
10. Gráf absztrakt adattípus, gráfok ábrázolása

10.1. Definíciók

1. Irányítatlan gráf :G = (V,E)
E rendezetlen {a,b},a,b∈V párok halmaza.
2. Irányított gráf :G = (V,E)
E rendezett (a,b) párok halmaza; E ⊆V×V.
3. Multigráf :
G = (V,E, Ind,Érk), Ind,Érk : E →V
Ind(e) az e él induló, Érk(e) az érkező pontja.
Címkézett (súlyozott) gráf :G = (V,E,C)
C : E → Címke
Minden irányítatlan G= (V,E) gráf olyan irányított gráfnak tekinthető, amelyre teljesül, hogy (∀p,q∈V)((p,q)∈E⇒ (q, p)∈E).
Minden G = (V,E) gráf megadható olyan függvénnyel, amely a gráf minden p ∈ V pontjához azon q pontok halmazát rendeli,
amelyekre (p,q) ∈ E.

rE : V → 2V ; rE(p) = {q : (p,q) ∈ E}
Címkézett gráf esetén pedig

rE : V → 2V×Cimke; rE(p) = {(q,s) : (p,q) ∈ E∧C(p,q) = s}
Jelölések
Ki(G, p) = {q∈V : (p,q) ∈ E}
Be(G, p) = {q∈V : (q, p) ∈ E}
KiFok(G, p) = |Ki(G, p)|
BeFok(G, p) = |Be(G, p)|

10.2. Gráf absztrakt adattípus

Milyen műveleteket akarunk gráfokon végezni?
Értékhalmaz: Gra f = {G = (V,E) : V ⊆ PontTip,E ⊆V×V}
Műveletek:

G : Gra f, p, p1, p2 : PontTip, ir : boolean, I : Iterator,

{Igaz} Letesit(G, ir) {G = (/0, /0)}
{G = G} Megszuntet(G) {Igaz}
{G = G} Uresit(G) {G = (/0, /0)}
{G = G} Iranyitott(G) {¬Iranyitott(G)⇒ (p,q) ∈ E ⇒ (q, p) ∈ E)}
{G = G} Pontokszama(G) {= |V|}
{G = G} Elekszama(G) {= |E|}
{G = G} KiFok(G, p) {= |Ki(G, p)|}
{G = G} BeFok(G, p) {= |Be(G, p)|}

{G = (V,E)} PontBovit(G, p) {V = Pre(V)∪{p}∧E = Pre(E)}
{G = (V,E)∧ p∈V} PontTorol(G, p) {V = Pre(V)−{p}∧

E = Pre(E)−{(p,q) : q∈ Ki(G, p)}−
{(q, p) : q∈ Be(G, p)}}

{G = (V,E), p1, p2∈V} ElBovit(G, p1, p2) {E = Pre(E)∪{(p1, p2)}∧V = Pre(V)}
{G = (V,E), p1, p2∈V} ElTorol(G, p1, p2) {E = Pre(E)−{(p1, p2)}∧V = Pre(V)}
{G = (V,E), p1, p2∈V} Vanel(G, p1, p2) {= (p1, p2) ∈ E∧E = Pre(E)∧V = Pre(V)}

{G = G} PIterator(G, I) {}
{G = G} KiEl(G, p) {= {q : VanEl(p,q)}}
{G = G} KiIterator(G, p) {}
{G = G} ElIterator(G, I) {}

1

A továbbiakban feltételezzük, hogy a gráf pontjait természetes számokkal azonosítjuk, pontosabban V ⊆ {1, . . . ,n}
Java nyelven az alábbi interface-t használhatjuk.

public interface Graf extends Iterable<Integer>{
public boolean Iranyitott();
public int Pontokszama();
public int Maxpont();
public int Elekszama();
public int KiFok(int p);
public int BeFok(int p);
public void Uresit();
public void PontBovit(int p);
public void PontTorol(int p);
public void ElBovit(int p, int q);
public void ElTorol(int p, int q);
public boolean VanEl(int p, int q);
public Halmaz<Integer> Ki(int p);
public Iterator<Integer> KiIterator(int p);
public Iterator<GrafEl> ElIterator();

