
12. Minimális feszít őfák

Legyen G = (V,E,c), c : E → R súlyozott irányítatlan gráf.
Terjesszük ki a c súlyfüggvényt a T ⊆ E élhalmazokra:

C(T) = ∑
(u,v)∈T

c(u,v)

Az F = (V,T) gráf minimális feszítőfája G-nek, ha
1. F feszítőfája G-nek, és
2. C(T)→ minimális

a

b c d

e

fgh

i

9

10

8

4

1 2
6

4
11

8

2

7

14
7

1. ábra. Példa minimális feszítőfára

Input: G = (V,E,c);c : E → R irányítatlan gráf
Output: MFF = (V,F); minimális feszítőfája G-nek

Legyen A⊆ F valamely MFF = (V,F) M.F.F.-nak és (u,v) ∈ E.
Def. (u,v) biztonságos él A-ra nézve, ha A

⋃
{(u,v)} is része valamely MFF ′ M.F.F.-nak.

Elvi algoritmus

A := /0
While A nem M.F.F. Do Begin

(u,v) biztonságos él keresése;
A := A

⋃
{(u,v)}

End

Def. A G = (V,E) gráf vágása: (S,V−S) ; S⊆V;
Def. (u,v) ∈ E keresztél az (S,V−S) vágásra, ha u∈ Sés v∈V−S, vagy u∈V−Sés v∈ S
Def. Az (S,V−S) vágás elkerüli az A⊆ E élhalmazt, ha A-ban nincs keresztél.
Def. (u,v) könnyű él az (S,V−S) vágásra, ha a legkisebb c-értékű (súlyú) keresztél.

12.1. tétel. Ha A része a G = (V,E,c) v.m. M.F.F.-jának és elkerüli az (S,V −S) vágást, továbbá (u,v) könnyű él az (S,V −S)
vágásra, akkor (u,v) biztonságos él A-ra nézve.

Bizonyítás. Legyen T = (V,F) egy olyan M.F.F., hogy A⊆ F . Ha (u,v) ∈ F , akkor készenvagyunk. Tfh. (u,v) /∈ F , tehát (u,v)
hozzávétele az F faélekhez kört képez.Mivel u és v az Svágás különböző oldalán van, ezért van a körben (x,y) keresztél. Az

F ′ := F−{(x,y)}∪{(u,v)}

élhalmaz is feszítófája lesz G-nek, és c(u,v)≤ c(x,y) miatt

C(F ′) := C(F)−c(x,y)+c(u,v)≤C(F)

De F minimális volt, így C(F ′) = C(F). �

1

u

v

x

y

:S−beli

:V−S−beli
:MFF−él
:A−beli él

2. ábra.

12.2. következmény. Ha A része a G = (V,E,c) v.m. M.F.F.-nak és az (u,v) ∈ E élre u és v az A erdő két különböző fájában van
és c-értéke (súlya) minimális, akkor az (u,v) él biztonságos A-ra.

12.1. A Kruskal algoritmus

A biztonságos él mohó választása: mindig a legkisebb súlyú olyan élet válaszjuk, amely nem képez kört.
Hogyan dönthető el, hogy adott (u,v) él nem képez kört? Azaz ugyanazon fához tartoznak-e?

Az UnioHolvan absztrakt adattípus.
Értékhalmaz: UnioHolvan= {{H1, . . . ,Hk} : Hi ⊆ E, i = 1, . . . ,k, i 6= j ⇒ Hi ∩H j = /0}
Műveletek:

S: UnioHolvan, X : Elemtip,N,N1,N2 : NevTip

{Igaz} Letesit(S) {S= /0}
{S= S} Megszuntet(S) {Igaz}
{S= S} Uresit(S) {S= /0}

{S= {H1, . . . ,Hk}∧X ∈ ∪Hi} Holvan(S,X,N) }{N = Y∧ (X ∈ Hi ∧X ∈ Hi)}
{S= {H1, . . . ,Hk}∧X /∈ ∪Hi} Holvan(S,X,N) {N = X∧S= Pre(S)∪{{X}}

{S= {H1, . . . ,Hk}∧N1∈ Hi ∧N2∈ H j} Unio(S,N1,N2) {S= Pre(S)−Hi −H j ∪{Hi ∪H j}}

