
17. Tördel őtáblák (Hasítótáblák)

Legyen U az Elemtip, univerzum,
H = {a1, · · · ,an} ⊆U
Vegyünk egy T:Array[0..M-1] of Elemtip tömbböt, amelyben a H halmazt tárolni akarjuk.
Válasszunk egy
h : U →{0, · · · ,M−1}
függvényt, amely minden ai halmazelemre megadja azt a táblázat indexet, ahol az elemet tárolni akrajuk, T[h(ai)] := ai .
Ha ai 6= a j és h(ai) = h(a j) ütközés .

17.1. Ütközésfeloldás láncolással

Legyen T:Array[0..M-1] of Lanc, és legyen T[j] a {x : x∈ H ∧h(x) = j} elemek lánca.

T
0

M−1

j ...

...

...

1. ábra. Adatszerkezet ütközésfelodás láncolással módszerhez.

Const
Meret = ??? ;(* a tördelőtábla mérete *)

Type
Kulcstip= ??? ;(* a halmaz elemeinek kulcstípusa *)
Adattip = ??? ;(* a halmaz elemeinek adattípusa *)
Elemtip = Record

kulcs : Kulcstip;
adat : Adattip

End;
Index = 0 .. Meret;
Lanc = ^Cella;
Cella = Record

adat : Elemtip;
csat : Lanc

End;
Tabla = Array[Index] Of Lanc;

Function H(K:Kulcstip):Index; { a tördelőfüggvény }
Begin ??? End;

Procedure Letesit(Var T:Tabla); Var
i : Index;

Begin{Letesit}
For i := 0 To Meret Do

H.T[i]:=Nil;

1

End{Letesit};

Function Keres(T:Tabla; K:Kulcstip):Lanc; Var
i:Index; P:Lanc;

Begin
P:=T[H[K]];
While (P<>Nil) And (P^.adat.kulcs<>K) Do

P:=P^.csat;
Keres := P;

End{Keres};

Procedure Bovit(Var T:Tabla;
X:Elemtip);

Var
P : Lanc;

Begin{Bovit}
i:=H(X.kulcs);
New(P);
P^.adat:=X;
P^.csat:=T[i];
T[i]:=P;

End{Bovit};

Procedure Torol(Var T:Tabla;
K:Kulcstip);

Var
i:Index; P,P0 : Lanc;

Begin
i:=H(K);
P:=T[i];
P0:=P;
While (P<>Nil) And (K<>P^.adat.kulcs) Do Begin
P0:=P; P:=P^.csat;

End;
If P<>Nil Then Begin
If P=P0 Then
T[i]:=P^.csat
Else

P0^.csat := P^.csat;
Dispose(P)

End
End{Torol};

17.2. Ütközésfeloldás nyílt címzéssel

Pótvizsgálat (próbasorozat)
h : U ×{0, · · · ,m−1}→ {0, · · · ,m−1}
〈h(k,0), · · · ,h(k,m−1)〉
〈0, · · · ,m−1〉 egy permutációja minden k kulcsra.
A k kulcsú elem helye a táblázatban az a j = h(k, i), amelyre

Min{i : T[h(k, i)] = Szabad}

Ekkor a próbák száma i +1.
Például, ha U = Integer, h(x, i) = (x+ i)modm. Ezt a tördelőfüggvényt alkalmazva bővítsük a kezdetben üres táblát egymás után
a 15, 30, 16, 35, 20, és 28 elemekkel. Majd töröljük a táblából a 16-os elemet. Ha ezt követően a 28 elemet keressük a táblában,

2

akkor a 〈2,3,4,5, . . .〉 próbasorozat kell alkalmazni, de a keresés nem állhat meg a 3 indexű törölt táblaelemnél. Tehát a táblában
a törölt helyeket nem tekinthetjük üresnek. Választanunk kell egy Ures és egy ettől különböző Torolt konstans kulcs értéket az
üres, illetve a törölt táblaelemek jelölésére.

4 987653210 1110 12
20 3515 3016 28T

2. ábra. Tördelőtábla a 15, 30, 16, 35, 20, és 28 elemekkel való bővítés után.

�������
�������
�������
������� 4 987653210 1110 12

20 3515 30 28T

3. ábra. Tördelőtábla a 16 elem törlése után.