}

Ahol a GrafEl osztály

public class GrafEl{
public int ki;
public int be;
public GrafEl(int p, int q){

ki=p;
be=q;

}
public GrafEl(){
}
public String toString(){

return Integer.toString(ki)+"->"+Integer.toString(be);
}

}

Ekkor a gráf pontjainak bejárása:
for (int p:G)

M(p);
vagy Iterator<Integer> piter=G.iterator();

while (piter.hasNext()){
int p=piter.next();
M(p);

}
Adott p pont szomszédjainak (a p-ből induló élek) bejárása:
for (int q:G.KiEl(p))

M(p,q);
vagy Iterator<Integer> kiiter=G.KiEl(p).iterator();

while (kiiter.hasNext()){
int q=kiiter.next();
M(p, q);

}
A gráf minden (p,q) ∈ E élének bejárása:

for (Iterator<GrafEl> eliter=G.ElIterator(); eliter.hasNext();){
GrafEl el=eliter.next();
M(el.ki, el.be);

}

vagy

Iterator<GrafEl> eliter=G.ElIterator();
while (eliter.hasNext()){

GrafEl el=eliter.next();
M(el.ki, el.be);

}

2

Az él-iteráció nyilvánvalóan megvalósítható a pont-iteráció és ki-iteráció műveletekkel, de fordítva nem.

for (int p:G){
for (int q:G.Ki(p))

M(p,q);;
}

}

Címkézett (súlyozott) gráf absztrakt adattípus
Értékhalmaz:
Gra f = {G = (V,E,C) : V ⊆ PontTip,E ⊆V×V, C : E →CimkeTip}
Műveletek: Graf-műveletek +

G : Gra f, P,P1,P2 : PontTip, S: CimkeTip, I : PIterator,

{G = (V,E), p1, p2∈V} ElBovit(G, p1, p2,s) {E = Pre(E)∪{(p1, p2)}∧C(p1, p2) = s}
{G = (V,E),(p1, p2) ∈ E} ElCimke(G, p1, p2,s) {s= Pre(C)(p1, p2)∧E = Pre(E)}
{G = (V,E),(p1, p2) ∈ E} ElCimkez(G, p1, p2,s) {s= C(p1, p2)∧E = Pre(E)}

{G = G} KiCEl(G, p) {= {(q,s) : VanEl(p,q)∧C(p,q) = s}}
{G = G} ElIterator(G, I) {}

Ha a CimkeTip típuson alapértelmezett lineáris rendezési reláció, akkor a címkézett gráfot súlyozott gráfnak nevezzük. Ekkor az élek
halmazán is alapértelmezett az a rendezés, ami az él súlya szerinti rendezés. Tehát (p1,q1)≤ (p2,q2)⇔ ha C(p1,q1)≤C(p2,q2).

public interface CGraf<Cimke> extends Graf, Iterable<Integer>{
public void ElBovit(int p, int q, Cimke s);
public Cimke ElCimke(int p, int q);
public void ElCimkez(int p, int q, Cimke s);
public Fuggveny<Integer,Cimke> KiCEl(int p);
public Iterator<CGrafEl<Cimke>> CElIterator();

}

public interface SGraf<Suly extends Comparable<Suly>>
extends Graf, Iterable<Integer>{

public void ElBovit(int p, int q, Suly s);
public Suly ElSuly(int p, int q);
public Fuggveny<Integer,Suly> KiSEl(int p);
public void ElSulyoz(int p, int q, Suly s);
public Iterator<SGrafEl<Suly>> SEliterator();

}

10.3. Gráfok ábrázolásai

Szempontok az adatszerkezet megválasztásához.