Procedure Kruskal (G : GrafC.Tipus;
Var Fa : Graf.Tipus ;
Var Minsuly: Real);

Var
H : UnioHolvan.Tipus;
N1,N2 : UnioHolvan.Nevtip;
Q: Prisor.Tipus;

Begin{Kruskal}
Graf.Letesit(Fa); UnioHolvan.Letesit(H);
Prisor.Letesit(Q);
Minsuly:=0.0;
For (u,v) In E Do Sorba(Q,u,v);
While Elemszam(Q)>0 Do Begin
Sorbol(Q,u,v);
Holvan(H,u,N1);
Holvan(H,v,N2);
If N1<>N2 Then Begin

2

Minsuly:=Minsuly + C(u,v);
Elbovit(Fa,u,v);
Unio(H,N1,N2);

End
End{While};
Megszuntet(H);

End{Kruskal};

12.3. tétel. Ha a G gráf összefüggő, akkor a KRUSKAL algoritmus minimális feszítőfát állít elő.

Bizonyítás. Legyen S:= {x : u és x ugyanazon fában van. } Ekkor az (u,v) élre és az (S,V−S) vágásra teljesül a 12.1. tétel. �

A KRUSKAL algoritmus futási ideje O(E lgE).

12.2. A Prim algoritmus

A biztonságos él választása: Ha T = (S,F) részfája G= (V,E,c) egy minimális feszítőfájának, és (u,v) egy legkisebb súlyú olyan
él, hogy u∈ S, v /∈ Sés c(u,v), akkor (u,v) biztonságos él.

Procedure Prim(G:Graf; r:PontTip; Var Apa:Fa);
Var
D:Fuggyveny; S:PriSor; Kesz:Halmaz;
Begin{Prim}
Fuggveny.Letesit(D); PriSor.Letesit(S); Halmaz.Letesit(Kesz);
For v<>r In V Do Begin

D[v]:=C(r,v);
Apa[v]:=Nul;
Sorba(S,v);

End;
D[r]:=0;
Sorba(S,r);
While Elemszam(S) > 0 Do Begin
Sorbol(S,u);
Bovit(Kesz,u);
For v In Ki(G,u) Do

If Not Eleme(Kesz,v) And (C[u,v]<D[v]) Then Begin
D[v]:=C[u,v];
Apa[v]:=u;
Modosit(S, v, D[v]);

End;
End{while};

End{Prim};

A PRIM algoritmus futási ideje O(E lgV), feltéve
1. ELEME, BOVIT halmaz műveletek lr. esetben O(lgV) idejűek,
2. SORBA, MODOSIT O(lgV) idejű.

12.3. Egy pontból iduló legrövidebb utak

Def. Legrövidebb Utak Feszítőfája (LUF).
G = (V,E,c);c : E → R irányított gráf, és s∈V
Az F = (V,F) fa a G gráf s-gyökerű LUF-ja, ha F s-gyökerű feszítőfája G-nek, és ∀v∈V az s v egyetlen út F-ben egy legrövi-
debb út G-ben.

Probléma:
Input: G = (V,E,c);c : E → R irányított gráf, s∈V

3

Output:
1. D[v] := δ(s,v)(∀v∈V);
2. π : V →V;
F = (V,{(π[v],v) : v∈V,π[v] 6= Nul}) s-gyökerű LUF-ja G-nek
(s= v0 → v1 → ··· → vk = v, π[vi] = vi−1(i = 1, · · · ,k) egy legrövidebb s v út.)

12.3.1. Fokozatos közelítés.

Legyen Q a D[v]-szerinti minimumos módosítható prioritási sor.

Procedure Kezd(s:PontTip); Var v:PontTip;
Begin{Kezd}
For v<>s In V Do Begin

D[v]:=Inf;
Apa[v]:=Null;
PriSor.Sorba(Q,v);

End;
D[s]:=0;
PriSor.Sorba(Q,s);

End{Kezd};

Procedure Kozelit(u,v:PontTip);
Var Dv:Real;
Begin{Kozelit}
Dv:=D[u]+C[u,v];
If Dv<D[v] Then Begin
D[v]:=Dv;
Apa[v]:=u;
PriSor.Modosit(Q,v,Dv);

End;
End{Kozelit};

A legrövidebb utak tulajdonságai
Tegyük fel, hogy a G = (V,E,c) írányított, súlyozott gráfra és s kezdőpontra vegrejatottul a KEZD eljárást, majd valahány KOZE-
LIT(u,v) műveletet. Ekkor az alábbi összefüggásek teljesülnek.