{Tördelőtábla, ütközésfeloldás nyílt címzéssel}
Const
M = ??? ;{ a tördelötábla mérete}
Ures = ??? ;{ Kulcstípusú konstans, az üres hely jele }
Torolt = ??? ;{ Kulcstípusú konstans, a törölt hely jele }

Type
Kulcstip=??? ;{ a halmaz elemeinek kulcstípusa}
Adattip =??? ;{ a halmaz elemeinek adattípusa }
Elemtip = Record

kulcs : Kulcstip;
adat : Adattip

End;
Index = 0 .. M-1;
Tabla = Array[Index] Of Elemtip;

Function H(K:Kulcstip; i:Index) : Index; { a tördelőfüggvény }
Begin {???} End;

Function TKeres(Const T : Tabla;
K : Kulcstip) : Word;

Var i, {a próbaszám}
j : Word;{táblaindex}

Begin
i:=0;
Repeat

j:=H(K,i);
Inc(i);

Until (i=M) Or (K=T[j].kulcs) Or
(T[j].kulcs=Ures);

If (K=T[j].kulcs) Then
TKeres:=j

Else
TKeres:=M

End{TKeres};

3

Procedure TBovit(Var T:Tabla; X:Elemtip); Var
i, j : Word; K:Kulcstip;

Begin{Bovit}
K:=X.kulcs;
i := 0;
Repeat

j:=H(K,i);
Inc(i);

Until (i=M) Or (T[j].kulcs=Torolt) Or
(T[j].kulcs=Ures);

If (T[j].kulcs<>Torolt) And
(T[j].kulcs<>Ures) Then Begin
Exit; {nincs szabad hely a táblában}

End;
T[j].kulcs:=K;
T[j].adat:=X.adat

End {Bovit };

Procedure TTorol(Var T : Tabla; K : Kulcstip); Var
i, j : Word;

Begin {Torol} ;
i := 0;
Repeat

j:=H(K,i);
Inc(i);

Until (i=M) Or (T[j].kulcs=K) Or
(T[j].kulcs=Ures);

If (T[j].kulcs<>K) Then Begin
Exit {nincs K kulcsú elem a táblában}

End;
T[j].kulcs:=Torolt

End{Torol};

17.3. Pótvizsgálatok (próbasorozatok).

Lineáris pótvizsgálat
h(k, i) = (h0(k)+ i) mod m ,
h0 : U →{0, · · · ,m−1}

Négyzetes pótvizsgálat
h(k, i) = (h0(k)+c1 · i +c2 · i2) mod m ,
h0 : U →{0, · · · ,m−1}

Dupla tördelés
h(k, i) = (h1(k)+ i ·h2(k)) mod m ,
h1,h2 : U →{0, · · · ,m−1}
A h2(k) értékeknek relatív prímnek kell lenni a táblázat m méretéhez. Pl. h1(k) = k mod m és h2(k) = 1+ (k mod m′), ahol
m′ = m−1.

17.4. Tördel őfüggvények

Az osztás módszere: h(k) = k mod m
A szorzás módszere: h(k) = bm(k ·Amod1)c
ahol k ·Amod1 = k ·A−bk ·Ac

4

0 < A < 1, pl. A = (
√

5−1)/2 = 0.6180· · ·

17.5. Tördel őtáblák hatékonysági elemzése

Legyen h : U →{0, . . . ,m−1} a tördelőfüggvény.
α = n

m a tábla telítettségi tényezője.
Egyenletességi feltétel :

∑
k:h(k)= j

Pr(k) =
1
m

(j = 0, · · · ,m−1)

Feltesszük, hogy h(k) olcsó, azaz Θ(1) időben kiszámítható.

Ütközésfeloldás láncolással
A BOVIT futási ideje legrossabb esetben is O(1).
A KERES és TOROL futási ideje legrossabb esetben O(n).
(Minden elem egyetlen láncban van és a keresés szekvenciális.)
Ha a T[j] lánc hossza n j , akkor

n = n0 +n1 + · · ·+nm−1

és n j várható értéke n/m= α. Így egy k kulcsú elem keresésének ideje lineárisan függ a T[h(k)] lánc nh(k) hosszától. A T[h(k)]
lánc azon elemeinek számát tekintsük, amelyekkel a keresés során összehasonlítódik a keresett k kulcs. Két esetet kell tekinte-
nünk, az első az, amikor a keresés sikeres, a másik pedig a sikertelen keresés.