1. Az adott probléma megoldásához ténylegesen mely műveletek szükségesek.

2. Melyek a releváns műveletek, amelyek alapvetően befolyásolják az algoritmus futási idejét.

3. A tárigény az adott probléma esetén.

1. Élhalmaztömb és élhalmazlánc
a.) Statikus (tömbös)
Tárigény: Θ(|E|)
VANEL időigénye: Θ(|E|)
El-iteráció időigénye: Θ(|E|)
Ki-iteráció időigénye: Θ(|E|)

b.) Dinamikus
Tárigény: Θ(|E|)

3

2

1

4

5 6 7

8

3

1. ábra. Példa gráf

1 2

3

3

1 2

1 3

2 3

3 5

.

1 2

31

32 2
3 5

Graf.txt

3 6

4

4

1

7

5 2
5

5

6

8

6 2
7
8

6
6

7 3

8 7

1

ESz=15

3 6

4

4 7

7

8 7

3

8

5 2
5 6

5

0 0

3 6

4 1

4 7

5 2

5 6

5 8

6 2

6 7

6 8

7 3

8 7.

3 5

1

8

26
6

6

7

Éltömb Éllánc

2. ábra. Élhalmaztömb és élhalmazlánc

4

VANEL időigénye: Θ(|E|)
El-iteráció időigénye: Θ(|E|)
Ki-iteráció időigénye: Θ(|E|)
2. Kapcsolatmátrix (szomszédsági mátrix)

1

3

4

5

6
7

8
9

1 3 7

2

2 4 65 8 9

1 1
1

G

1 1

1 1

1 1 1

1 1 1

1

1

3. ábra. Kapcsolatmátrix

boolean[][] G; //
Cimke[][] G; //címkézett (súlyozott) gráf ábrázolására

(p,q) akkor és csak akkor éle a gráfnak, ha G[p][q] = true.
Címkézett gráf esetén választani kell egy nem∈Cimkeértéket, amely nem fordul elő semmilyen él címkéjeként.
(p,q) akkor és csak akkor éle a címkézett gráfnak, ha G[p][q]! = nem, és a (p,q) él címkéjének értéke G[p][q].
Multi-gráf nem ábrázolható szomszédsági mátrix-al.
Tárigény: Θ(n2) (n = |V|)
VANEL időigénye: Θ(1)
El-iteráció időigénye: Θ(n2)
Ki-iteráció időigénye: Θ(n)
3. Éllista
a.) Statikus

1

2

3

4

5

6

7

8

9

2 3

31 2 4 5 6 7 8 9

3

0

0

0

KiFokG

2
1

1

0

2
3

5 6 0

1 7 0

2 6 8 0

03

7 0

1

2

0872 3

4. ábra. Statikus éllista

int[][] G;
int[] KiFok;

5

Tárigény: Θ(n2)
VANEL időigénye: Tlr = O(n)
El-iteráció időigénye: Θ(|E|)
Ki-iteráció időigénye: Θ(|Ki(G, p)|)
b.) Dinamikus

1

2

3

4

5

6

7

8

9

..

.

.

.

.

.

2 3

3

5

1

6 8

6

7

2

2

7 8 .

.

3

7

.

5. ábra. Dinamikus éllista

Lanc<Integer>[] G;

Tárigény: Θ(|V|+ |E|)
VANEL időigénye: Tlr = O(n)
El-iteráció időigénye: Θ(|E|)
Ki-iteráció időigénye: Θ(|Ki(G, p)|)
4. Általános éllista

public class GrafLanc<PontTip>{
public PontTip pont;
public Lanc<PontTip> ki;
public GrafLanc<PontTip> csat;

}

Az általános éllistás ábrázolás előnye, hogy a gráf pontjai tetszőleges (de rögzített) típusú értékek lehetnek.
Címkézett gráf esetén a ki-lánc (a vízszintes lánc) minden cellája a pont mellett egy címke értéket is tartalmaz.
Tárigény: Θ(|V|+ |E|)
VANEL időigénye: Tlr = O(n)
El-iteráció időigénye: Θ(|E|)
Ki-iteráció időigénye: Tlr = O(n)+Θ(|Ki(G, p)|)

6

.

.

.

.

..

a

b

c

d

e

f

g

h

b c

c

e f .

.

a g

b hf

b g h

c .

