

6
7

8

9

10

11

9. ábra. A példa bemenet ábrája.

Megoldás

Elvi algoritmus.
Legyen G = (V,E) az a gráf, amelynek pontjai a munkák és élei a megelőzési feltételek.

M1 := {v ∈V : BeFok(v) = 0}; {az első napi munkák }
while (M1 6= /0) and (V 6= /0)do begin

15

KiIr(M1);
V := V −M1 ;
töröljük az E élekből minden olyan p→ q élet, amelyre p ∈M1;
M1 := {v ∈V : BeFok(v) = 0};

end

Akkor és csak akkor van megoldás, ha a megelőzési feltétel nem tartalmaz kört. Hogyan deríthető ez ki a fenti algoritmus során?
Ha van kör, akkor a fenti algoritmusban az ismétlés úgy ér véget, hogy M1 = /0 de V 6= /0. Fordítva is igaz, tehát ha az ismétlés
úgy ér véget, hogy utána V 6= /0, akkor van kör, mert nincs 0-befokú pont a megmaradtak között. Tehát elég megszámolni, hogy
hány pont kerül bele az M1 halmazokba.
A megelőzési előírások (gráfjának) ábrázolása.
Milyen műveleteket kell végezni?
Adott u-ra (hatékonyan) meg kell tudni adni mindazon v-ket, amelyeket u megelőz.
Jelölje ezek halmazát Ki[u]. Vegyünk egy G tömböt, amelynek G[u] eleme olyan lánc fejére mutat, amely lánc a Ki[u] halmaz
elemeit tartalmazza.

G

12

11

10

9

8

7

6

5

4

3

2

1 10

1 12 11

12 10 6 8

2

2

9

3 8

9

11 9

10. ábra. A példa megelőzési előírásainak ábrázolása láncokban.

1 program Terv ;
2 c o n s t
3 MaxN=10000;
4 type
5 Pont = 1 . .MaxN;
6 Lanc=^ C e l l a ;
7 C e l l a =record oda : Pont ; c s a t : Lanc end ;
8 Graf=array [1 . . MaxN] of Lanc ;
9 var

10 N,M:Word;
11 G: Graf ;
12 Beosz t : array [1 . . 2 ΛMaxN] of 0 . . MaxN;

16

13 BeFok : array [1 . . MaxN] of 0 . . MaxN;
14 Nap :Word;

15 procedure Beolvas ;
16 var
17 BeF : Text ;
18 i , u , v : i n t e g e r ;
19 Guv: Lanc ;
20 begin
21 Assign (BeF , ’ t e r v . be ’) ; Reset (BeF) ;
22 ReadLn (BeF , N, M) ;
23
24 f o r u:=1 to N do begin
25 G[u] : = N i l ;
26 Befok [u] : = 0 ;
27 end ;
28 f o r i :=1 to M do begin
29 Readln (BeF , u , v) ;
30 New(Guv) ; { új c e l a l é t e s í t é s e }
31 Guv^. oda := v ; { az u−>v é l f e l v é t e l e a láncba : }
32 Guv^. c s a t :=G[u] ; { a Guv c e l l a bekapcso lása a G[u]− l ánc e l e j é r e }
33 G[u] : = Guv;
34 end { f o r i } ;
35
36 Close (BeF) ;
37 end { Beolvas } ;

38 procedure Szamit ;
39 var
40 i , e l e j e , vege , p , q :Word;
41 El : Lanc ;
42 begin
43 Nap : = 0 ; vege : = 0 ;
44 f o r i :=1 to N do { a 0−megel őzöjüek halmazának k i s z á m í t á s a }
45 i f Befok [i]=0 then begin
46 Inc (vege) ;
47 Beosz t [vege] : = i ;
48 end ;
49 Inc (vege) ;
50 Beosz t [vege] : = 0 ;
51 e l e j e : = 1 ;