Háromszög egyenl őtlenség. (∀(u,v) ∈ E) (δ(s,v)≤ δ(s,u)+c(u,v)).

Fels ő korlát tulajdonság. D[v] ≥ δ(s,v) és ha egyszer D[v] = δ(s,v), akkor ezután mindig teljesül a D[v] = δ(s,v) egyenlő-
ség.

Nincs-út tulajdonság. Ha nincs s v út, akkor mindvégig D[v] = δ(s,v) = ∞ (=Inf) teljesül.

Konvergencia tulajdonság. Ha s u→ v egy legrövidebb út és D[u] = δ(s,u) Kozelit(u, v) végrehajtása előtt, akkor Koze-
lit(u, v) után D[v] = δ(s,v).

Út-közelítés tulajdonság. Ha p = 〈v0,v1, . . . ,vk〉 egy s= v0 vk legrövidebb út, akkor a (v0,v1),(v1,v2), . . . ,(vk−1,vk) élekre
ebben a sorrendben végrehajtott KOZELIT után D[vk] = δ(s,vk).

LUF tulajdonság. Tegyük fel, hogy G nem tartalmaz s-ből elérhető negatív összsúlyú köröket és minden v ∈ V pontra D[v] =
δ(s,v). Ekkor az F = {(Apa[v],v) : v∈V,Apa[v] 6= Null} élhalmaz G-nek s gyökerű LUF-ja lesz.

Procedure Dijkstra(Const G:Graf; s:PontTip; Var D:Fuggveny; Var Apa:Fa);
Var
Kesz:Halmaz;

4

Q:PriSor;
u,v:PontTip;

Begin{Dijkstra}
Fuggveny.Letesit(D);
Fuggveny.Letesit(Apa);
PriSor.Letesit(Q);
Halmaz.Letesit(Kesz);
Kezd;

While Elemszam(Q) > 0 Do Begin
Sorbol(Q,u);
Bovit(Kesz,u);
For v In Ki(G,u) Do

If Not Eleme(Kesz,v) Then
Kozelit(u,v);

End{while};
End{Dijkstra};

12.4. tétel. A DIJKSTRA algoritmust nemnegatív élsúlyozott irányított G = (V,E,c) gráfra és s kezdőpontra végrehajtva, minden
v∈V pontra tejesül a D[v] = δ(s,v).

Bizonyítás. Bizonyítás a Kesz halmazba kerülés szerinti indukcióval.
Az első pont, amely kikerül a Q prioritási sorbol és bekerül Kesz-be az s pont, amelyre ekkor D[s] = 0 = δ(s,s). Tfh. u az első

x

y

u

s

Kesz

p1

p2

3. ábra.

olyan pont, amelynek a Kesz halmazba kerülésekor D[u] 6= δ(s,u). Mivel s 6= u, ezért közvetlenűl u-nak Kesz-be való berakásakor
Kesz6= /0. Létezik s u út, mert különben a nincs-út tulajdonság miatt D[u] = δ(s,u) = ∞ lenne, ami ellentmond a D[u] 6= δ(s,u)
feltételezésnek. Tehát van p : s u legrövidebb út is. Az u pontnak Kesz-be kerülése előtt a p út összeköt egy Kesz-beli (s) és
egy nem Kesz-beli (u) pontot. Legyen y a p úton az első olyan pont, amely nincs Kesz-ben, és legyen x a p úton y-t megelőző

pont. A 3. ábra mutatja a helyzetet. Tehát a p : s u út felbontható p : s
p1
 x→ y

p2
 u -ra. Mivel u az első olyan pont, amelynek

Kesz-be kerülésekor D[u] 6= δ(s,u), így D[x] = δ(s,x) amikor x-t Kesz-be rakjuk. Ez után végrehajtódik a Kozelit(u,y), így
a konvergencia tulajdonság miatt D[y] = δ(s,y). Mivel minden él súlya nemnegatív, és y előbb van a p útban, mint u, ezért
δ(s,y)≤ δ(s,u). Tehát

D[y] = δ(s,y)

≤ δ(s,u)

≤ D[u]

5

Mivel u is és y is a Q prioritási sorban van, és u előbb került ki a sorból, mint y, így D[u]≤D[y]. Tehát az előző egyenlőtlenségeknek
egyenlőségeknek kell lenni.