6. ábra. Általános éllista

5. Halmazfüggvény

G = (V,E), E ⊆V×V

rE : V → 2V ; rE(p) = Ki(G, p) = {q : (p,q) ∈ E}

Halmaz<Integer>[] G;

(p,q) akkor és csak akkor éle a gráfnak, ha G[p].Eleme(q).
Tehát a VANEL(G,P,Q) futási ideje a Halmaz adattípus ELEME műveletének futási ideje lesz.
Ki-iteráció (a p-ből induló élek bejárása) megvalósítása:

for (int q:G[p])
M(p,q);

Vegyük észre, hogy ha a Ki(G, p) halmazokat bitvektorral ábrázoljuk, akkor éppen a szomszédsági mátrix ábrázolást kapjuk, ha tömbbel ábrá-
zoljuk, akkor a statikus éllistás, ha lánccal, akkor a dinamikus éllistás ábrázolást kapjuk.
Általánosan, a Ki(G, p) halmazok ábrázolására bármely halmaz ábrázolás használható. Tehát akár bináris (kiegyensúlyozott) keresőfát is alkal-
mazhatunk.
Ezért a gráfok Java megvalósítása megadható egyetlen kóddal (osztállyal) úgy, hogy a konstruktor paramétereként megadhatjuk:
a pontok számát,
a gráf irányított-irányítatlan voltát,
a Ki(G, p) halmazok ábrázolási módját.
Lásd a GrafA osztályt.

6. V keres őfában, E láncban (keres őfában)
Ha a gráf pontjai tetszőleges egész számok (vagy olyan típusú értékek, amelyen értelmezett egy lineáris rendezési reláció), akkor a pontok V
halmazát ábrázolhatjuk bináris (kiegyensúlyozott) keresőfában. Kiegyensúlyozott keresőfa használatával a műveletek futási ideje:
Tárigény: Θ(|V|+ |E|)
VANEL időigénye: Tlr = O(lgn)
El-iteráció időigénye: Θ(|E|)
Ki-iteráció időigénye: O(lgn)+Θ(|Ki(G, p)|)
7. Dinamikus változók összekapcsolása
Speciális gráfok, például fák ábrázolhatók dinamikus változók (referenciák, pointerek) alkalmazásával.

8. Számított gráf
Az élek halmazát explicite nem tároljuk, mert van olyan számítási eljárás, amely bármely két p,q∈V-re kiszámítja VanEl(p,q)-t. Vagy, van olyan
számítási eljárás, amely minden p∈V-re kigenerálja a Ki(G, p) halmaz elemeit.
A Graf adattípus megvalósításai:

7

.

.

.

.

.

2 3

3

5

1

2 6 8

7

3

1

4

5

6

7

82

3
.6

.

7

82

.

7

7. ábra. Keresőfás ábrázolás

GrafA: Konstruktor paraméterezés: Gra f A(int n, boolean irany, String abr), ahol
n a létesítendő gráf pontjainak száma,
irany = true esetén irányított, egyébként irányítatlan lesz a gráf, alapértelmezett érték true
abr értéke határozza meg az ábrázolás módját, alapértelmezett értéke "Lanc":

• "Matrix" a ki-pontok halmaza tömb adatszerkezetben, azaz szomszédsági mátrix az ábrázolás módja

• "Lanc" a ki-pontok halmaza lánc adatszerkezetben

• "BKF" a ki-pontok halmaza bináris keresőfa adatszerkezetben

• "AVLFa" a ki-pontok halmaza AVL-fa bináris keresőfa adatszerkezetben

• "HasitL" a ki-pontok halmaza hasítótábla láncolással adatszerkezetben

• "HasitN" a ki-pontok halmaza hasítótábla nyílt címzéssel adatszerkezetben

Az SGraf adattípus megvalósításai:
SGrafA: Konstruktor paraméterezés: SGra f A(int n, boolean irany, String abr), ahol
n a létesítendő gráf pontjainak száma,
irany = true esetén irányított, egyébként irányítatlan lesz a gráf, alapértelmezett érték true
abr értéke határozza meg az ábrázolás módját, alapértelmezett értéke "Lanc":