17.1. tétel. Ha teljesül az egyenletességi feltétel, akkor láncolással történő ütközésfeloldás esetén a sikertelen keresés átlagos
ideje Θ(1+α).

Bizonyítás. Az egyenletességi feltétel miatt bármely k kulcsra, ami még nincs a táblánan, egyforma valószínűséggel adódik
bármely j = h(k) táblaindex. Ezért egy k kulcs sikertelen keresésének átlagos ideje megegyezik annak átlagos idejével, hogy
a T[h(k)] láncot végigkeressük. Ennek a láncnak az átlagos hossza α, tehát h(k) kiszámításával együtt az átlagos futási idő
Θ(1+α). �

Sikertelen keresés esetén annak valószínűsége, hogy egy adott láncban keresünk, azonos a lánc hossszával.

17.2. tétel. Ha teljesül az egyenletességi feltétel, akkor láncolással történő ütközésfeloldás esetén a sikeres keresés átlagos ideje
Θ(1+α).

Bizonyítás. Az x elem sikeres keresése esetén megvizsgált elemek várható száma eggyel nagyobb, mint azoknak az elemeknek a
várható száma, amelyek megelőzik x-et az x-et tartalmazó láncban. Az x-et megelőző elemeket x beszúrása után szúrtuk be, mivel
új elemet mindig a lánc elejéhez illesztünk. Tehát átlagolni kell a táblázat n elemére az 1+azon elemek várható száma értékeket,
amelyeket x után adtunk x láncához. Legyen xi a táblázatba i-edikként beszúrt elem és legyen ki = xi .kulcs. Az egyenletességi
feltétel miatt Pr{h(ki) = h(k j)}= 1/m. Ezért a sikeres keresés során vizsgált elemek számának várható értéke

1
n

n

∑
i=1

(
1+

n

∑
j=i+1

1
m

)
= 1+

1
nm

n

∑
i=1

(n− i)

= 1+
1

nm

(
n

∑
i=1

n−
n

∑
i=1

i

)

= 1+
1

nm

(
n2− n(n+1)

2

)
= 1+

n−1
2m

= 1+
α
2
− α

2n
.

Tehát a sikeres keresés futási ideje, beszámítva h(k) kiszámítását is

Ta(n) = Θ(2+
α
2
− α

2n
) = Θ(1+α)

5

�

A nyílt címzés hatékonyságának elemzése
A legjobb eset
KERES, BÖVIT, TOROL : O(1)

A legrosszabb eset
BÖVIT: O(n)
KERES, TOROL : O(n) Átlagos eset

17.3. tétel. Nyílt címzés esetén a sikertelen keresés során a próbák számának várható értéke ≤ 1
1−α .

Bizonyítás. pi = Pr{pontosan i táblaelem foglalt} azaz, i a legkisebb index, amelyre T[h(k, i)] = Szabad}
Ekkor a próbák számának várható értéke:

1+
n

∑
i=0

i pi

Jelölje qi annak valószínűségét, hogy legfeljebb i próbát kell végezni. Tehát

1+
n

∑
i=0

i pi =
n

∑
i=0

i (qi −qi−1) =
n

∑
i=0

qi

q1 = n
m

q2 = n
m

n−1
m−1

qi = n
m

n−1
m−1 · · ·

n+1−i
m+1−i ≤ (n

m)i = αi . Tehát

1+
n

∑
i=0

i pi ≤
n

∑
i=0

αi ≤
∞

∑
i=0

αi ≤ 1
1−α

A BOVIT algoritmus átlagos futási ideje : O(1
1−α). �

17.4. tétel. Nyílt címzés esetén a sikeres keresés során a próbák számának várható értéke ≤ 1
α ln 1

(1−α) .