D[y] = δ(s,y) = δ(s,u) = D[u]

Ez ellentmond a feltevésünknek. �

A DIJKSTRA algoritmus futási ideje: O(E lgV), feltéve, hogy a Q prioritási sor Sorba,Sorbol és Modosit műveletek futási ideje
O(lgn) n elemű sorra.
A legrövidebb utak tulajdonságainak bizonyítása

12.5. lemma. Háromszög egyenlőtlenség. (∀(u,v) ∈ E) (δ(s,v)≤ δ(s,u)+c(u,v))

Bizonyítás. Mivel s u→ v is s v út, így δ(s,v)≤ δ(s,u)+c(u,v). �

12.6. lemma. Felső korlát tulajdonság. A G= (V,E,c) írányított, súlyozott gráfra és skezdőpontra a KEZD eljárás után akármilyen
KOZELIT műveletsor után D[v]≥ δ(s,v) és ha egyszer D[v] = δ(s,v), akkor ezután mindig teljesül a D[v] = δ(s,v) egyenlőség.

Bizonyítás. Az egyenlőtlenség teljesülését a végrehajtott KOZELIT lépések száma szerint indukcióval bizonyítjuk. Kezdetben
D[s] = 0≥ δ(s,s) és minden más v pontra D[v] = ∞ ≥ δ(s,v).
Az indukciós lépésnél tekintsünk egy (u,v) éllel való KOZELIT(U,V) közelítést. Csak D[v] értéke változhat:

D[v] = D[u]+c(u,v)

≥ δ(s,u)+c(u,v)

≥ δ(s,v)

Továbbá, D[v] az alsó δ(s,v) korlátot elérve tovább nem csökkenhet, mert D[v[≥ δ(s,v), de nem is nőhet. �

12.7. lemma. Nincs-út tulajdonság. A G = (V,E,c) írányított, súlyozott gráfra és s kezdőpontra a KEZD eljárás után akármilyen
KOZELIT műveletsor után, ha nincs s v út, akkor mindvégig D[v] = δ(s,v) = ∞ (=Inf) teljesül.

Bizonyítás. A felsőkorlát tulajdonság miatt ∞ = δ(s,v)≤ D[v], így D[v] = ∞ = δ(s,v). �

12.8. lemma. A G = (V,E,c) írányított, súlyozott gráfra és s kezdőpontra a KEZD eljárás után akármilyen KOZELIT(U,V) végrehaj-
tás után D[v]≤ D[u]+c(u,v) teljesül.

Bizonyítás. Ha közvetlenül KOZELIT(U,V) előtt D[v] > D[u]+c(u,v), akkor utána D[v] = D[u]+c(u,v) lesz. Ellenben, ha D[v]≤
D[u]+c(u,v), akkor sem D[v] sem D[u] nem változik. �

12.9. lemma. Konvergencia tulajdonság. A G = (V,E,c) írányított, súlyozott gráfra és s kezdőpontra a KEZD eljárás után akármi-
lyen KOZELIT műveletsor után, ha s u→ v egy legrövidebb út és D[u] = δ(s,u) Kozelit(u, v) végrehajtása előtt, akkor Kozelit(u,
v) után D[v] = δ(s,v)

Bizonyítás. A felsőkorlát tulajdonság szerint ha D[u] = δ(s,u) fenáll KOZELIT(U,V) előtt, akkor utána is fenáll. Az (u,v) élű
közeklítés után:

D[v] ≤ D[u]+c(u,v)

= δ(s,u)+c(u,v)

= δ(s,v)

�

12.10. lemma. Út-közelítés tulajdonság. Ha p= 〈v0,v1, . . . ,vk〉 egy s= v0 vk legrövidebb út, akkor a (v0,v1),(v1,v2), . . . ,(vk−1,vk)
élekre ebben a sorrendben végrehajtott KOZELIT után D[vk] = δ(s,vk).