52 whi le True do begin
53 Inc (Nap) ;
54 whi le Beosz t [e l e j e]<>0 do begin
55 p:= Beosz t [e l e j e] ;
56 Inc (e l e j e) ;
57 El :=G[p] ;
58 whi le El <> n i l do begin { a p−>q é l e k f e l d o l g o z á s a }
59 q:= El ^ . oda ; El := El ^ . c s a t ;
60 Dec (BeFok [q]) ;
61 i f BeFok [q]=0 then begin {q f e l v é t e l e az akt . napra }
62 Inc (vege) ;
63 Beosz t [vege] : = q ;
64 end ;
65 end { whi l e El } ;
66 end { whi l e e l e j e } ;
67 i f vege= e l e j e then Break ;

17

68 Inc (vege) ;
69 Beosz t [vege] : = 0 ;
70 Inc (e l e j e) ;
71 end { whi l e } ;
72 end { Szamit } ;

73 procedure KiIr ;
74 var i , ind :Word;
75 KiF : Text ;
76 begin
77 Assign (KiF , ’ t e r v . k i ’) ; Rewrite (KiF) ;
78 i f Jok<>N then Nap : = 0 ;
79 WriteLn (KiF , Nap) ;
80 ind : = 1 ;
81 f o r i :=1 to Nap do begin
82 r ep ea t
83 Write (KiF , Beosz t [ind] , ’ ’) ;
84 Inc (ind)
85 u n t i l Beosz t [ind] = 0 ;
86 Inc (ind) ;
87 WriteLn (KiF) ;
88 end { f o r i } ;
89 Close (KiF) ;
90 end { KiIr } ;
91
92 begin { Program }
93 Beolvas ;
94 Szamit ;
95 KiIr ;
96 end .

6.6. Feladat: Első Képtárlátogatás
Egy sok teremből álló képtárban teszünk látogatást. Tudjuk, hogy a főbejárattól a képtár bármely termébe pontosan egy útvonalon
keresztül lehet eljutni.
Adjunk olyan bejárási stratégiát, amely biztosítja, hogy minden terembe eljutunk (minden képet pontosan egyszer nézünk meg)!

12

1

3

4

8

9 5 2

10 6

7 11

11. ábra. Egy képtár alaprajza

18

Megoldás
A fal mellett mindig jobbra haladjunk. A lényeg, hogy adott teremből közvetlenül melyik termekbe tudok átmenni. Az alaprajz

1

3

8

59 2

10 6

7 12

4

11

12. ábra.

ábráján kössük össze egyenes szakasszal az olyan teremsorszám-párokat, amelyek között van ajtó (tehát közvetlenül át lehet
menni egyikből a másikba).

6.7. Feladat: Második Képtárlátogatás
Ha a képtár nem teljesíti azt a feltételt, hogy bármely két terem között pontosan egy útvonal létezik (a gráfja fa), akkor nem
alkalmazható a "fal mellett mindig jobbra" el. Az ábrán látható képtár esetén a 3. terembe nem jutnánk el. Fogalmazzuk meg
pontosan a megoldandó feladatot.
Bemenetként adott egy képtár termeinek leírása, amely tartalmazza minden teremre, hogy abból közvetlenül melyik termekbe
lehet átmenni. Feltesszük, hogy n terem esetén a termeket az 1, . . . ,n számokkal azonosítjuk, a bejáratot tartalmazó terem
azonosítója 1.
A kimenet a termek sorszámaiból álló olyan 〈a1,a2, · · · ,am〉 számsorozat, amely megadja, hogy a bejárattól indulva milyen sor-
rendben kell haladnunk a képtárban, hogy minden terembe eljussunk, és a sétát a bejáratot tartalmazó 1. teremben fejezzük be.
Tehát 〈a1,a2, · · · ,am〉 számsorozatra az alábbiak teljesülnek:

• a1 = 1 és am = 1

• Minden i-re az ai teremből van ajtó az ai+1 terembe (1≤ i < m).

• Minden 1 és n közötti szám legalább egyszer előfordul a sorozatban.

Bemenet
A keptar.be szöveges állomány első sora a termek n (1≤ n≤ 500)számát tartalmazza. A következő n sor mindegyike egy terem
szomszédos termeit adja meg. Az i + 1-edik sorban azon termek sorszámai vannak felsorolva (egy-egy szóközzel elválasztva)
0-val zárva, amelyekbe nyílik ajtó az i-edik teremből.