Bizonyítás. Sikeres keresés ugyanazon próbasorozatot hajtja végre, mint amikor az elemet beraktuk a táblázatba.
Ha a k kulcsú elem i-edikként került a táblázatba, akkor a próbák száma m

m−i . Tehát a próbák számának várható értéke:

1
n

n−1

∑
i=0

m
m− i

=
m
n

n−1

∑
i=0

1
m− i

=
1
α

(Hm−Hm−n),

ahol Hi = ∑i
j=1

1
j az i. harmonikus szám. 1/x csökkenő, így

1
α

(Hm−Hm−n) =
1
α

m

∑
k=m−n+1

1/k≤

1
α

∫ m

m−n
(1/x)dx =

1
α

ln
m

m−n
=

1
α

ln
1

1−α

�

Tehát a Torol algoritmus átlagos futási ideje (= sikeres kerersés) O(1
α ln 1

1−α)
Pl. ha α = 0.5 akkor 1.387, ha α = 0.9 akkor 2.559próba kell átlagosan a törléshez.

6

17.6. Az UnioHolvan adattípus megvalósítása

Az UnioHolvan absztrakt adattípus.
Értékhalmaz: UnioHolvan= {{H1, . . . ,Hk} : Hi ⊆ E, i = 1, . . . ,k, i 6= j ⇒ Hi ∩H j = /0}
Műveletek:

S: UnioHolvan, X : Elemtip,N,N1,N2 : NevTip

{Igaz} Letesit(S) {S= /0}
{S= S} Megszuntet(S) {Igaz}
{S= S} Uresit(S) {S= /0}

{S= {H1, . . . ,Hk}∧X ∈ ∪Hi} Holvan(S,X,N) {N = Y∧ (X ∈ Hi ∧Y ∈ Hi)}
{S= {H1, . . . ,Hk}∧X /∈ ∪Hi} Holvan(S,X,N) {N = X∧S= Pre(S)∪{{X}}

{S= {H1, . . . ,Hk}∧N1∈ Hi ∧N2∈ H j} Unio(S,N1,N2) {S= Pre(S)−Hi −H j ∪{Hi ∪H j}}
{S= {H1, . . . ,Hk}} Elemszam(S) {= k∧S= Pre(S)}
{S= {H1, . . . ,Hk}} ReszElemszam(S,N) {= |Hi |∧N ∈ Hi ∧S= Pre(S)}

{S= S} IterKezd(S, I) {}
{I = I} IterAd(I ,x) {}
{I = I} IterVege(I) {}

{S= {H1, . . . ,Hk}∧ (∃i)(N ∈ Hi)} ReszIterKezd(S,N, I) {}
{I = I} ReszIterAd(I ,x) {}
{I = I} ReszIterVege(I) {}

Adatszerkezet választása.
A diszjunkt részhalmazok ábrázolhatók olyan Rep: {1, . . . ,n}→{1, . . . ,n} függvénnyel, hogy bármely x,y∈{1, . . . ,n}-re Rep(x)=
Rep(y) akkor és csak akkor, ha x és y ugyanazon részhalmazhoz tartozik. Ezt szemlélteti a 4. ábra. Ekkor a HOLVAN művelet
konstans időben megvalósítható, az UNIO azonban az egyik részhalmaz elemszámával arányos idejű lesz. Egy másik lehet-

4. ábra. Egyszerű adatszerkezet az UnioHolvan adattípushoz.

5. ábra. Az UNIO művelet megvalósítása egyszerű adatszerkezet esetén.

séges adatszerkezet a megvalósításhoz a kétdimenziós lánc, amit a a 6. ábra mutat. Ekkor az UNIO művelet konstans időben
megvalósítható, a HOLVAN művelet azonban csak O(n) időben.
Tehát egymásnak ellentmodó követelményeket kellene kielégíteni, amelyik adatszerkezet jó a HOLVAN művelethez, az nem jó az
UNIO-hoz. Kevesebbet követeljünk a HOLVAN hatékony, azaz konstans idejű megvalósításánál. Ábrázoljuk a részhalmazokat fával,
mint azt a 7. ábra mutatja. Ekkor az UNIO konstans időben negvalósítható. A HOLVAN futási idejének felső korlátja a fa magas-
sága, tehát arra kell törekedni, hogy fa magassága ne legyen nagy.
Két heurisztokát használunk ennek elérésére:

7

6. ábra. Kétdimenziós lánc az UNIOHOLVAN típus megvalósításához.