Bizonyítás. Indukcióval mutatjuk meg, hogy a p út i-edik élével való közelítés után D[vi] = δ(s,vi) teljesül. A kezdeti értékadás
miatt D[v0] = D[s] = 0 = δ(s,s).
Tfh. D[vi−1] = δ(s,vi−1), és tekintsük a (vi−1,vi) éllel való közelítést. Ezen közelítés utána a konvergencia tulajdonság miatt fenáll
D[vi] = δ(s,vi). �

6

12.11. lemma. Legyen G = (V,E,c) írányított, súlyozott gráf és s∈ V kezdőpont. és tegyük fel, hogy G nem tartalmaz s-ből
elérhető negatív összsúlyú köröket. Ekkor a KEZD eljárás után akármilyen KOZELIT műveletsort végrehajtva az {(Apa[v],v) : v∈
V,Apa[v] 6= Null} élhalmaz G egy részfája lesz.

Bizonyítás. Indirekt bizonyítunk, tfh. kialakul egy r = 〈v0,v1, . . . ,vk〉, v0 = vk kör, ahol Apa[vi] = vi−1, i = 1, . . . ,k. Feltehetjük, hogy
a KOZELIT(vk−1,vk) végrahajtása hozta létre a kört. Minden körbeli vi pontra Apa[vi] 6= Null, így D[vi] 6= ∞. Tehát a felsőkorlát
tulajdonság miatt a körbeli pontok elérheőek s-ből. Tekintsük a D[vi] értékeket közvetlenűl a KOZELIT(vk−1,vk) végrehajtása előtt.
D[vi] utolsó módosítása a [vi] := D[vi−1] + c(vi−1,vi) értékadás volt. Ha eztán D[vi] megváltozott, csak csökkenhetett. Ezért
KOZELIT(vk−1,vk) végrehajtása előtt minden i = 1, . . . ,k-ra

D[vi]≥ D[vi−1]+c(vi−1vi).

Apa[vk] azért kapott értéket, mert teljesült
D[vk] > D[vk−1]+c(vk−1vk)

k

∑
i=1

D[vi] >
k

∑
i=1

D[vi−1]+c(vi−1,vi)

=
k

∑
i=1

D[vi−1]+
k

∑
i=1

c(vi−1,vi)

De

k

∑
i=1

D[vi] =
k

∑
i=1

D[vi−1]

így

0 >
k

∑
i=1

c(vi−1,vi)

ami ellentmond azon feltevésünknek, hogy G-ben nincs negatív kör. �

12.12. lemma. LUF tulajdonság. Legyen G = (V,E,c) írányított, súlyozott gráf és s∈ V kezdőpont, és tegyük fel, hogy G nem
tartalmaz s-ből elérhető negatív összsúlyú köröket. A DIJKSTRA algoritmust végrehajtva a G = (V,E,c) gráfra és s kezdőpontra,
az F = {(Apa[v],v) : v∈V,Apa[v] 6= Null} élhalmaz G-nek s gyökerű LUF-ja lesz.

Bizonyítás. Az előző lemma szerint F s-gyökerű részfája G-nek.
Először lássuk be, hogy F pontjai éppen az s-ből elérhető pontok. δ(s,v) < ∞ akkor és csak akkor, ha van s v út. De D[v] akkor
és csak akkor kap nem ∞ értéket, ha Apa[v] 6= Null, azaz F pontjai éppen az s-ből elérhető pontok G-ben.

Azt kell még bizonyítani, hogy minden v ∈ V pontra, amelyre Apa[v] 6= Null, az egyetelen s
p
 v út F-ben egy legrövidebb út

G-ben. Legyen p = 〈v0,v1, . . . ,vk〉, ahol v0 = s, vk = v. Minden i = 1, . . . ,k-ra D[vi] = δ(s,vi) és D[vi] ≥ D[vi−1] + c(vi−1,vi),
amiből következik, hogy c(vi−1,vi)≤ δ(s,vi)−δ(s,vi−1).

C(p) =
k

∑
i=1

c(vi−1,vi)

≤
k

∑
i=1

δ(s,vi)−δ(s,vi−1)

= δ(s,vk)−δ(s,v0)

= δ(s,vk)

Tehát C(p)≤ δ(s,vk), ugyanakkor C(p)≥ δ(s,vk), így C(p) = δ(s,vk). �

7

12.4. Legrövidebb utak minden pontpárra

Input : G = (V,E,c) irányított súlyozott gráf; c : E → R
+

Output :Minden u,v pontpárra δ(u,v) és egy u v legrövidebb út.