Kimenet
A keptar.ki szöveges állomány egy megoldást tartalmazzon. Több megoldás esetén bármelyik megadható.

19

4

3

8

9 5 2

10 6

7 11

1

12

13. ábra.

4

3

8

9 5 2

10 6

7 11

1

12

14. ábra.

20

4

3

8

9 5 2

10 6

7 11

1

12

15. ábra. A "fal mellett mindig jobbra" elv alkalmazása.

8

6

4

3
5

2 1

7

9

16. ábra.

21

Példa bemenet és kimenet
bemenet

9
2 4 7 9 8 0
3 5 4 1 0
2 5 4 0
3 2 1 0
2 3 0
8 0
1 0
1 6 0
1 0

kimenet

1 2 3 4 3 5 3 2 1 7 1 9 1 8 6 8 1

Megoldás
• Mit kell tudnunk?

1. Jártunk-e már az adott teremben?

2. Melyik teremből léptünk először az adott terembe?

Minden p teremre Honnan(p) legyen annak a teremnek a száma, amelyből először lépünk a p terembe. Kezdetben legyen minden
p-re Honnan(p) = 0. Így ha a p teremben vagyunk, és a q terembe vezet ajtó, a Honnan(q) értéke alapján el tudjuk dönteni, hogy
jártunk-e q-ban.

22

Az algoritmus:

1 at = 1; / / az a k t u á l i s terem
2 Honnan (1) = −1; / / az u t c á r ó l léptünk a f ő b e j á r a t termébe
3 whi le (a t != −1) do begin / / amíg v i s s z a nem értünk a b e j á r a t / k i j á r a t h o z
4 i f (at−nek van q benemjárt szomszédos terme) then begin
5 Honnan (q) = at ;
6 at = q ;
7 end e l s e
8 at = Honnan (a t) ;
9 end

1 program Keptar ;
2 c o n s t
3 MaxN=500;
4 var
5 N, i , a t : i n t e g e r ;
6 G: array [1 . . MaxN, 1 . . MaxN] of i n t e g e r ;
7 Honnan , Ki , Fok : array [1 . . MaxN] of i n t e g e r ;
8 KiF : Text ;
9 procedure BeOlvas ;

10 var i , x , y : i n t e g e r ;
11 BeF : Text ;
12 begin
13 Assign (BeF , ’ keptar . be ’) ; Reset (BeF) ;
14 ReadLn (BeF ,N) ;
15 f o r i :=1 to n do begin
16 Fok [i] : = 0 ;
17 Read (BeF , x) ;
18 whi le (x < >0) do begin
19 i n c (Fok [i]) ;
20 G[i , Fok [i]] : = x ;
21 read (BeF , x) ;
22 end ;
23 end ;
24 Close (BeF) ;
25 end { Beolvas } ;

26 begin { Program }
27 Beolvas ;
28 Assign (KiF , ’ keptar . k i ’) ; Rewrite (KiF) ;
29 f o r i :=1 to n do begin
30 Honnan [i] : = 0 ;
31 Ki [i] : = 0 ;
32 end ;
33 at : = 1 ; Honnan [1] :=−1;
34
35 whi le at >0 do begin
36 w r i t e (KiF , at , ’ ’) ;
37 r ep ea t
38 i n c (Ki [a t]) ;
39 u n t i l (Ki [a t] >Fok [a t]) or (Honnan [G[at , Ki [a t]]] = 0) ;
40 i f Ki [a t] <=Fok [a t] then begin
41 Honnan [G[at , Ki [a t]]] : = a t ;
42 at :=G[at , Ki [a t]] ;
43 end e l s e
44 at :=Honnan [a t] ;
45 end { whi l e } ;

23

46
47 c l o s e (KiF) ;
48 end .

8

6

4

3
5

2 1

7

9

17. ábra.

8

6

4

3
5

2 1

7

9

18. ábra. A képtár gráfja

8

6

4

3
5

2 1

7

9

19. ábra. Egy teljes körséta: 1 2 3 4 3 5 3 2 1 7 1 9 1 8 6 8 1. A p→ Honnan[p] élek egy feszítőfát adnak.