• "Matrix" a ki-pontok halmaza tömb adatszerkezetben, azaz szomszédsági mátrix az ábrázolás módja

• "Lanc" a ki-pontok halmaza lánc adatszerkezetben

• "BKF" a ki-pontok halmaza bináris keresőfa adatszerkezetben

• "AVLFa" a ki-pontok halmaza AVL-fa bináris keresőfa adatszerkezetben

• "HasitL" a ki-pontok halmaza hasítótábla láncolással adatszerkezetben

• "HasitN" a ki-pontok halmaza hasítótábla nyílt címzéssel adatszerkezetben

10.4. Elemi gráfalgoritmusok

10.4.1. Utak

Legyen G = (V,E) irányított (irányítatlan) gráf.

10.1. definíció. p,q∈V-re egy p-ből q-ba vezető út G-ben, jele: π : p q, olyan
π = 〈p0, p1, · · · , pk〉 pontsorozat, ahol
pi 6= p j , ha i 6= j , p = p0 és q = pk, továbbá
p = q = p0, vagy (∀i ∈ {1, . . . ,k}) ((pi−1, pi) ∈ E).

10.2. definíció. A π = p q út hossza, |π|= |p q|= k

8

10.3. definíció. p-ből q-ba vezető legrövidebb út hossza, p és q távolsága:

δ(p,q) =
{

∞ ha nincs p q
Min{|π : p q|} π : p q

(1)

10.4. definíció. A π = 〈p0, p1, · · · , pk〉 pontsorozatot a p0-ból pk-ba vezető sétának nevezzük, ha (∀i ∈ {1, . . . ,k})(pi−1, pi) ∈ E

10.5. definíció. Ha G = (V,E,C) élei a C : E → R függvénnyel súlyozottak, akkor a p q út hossza
|p q|= ∑k

i=1C(pi−1, pi).
A p és q pont távolsága:

δ(p,q) =
{

∞ ha nincs p q
Min{|π : p q|} π : p q

(2)

10.6. definíció. A G = (V,E) (irányítatlan) gráfnak az F = (V,E) gráf a r ∈V gyökerű feszítőfája, ha
1. F részgráfja G-nek (V ⊆V,E ⊆ E,) és fa.
2. (∀p∈V) ha van r p G-ben, akkor és csak akkor, ha van r p F-ben.

10.7. definíció. A G = (V,E) (irányítatlan, súlyozott) gráfnak az F = (V,E) gráf a r ∈V gyökerű legrövidebb utak feszítőfája (LUF), ha
1. F r-gyökerű feszítőfája G-nek, és
2. ∀p∈V-ra δG(r, p) = δF (r, p).

Útproblémák
1. Adott p,q∈V-re van-e p q út?

2. Adott p-re az Elr(p) = {q : p q} halmaz kiszámítása.

3. Adott p,q∈V-re δ(p,q) és egy p q legrövidebb út kiszámítása.

4. Egy pontból induló legrövidebb utak : adott p-re minden q-ra δ(p,q) és egy p q legrövidebb út kiszámítása.

5. Minden p,q pontpárra δ(p,q) és egy p q legrövidebb út kiszámítása.

10.5. Szélességi keresés

Bemenet: G = (V,E) (irányított vagy irányítatlan) gráf és egy r ∈V pont.
Kimenet: D : V → N, Apa: V →V, hogy
D(p) = δ(r, p) és
az F = (V,E) gráf, ahol
V = {p : Apa(p) 6= null∨ p = r},
E = {(p,q) : Apa(q) = p∧ p 6= null}
r-gyökerű LUF.

public class SzeltKeres{
public int[] D;
public int[] Apa;
public void Bejar(Graf G, int r){

int n=G.Maxpont();
int u; int Inf=n;
D=new int[n+1];
Apa=new int[n+1];
Sor<Integer> S=new SorT<Integer>(n);
for (int p:G){

Apa[p]=-1; D[p]=Inf;
}
D[r]=0; Apa[r]=0;
S.SorBa(r);

9

while(S.Elemszam()>0){
u=S.SorBol();
for (int v:G.KiEl(u))

if (Apa[v]<0){
Apa[v]=u;
D[v]=D[u]+1;
S.SorBa(v);

}
}

}
}

1

4

5 6 7

8

32

0

1 1

2 2

3

3

Inf

8. ábra. A példa gráf szélességi bejárása az 1 pontra.