Megoldás dinamikus programozás módszerével.
Tfh. V = 1..n és c(i, j) = ∞, ha (i, j) /∈ E, azaz G[i, j] = c(i, j) és G[i, i] = 0, i = 1, · · · ,n

Részproblémákra bontás:
∀i, j ∈ {1, . . . ,n}-ra és ∀k∈ {0,1, · · · ,n}-re
Dk(i, j) = az i-ből j-be vezető olyan utak hosszának minimuma, amelyek legfeljebb az {1, · · · ,k} (belső) pontokon mennek ke-
resztül.
Dn(i, j) = δ(i, j)

Rekurzív összefüggés a részproblémák között.

D0(i, j) = G[i, j]

Dk(i, j) = Min{Dk−1(i, j),Dk−1(i,k)+Dk−1(k, j)} k > 0

D[i, j] helyben számolása; egy D tömbben.

i jp

p1 p2k

4. ábra. p : i j az {1..k-1} pontokon át haladó út, p1 : i k, p2 : k j {1..k-1} pontokon át haladó legrövidebb út.

A k-adik iterációban felülírt elemek: Dk−1(i,k) és Dk−1(k, j).
De

Dk(i,k) = Min{Dk−1(i,k),Dk−1(i,k)+Dk−1(k,k)}= Dk−1(i,k)

{Globális programelemek a Floyd_Warshall algoritmushoz}
Const
MaxN = ??? ;{a gráf pontjainak max. száma}
Inf = 10E12;{a végtelen reprezentánsa}

Type
Graf = Array[1..MaxN,1..MaxN] Of Real;
Utak = Array[1..MaxN,1..MaxN] Of Record

tav : Real;
elod : 0..MaxN

End;

Procedure Floyd_Warshall(Const G : Graf;
Var U : Utak);

Var
i,j,k : Integer;
Ujtav : Real;

Begin{Floyd_Warshall}
For i := 1 To N Do {inicializálás}

For j := 1 To N Do Begin

8

U[i,j].tav:=G[i,j];
If (i<>j)And(G[i,j]<Inf) Then

U[i,j].elod:=i
Else

U[i,j].elod:=0
End;

For k := 1 To N Do
For i := 1 To N Do

For j := 1 To N Do Begin
Ujtav := U[i,k].tav + U[k,j].tav;
If Ujtav < U[i,j].tav Then Begin

U[i,j].tav := Ujtav;
U[i,j].elod:= U[k,j].elod

End
End{for j}

End{Floyd_Warshall};

Procedure MinUtIro(Const U : Utak; i,j : Integer);
Var
S:Array[1..MaxN] of 0..MaxN;
h,k:Word;
Begin{MinUtIro}

If U[i,j]=0 Then Begin
WriteLn(’Nincs ’i,’->’,j,’út!’);
Exit;

End;
h:=0;
Repeat

Inc(h);
S[h]:=j;
j:=U[i,j];

Until j=i;
Write(i);
For k:=h DownTo 1 Do

Write(’->’,S[k]);
writeLn;

End{MinUtIro};

A Floyd-Warshall algoritmus futási ideje Θ(n3).

12.5. Irányított gráf tranzitív lezártja

A G = (V,E) gráf tranzitív lezártja aza G∗ = (V,E∗) gráf, ahol

E∗ = {(u,v) : u
G
 v}

Egy lehetséges algoritmus G∗ kiszámítására: vegyük azt a gráfot, amelyben minden létező él súlya 1, és alkalmazzuk a Floyd-
Warshall algoritmust. Az i és j pont között akkor és csak akkor van út G-ben, ha távolságuk nem ∞.
Azonban a Floyd-Warshall algoritmus egyszerű módosításával hatékonyabb megoldást kapunk.

{ Globális programelemek a Warshall eljáráshoz :
Const
MaxN = ??? ;{A gráf pontjainak max. száma}

Type
Graf = Array [1..MaxN,1..MaxN] Of Boolean;

} Procedure Warshall(Const G:Graf; N:Word; Var T:Graf);

9

Var
i,j,k:integer;

Begin
T:=G;
For k:=1 to N do

For i:=1 To N Do
For j:=1 To N Do

If Not T[i,j] Then
T[i,j]:=T[i,k] And T[k,j]

End{Warshall};

A WARSHALL algoritmus futási ideje Θ(n3).

10