Rekurzív megvalósítás

1 program Keptar1 ;
2 c o n s t
3 MaxN=500;
4 var
5 N,M:Word;
6 G: array [1 . . MaxN, 1 . . MaxN] of i n t e g e r ;
7 Apa , Fok : array [1 . . MaxN] of i n t e g e r ;
8 i : i n t e g e r ;
9 KiF : Text ;

24

10 procedure BeOlvas ;
11 var i , x , y : i n t e g e r ;
12 BeF : Text ;
13 begin
14 Assign (BeF , ’ keptar . be ’) ; Reset (BeF) ;
15 ReadLn (BeF ,N) ;
16 f o r i :=1 to n do begin
17 Fok [i] : = 0 ;
18 Read (BeF , x) ;
19 whi le (x < >0) do begin
20 i n c (Fok [i]) ;
21 G[i , Fok [i]] : = x ;
22 read (BeF , x) ;
23 end ;
24 end ;
25 Close (BeF) ;
26 end { Beolvas } ;

27 procedure MelyBejar (p : i n t e g e r) ;
28 { Global : G, Fok , Apa}
29 var
30 i , q : i n t e g e r ;
31 begin
32 f o r i :=1 to Fok [p] do begin
33 q:=G[p , i] ;
34 i f Apa [q] <0 then begin {q−ban még nem jártunk }
35 Apa [q] : = p ; {p−bő l j ö t t ü n k q−ba }
36 w r i t e (KiF , ’ ’ , q) ; { át lépünk q−ba }
37 MelyBejar (q) ; {q−ból e l é r h e t ő k b e j á r á s a }
38 w r i t e (KiF , ’ ’ , p) ; { v i s s z a k e l l menni p−be }
39 end ;
40 end { f o r i } ;
41 end { MelyBejar } ;

42 begin { Program }
43 Beolvas ;
44 Assign (KiF , ’ keptar1 . k i ’) ; Rewrite (KiF) ;
45 f o r i :=1 to n do begin
46 Apa [i]:=−1;
47 end ;
48 Apa [1] : = 0 ;
49 w r i t e (KiF , 1) ;
50 MelyBejar (1) ;
51 c l o s e (KiF) ;
52 end .

6.8. Feladat: Iskolahálózat (IOI’96)
Néhány iskola számítógépes hálózatba van kötve. Az iskolák a szabadon terjeszthető programok elosztására megállapodást kötöt-
tek: minden iskola egy listát vezet azokról az iskolákról ("szomszédairól"), amelyek számára a programokat továbbküldi. Megje-
gyzés: ha B iskola szerepel az A iskola terjesztési listáján, akkor A nem feltétlenül szerepel B terjesztési listáján.

Írjon programot, amely meghatározza azt a legkisebb számot, ahány iskolához egy új programot el kell juttatni ahhoz, hogy -
a megállapodás alapján, a hálózaton keresztül terjesztve - végül minden iskolába eljusson.

Bemenet
Az INPUT.TXT állomány első sora egy egész számot, a hálózatba kapcsolt iskolák n számát tartalmazza (2 ≤ n ≤ 200). Az
iskolákat az első n pozitív egész számmal azonosítjuk. A következő n sor mindegyike egy-egy terjesztési listát ír le. Az i+1-edik

25

sor az i-edik iskola terjesztési listáján szereplő iskolák azonosítóit tartalmazza. Minden lista végén egy 0 szám áll. Az üres lista
csak egy 0 számból áll.

Kimenet
A program az eredményt, amely két sorból áll, az OUTPUT.TXT nevű fájlba kell írja. Az első sor egy pozitív egész számot,
azt a legkisebb m számot, ahány iskolához egy új programot el kell juttatni ahhoz, hogy - a megállapodás alapján, a hálózaton
keresztül terjesztve - végül minden iskolába eljusson. A második sorban kell megadni az m kiválasztott iskolát, egy-egy szóközzel
elválasztva.