10.8. lemma. Legyen G = (V,E) irányított vagy irányítatlan gráf és s,u,v∈V.
Minden (u,v) ∈ E élre δ(s,v)≤ δ(s,u)+1.

10.9. lemma. Ha SZELTKERES algoritmust az r pontra alkalmazzuk, akkor a kiszámított D-re teljesül: (∀v∈V)(D[v]≥ δ(r,v)).

Bizonyítás. Az Ssorba kerülés szerinti indukcióval.
i) Az első pont, ami bekerül: r , de D[r] := 0 és δ(r, r) = 0
ii) Tfh. S.Sorbol(u) után az u→ v élet vizsgáljuk és D[v] = In f , ami ekvivalens azzal, hogy Apa[v] < 0. EkkorD[v] = D[u]+1

≥ δ(r,u)+1

≥ δ(r,v)

és v-t betesszük az Ssorba.
�

10.10. lemma. Legyen a SZELTKERES algoritmust végrehajtásának egy pillanatában az Ssor tartalma S=< v1,v2, . . . ,vk >. Ekkor
D[vk]≤ D[v1]+1 és D[vi]≤ D[vi+1] (i = 1, . . . ,k−1)

Következmény
Ha egy u pont előbb kerül a sorba, mint a v pont, akkor D[u]≤ D[v].

Bizonyítás.
a) u = S.Sorbol() után: S=< v2, . . . ,vk >
Bizonyítandó: D[vk]≤ D[v2]+1.

10

De D[vk]≤ D[v1]+1≤ D[v2]+1
b) S.Sorba(v) után: S=< v2, . . . ,vk,v >
Bizonyítandó: D[vk]≤ D[v] és D[v]≤ D[v2]+1.
D[vk]≤ D[v1]+1 = D[v]
D[v1]≤ D[v2]⇒ D[v] = D[u = v1]+1≤ D[v2]+1 �

10.11. tétel. (∀v∈V)(δ(r,v) = D[v])

Bizonyítás.
a) δ(r,v) = ∞ azaz nincs r v út.
Ekkor v nem kerülhet be a sorba, tehát marad a kezdetben kapott D[v] = In f

b) Tfh.δ(r,v) 6= ∞
Indirekt biz. : Tfh. v a legkisebb olyan δ(r,v) értékű pont, hogy δ(r,v) 6= D[v]
(r 6= v) és 2. lemma miatt: D[v] > δ(r,v) és δ(r,v) < ∞
Legyen u egy olyan pont, amely közvetlenül megelőzi v-t az r v legrövidebb úton: r u→ v
Mivel δ(r,u) < δ(r,v), az ind. feltevés szerint: D[u] = δ(r,u) és δ(r,v) = δ(r,u)+1

D[v] > δ(r,v) = δ(r,u)+1 = D[u]+1

Tekintsük azt a helyzetet, amikor a SZELTKERES algoritmus az u→ v élet vizsgálja.
I) D[v] = In f : tehát D[v] := D[u]+1 = δ(r,v)+1 Ellentmondás!
II)D[v] < In f : tehát v már korábban kapott D[v] < ∞ értéket.
De D[v]≤ D[u], mivel v már nincs a sorban, ami ellentmondás!

�

A SZELTKERES algoritmus futási ideje:
Tlr = O(V +E),
feltéve, hogy a Ki-iteráció lineáris idejű. Ez teljesül, ha éllistás ábrázolást alkalmazunk.

10.12. Állítás. A Gπ = (Vπ,Eπ) gráf, ahol
Vπ = {v : v∈V ∧Apa[v] 6= 0∨v = r}
Eπ = {(u,v) : Apa[v] = u∧Apa[v] 6= 0}
G-nek egy r-gyökerű legrövidebb utak feszítőfája.

11