7. ábra. Halmazerdő adatszerkezet az UNIOHOLVAN adattípus megvalósításához.

x x

8. ábra. Úttömörítés HOLVAN művelet során.

8

1.Egyesítés a nagyobbikhoz: Az UNIO művelet mindig a nagyobb elemszámú részhalmaz gyökeréhez kapcsolja a kisebb elem-
számú részhalmaz gyökerét.
2. Úttömörítés: Minden HOLVAN művelet során a fának mindazon pontjait, amelyen a keresés áthalad a gyökérhez kapcsoljuk.
Az iterátor műveletek hatékony megvalósításához ábrázoljuk a részhalmazokat körláncban, továbbá kétirányú körláncban a rész-
halmazok gyökereit. Tehát az adatszerkezet: (M,Adat,R); ahol az R szerkezeti kapcsolatok: R= {Apa,Csat,Elore,Vissza},
Apa,Csat,Elore,Vissza: M →M. Az Apakapcsolat fa, a Csatkapcsolat körlánc, az (Elore,Vissza) kapcsolatpár pedig kétirányú
körlánc.
A részhalmazok elemszámát nem tároljuk, hanem Apa(x) =−E legyen, ha x gyökér és az x-gyökerű részhalmaz elemszáma E.
Két körlánc konstans időben egyesíthető, amit a 10. ábra mutat.

9. ábra. Adatszerkezet az UNIOHOLVAN adattípus megvalósításához.

p2p1
q1

10. ábra. Két körlánc egyesítése:q1 := Csat(p1);Csat(p1) := Csat(p2);Csat(p2) := q1 .

Const
MaxN=10000;
Null=0;

Type
Adattip = ??? ;(* a felhasználó definiálja *)
Index=1..MaxN;
Kulcstip = Index;
Elemtip = Record

kulcs : Kulcstip;
adat : Adattip

End;
Nevtip = Kulcstip;
Tartip = Array[Index] Of

Record
adat:Adattip;
apa:Integer;
csat:Index;

9

elore,vissza:Index;
End;

RepTip = Record
Fa : Tartip;
Fej: 0..MaxN;
Eszam : 0..MaxN;

End;

UnioHol = RepTip ;(* az UnioHolvan adattipus tipusa *)
Iterator=^IterRep;
IterRep = Record

Hra: ^TarTip;
kezd,pont: Integer

End;
ReszIterator=Record

Hra: ^TarTip;
kezd,pont: Integer

End;

Procedure Letesit(Var S:UnioHol; N:Index);
Var i:Index;
Begin
S.Eszam:=0;
S.Fej:=0;
For i:=1 To N Do S.Fa[i].apa:=0;

End;

Procedure Uresit(Var S:UnioHol);
Var i:Index;
Begin
S.Eszam:=0;
S.Fej:=0;
For i:=1 To MaxN Do S.Fa[i].apa:=0;

End{Uresit};

Procedure Holvan(Var S : UnioHol; X : Elemtip; Var N : Nevtip);
Var j,k:Index;
Begin

j:=X.kulcs; N:=j;
If S.Fa[j].apa=Null Then Begin

Inc(S.Eszam);
S.Fa[j].adat:=X.adat;
S.Fa[j].apa:=-1;
S.Fa[j].csat:=j; {egyelemű körlánc}
If S.Fej=0 Then Begin {az első részhalmaz}
S.Fej:=N;
S.Fa[N].elore:=N;
S.Fa[N].vissza:=N;

End Else Begin
k:=S.Fa[S.Fej].elore; {az új részhalmaz bekötése a kettős körláncba}
S.Fa[j].elore:=k;
S.Fa[k].vissza:=j;
S.Fa[j].vissza:=S.Fej;
S.Fa[S.Fej].elore:=j;

End
End Else Begin

10

While S.Fa[N].apa > 0 Do
N:=S.Fa[N].apa;

While j <> N Do Begin { úttömörítés }
k:=S.Fa[j].apa;
S.Fa[j].apa:=N;
j:=k

End;
End

End{Holvan};

Procedure Unio(Var S : UnioHol;
N,M : Nevtip);