Példa bemenet és kimenet
bemenet

13
2 0
3 0
1 4 9 0
1 0
10 6 0
7 0
5 8 0
13 0
10 0
11 12 0
9 0
13 0
12 0

kimenet

2
2 5

Megoldás
Jelölje G = (V,E); V = {1, . . . ,n} az iskolahálózat gráfját.
Legyen D⊆V egy megoldáshalmaz, tehát

(∀q ∈V)(∃p ∈ D)(p q)

A D halmazt lépésenként építhetjük:
Adott p ∈V pontra jelölje Eler(p) a p pontból elérhető pontok halmazát:

Eler(p) = {q : p q}

Terjesszük ki ezt halmazokra:

Eler(D) =
⋃
p∈D

Eler(p)

begin
D := /0;
DbolElert := /0;
for p ∈V do

if p /∈ DbolElert then begin
D := D−Eler(p)

⋃
{p}

DbolElert := DbolElert
⋃

Eler(p)
end

end

Az Eler(p) halmaz elemei mélységi bejárással kiszámíthatók.
Az algoritmus futási ideje legrosszabb esetben O(n3).
Az algoritmus legrosszabb esete, ha a bemenetben p szomszédai: {1,2, . . . , p− 1}. Ha n 1000 is lehet, akkor ez az algoritmus
biztosan nem elég gyors megoldás.

Gyorsítási ötlet: elsőször rakjuk a pontokat olyan sorrendbe, hogy ha p q, de nincs q p, akkor p előbb álljon a sorozatban,
mint q.

26

13

1 2

34

5 6

7

89

1011

12

20. ábra.

13

1 2

34

5 6

7

89

1011

12

21. ábra.

27

Egy ilyen kívánt sorrendet egyetlen mélységi bejárással előállíthatunk:
a p pontra hívott (rekurzív) mélységi bejárásban, miután p-ből kiinduló összes élet bejártunk, rakjuk p-t a sorozat elejére. (Tehát
a kívánt sorozatban a pontok elhagyási idő szerint csökkenő sorrendben lesznek.)
Az így módosított algoritmus két mélységi bejárást végez, tehát futási ideje O(E)

El(13)

1 2 3 6 87 109 11 124 5

7

El(1)

ET 2 3 1 4 9 1 610 5 8 13 10 11 12 9 13 12

El(3) El(4)

22. ábra. A hálózat ábrázolása. A p iskola szomszédjainak listája a ET tömb El[p], . . . ,El[p + 1]−1 indexű elemeiben vannak.

1 program Halozat ;
2 c o n s t
3 maxN=2000; { a pontok maximális száma }
4 maxE=100000; { az é l e k maximális száma }
5 type
6 Pont = 1 . . maxN;
7 P a l e t t a =(Feher , Szurke , Fekete) ;
8 var
9 ET: array [1 . . maxE] o f 0 . . MaxN;

10 El : array [1 . . MaxN+1] o f l o n g i n t ;
11 N: Longint ; { a pontok száma }
12 Szin : array [1 . . maxN] of P a l e t t a ;
13 Ver : array [1 . . maxN] of Pont ; { verem }
14 Vm: Longint ; { verem−mutató }
15 D: array [1 . . MaxN] of Pont ;
16 DSzam: I n t e g e r ;

1 procedure BeOlvas ;
2 var i , p , q :Word;
3 BeF : Text ;
4 begin
5 Assign (BeF , ’ h a l o z a t . be ’) ; Reset (BeF) ;
6 ReadLn (BeF ,N) ;
7 El [1] : = 1 ; i : = 1 ;
8 f o r p:=1 to N do begin
9 Read (BeF , q) ;

10 whi le q<>0 do begin
11 ET[i] : = q ;
12 i n c (i) ;
13 Read (BeF , q) ;
14 end ;
15 readln (BeF) ;
16 El [p +1] := i ;
17 end ;
18 Close (BeF) ;
19 end { Beolvas } ;

1 Procedure MelyBejar (u : Pont ; e l s o : boolean) ;
2 { Global : G, Szin , Ver }
3 Var
4 i , v : l o n g i n t ;
5 begin
6 Szin [u] : = Szurke ;

28