Var
k:Nevtip; p:Index;

Begin
If (N<>M) And (S.Fa[N].apa<0) And (S.Fa[M].apa<0) Then Begin

Dec(S.Eszam);
If S.Fa[N].apa > S.Fa[M].apa Then Begin {egyesítés a nagyobbikhoz}
k:=N; N:=M; M:=k

End;
S.Fa[N].apa:=S.Fa[N].apa + S.Fa[M].apa;
S.Fa[M].apa:=N;
p:=S.Fa[N].csat; {a két körlánc egyesítése}
S.Fa[N].csat:=S.Fa[M].csat;
S.Fa[M].csat:=N;

k:=S.Fa[M].vissza;
S.Fa[M].vissza:=S.Fa[M].elore;
S.Fa[S.Fa[M].elore].vissza:= K;

End
End{Unio};

Procedure Eleme(S : UnioHol;
K : Kulcstip;

Var Van : Boolean;
Var N : Nevtip);

Var
i,j:Index;

Begin
j:=K;
Van:=S.Fa[j].apa<>Null;
If Van Then Begin

N:=j;
While S.Fa[N].apa > 0 Do
N:=S.Fa[N].apa;

While j <> N Do Begin { úttömörítés }
i:=S.Fa[j].apa;
S.Fa[j].apa:=N;
j:=i

End;
End

End{Eleme};

Function Elemszam(S : UnioHol) : Integer;
Begin

Elemszam:=S.Eszam

11

End;

Function ReszElemszam(S : UnioHol;
N : Nevtip) : Integer;

Begin
ReszElemszam:=-S.fa[N].apa

End;

Procedure IterKezd(S : UnioHol; Var I: Iterator);
Begin

New(I); I^.kezd:= S.Fej;
I^.Hra:= @S.Fa;
I^.pont:= S.Fej;

End;

Procedure IterAd(Var I:Iterator; Var X: NevTip);
Begin
With I^ Do Begin

If pont = Null Then exit;
X:= pont;
pont:= Hra^[pont].elore;
If pont=kezd Then
pont:= 0

End;
End;

Function IterVege(I: Iterator): Boolean;
Begin

IterVege:= I^.pont =Null;
End;

Procedure ReszIterKezd(S : UnioHol; N: Nevtip; Var I: Iterator);
Begin

New(I);
I^.kezd:= N;
I^.Hra:= @S.Fa;
I^.pont:= N;

End;

Procedure ReszIterAd(Var I: Iterator; Var X: Elemtip);
Begin
With I^ Do Begin

If pont = Null Then exit;
X.kulcs:= pont;
X.adat:= Hra^[pont].adat;
pont:= Hra^[pont].csat;
If pont=kezd Then
pont:= Null

End;
End;

Function ReszIterVege(I: Iterator): Boolean;
Begin
ReszIterVege:= I^.pont = Null;

End;

12

Az UNIOHOL adattípus megvalósításának hatékonysági elemzése.
Összesítéses elemzés. Egy műveletegyüttes, mint az absztrakt adattípusok hatékonysági elemzését megadhatjuk úgy is, hogy
nem külön-külön vizsgáljuk az egyes műveletek futási idejét, hanem müveletsorok összesített futási idejét mérjük. Ha egy P =
P1; . . . ;Pm műveltsor összesített futási ideje T(P), akkor a T(P)/m hányadost az egyes műveletek amortizált futási idejének
nevezzük.

lg(i)n =


n ha i = 0 ,

lg(lg(i−1)n) ha i > 0és lg(i−1)n > 0,
nemdef egyébként

lg∗n = min{i ≥ 0 : lg(i)n≤ 1}

P = P1; · · · ;Pm műveletsorozat, ahol
Pi ∈ {UNIO,HOLVAN} és
n azon HOLVAN műveletek száma, amelyek új elemet adnak a halmazrendszerhez, azaz a részhalmazok elemszámának összege
a műveletsor végén n, akkor a műveletsor futási ideje:

T(P) = O(mlg∗n)
lg∗n minden gyakorlatban előforduló n-re ≤ 5, mivel lg∗(265536) = 5.
Tehát az HOLVAN műveletek amortizált futási ideje praktikusan konstans.

13

