
Algoritmizálás

Horváth Gyula
Szegedi Tudományegyetem

Természettudományi és Informatikai Kar
horvath@inf.u-szeged.hu

8. Interaktív feladatok

8.1. Feladat: Számjáték (IOI’96)
Adott az alábbi kétszemélyes játék. A játéktábla pozitív egész számok sorozata. A két játékos felváltva lép. Egy lépés azt jelenti,
hogy a játékos sorozat bal vagy jobb végéről kiválaszt egy számot. A kiválasztott számot törlik a tábláról. A játék akkor ér véget,
ha a számok elfogytak. Az első játékos nyer, ha az általa választott számok összege legalább annyi, mint a második játékos által
választottak összege. A második játékos a lehető legjobban játszik. A játékot az első játékos kezdi. Ha kezdetben a táblán levő
számok száma páros, akkor az első játékosnak van nyerő stratégiája.
Írjunk olyan programot, amely az első játékos szerepét játssza és megnyeri játékot! A második játékos lépéseit egy már adott
számítógépes program szolgáltatja. A két játékos a rendelkezésedre bocsátott Play modul három eljárásán keresztül kommunikál
egymással.

StartGame Az első játékos a játszmát a paraméter nélküli StartGame eljárás végrehajtásával indítja.

MyMove Ha az első játékos a bal oldalról választ számot, akkor a MyMove(’L’) eljárást hívja. Hasonlóképpen a MyMove(’R’)
hívással közli a második játékossal, hogy a jobb oldalról választott.

YourMove A második játékos (tehát a gép) azonnal lép. Az első játékos a lépést a YourMove(C) utasítással tudhatja meg, ahol
C egy karakter típusú változó. (C/C++ nyelven YourMove(&C)). A C változó értéke ’L’ vagy ’R’ lesz attól függően, hogy a
második játékos a bal vagy a jobb oldalról választott.

Bemenet
Az input.txt fájl első sora a kezdőtábla n méretét (a számok darabszámát) tartalmazza. n páros és 2 <= n <= 100. A második
sor n számot tartalmaz, a játék kezdetén a táblán lévő számokat. A táblán 200-nál nagyobb szám nem szerepel.

Kimenet
Ha a játék véget ért, akkor a programod írja ki a végeredményt az OUTPUT.TXT fájlba! A fájl első sorában két szám legyen! Az
első szám az első játékos által választott számok összegével, a második szám a második játékos által választott számok összegével
egyezzen meg! A programodnak a játékot le kell játszania és az output a lejátszott játék eredményét kell tartalmazza.

Példa bemenet és kimenet
INPUT.TXT
6
4 7 2 9 5 2

OUTPUT.TXT
18 11

Megoldás
Jelölje 〈a1, . . . ,an〉 a kezdeti játékállást. Minden lehetséges játékállást egyértelműen meghatározza az, hogy mely számok vannak
még a táblán. Tehát minden játékállás azonosítható (i, j) számpárral, ami azt jelenti, hogy a táblán az 〈ai, . . . ,a j〉 számsorozat van.
Mivel n páros szám, így minden esetben, amikor az első játékos lép, vagy i páros és j páratlan, vagy fordítva. Tehát az első játékos
kényszerítheti a második játékost, hogy az mindig vagy csak páros, vagy csak páratlan indexű elemét válassza a számsorozatnak.
Tehát ha a páros indexűek összege nagyobb, vagy egyenlő, mint a páratlanok összege, akkor az első játékos mindig páratlan
indexűt választ, egyébként mindig párosat.
Érdekesebb a játék, ha az a cél, hogy az első játékos a lehető legtöbbet szerezze meg, feltéve, hogy erre törekszik a második
játékos is. Ábrázoljuk a játékállásokat gráffal.

1



1,8

2,8

3,8

4,8

5,8

6,8

7,8

8,8

1,7

1,5

1,6

1,4

1,3

1,2

1,1

2,7

3,7

4,7

5,7

6,7

7,7

2,6

3,6

4,6

5,6

6,6

2,5

3,5

4,5

5,5

2,4

3,4

4,4 3,3

2,3

2,2

1. ábra. A játékállások gráfja n = 8 esetén. Körrel jelölt állásból (i + j páratlan) az első, négyzettel jelölt állásból (i + j páros) a
második játékos lép.

Definiáljuk minden (i, j) játékállásra azt a maximális pontszámot, amit az első játékos elérhet ebből a játékállásból indulva.
Jelölje ezt az értéket Opt(i, j). Opt(i, j) a következő rekurzív összefüggés számítható.

Opt(i, j) =

 0 ha i = j
max(ai +Opt(i+1, j),a j +Opt(i, j−1) ha i < j és i+ j páratlan
min(Opt(i+1, j),Opt(i, j−1) ha i < j és i+ j páros

Tehát alkalmazható a dinamikus programozás módszere, vagyis az Opt(i, j) értékeket a játék megkezdése előtt kiszámítjuk.

i-1,j i,j+1

i,ji,j

i-1,j i,j+1

Min(B,J) Max(B,J)

B J B J

2. ábra. Mini-max szabály.

Tároljuk minden (i, j) játékállásra a Lep[i,j] tömbelemben az optimális lépést, tehát az ’L’ karaktert, ha a képletben ai +Opt(i+
1, j) > a j +Opt(i, j−1), mert ekkor balról kell elvenni, egyébként pedig az ’R’ karaktert, mert ekkor jobbról kell elvenni.

1 program Jatek ;
2 uses Play ; { a masodik j á t é k o s t m e g v a l ó s í t ó modul }
3 c o n s t
4 MaxN=100;
5 var
6 InpF , OutF : Text ;
7 A: array [ 1 . . MaxN] Of Word; { a t áb l án l é v ő számok s o r o z a t a }
8 N: Word; { a t á b l a mérete }
9 Opt : array [ 1 . . MaxN , 1 . . MaxN] of word ;

10 Lt : array [ 1 . . MaxN , 1 . . MaxN] of Char ; { az 1 . j á t é k o s o p t i m á l i s l é p é s e i }
11
12 procedure Beolvas ;
13 var i :Word;
14 begin
15 Assign ( InpF , ’ input . t x t ’ ) ; Reset ( InpF ) ;

2



16 ReadLn ( InpF ,N) ;
17 f o r i :=1 to N do
18 Read ( InpF ,A[ i ] ) ;
19 Close ( InpF ) ;
20 end ;

21 procedure E l o f e l d o l g o z ;
22 var i , j :Word;
23 Pont , PontBal , PontJobb :Word;
24 begin
25 f o r j :=1 to N do begin
26 Opt [ j , j ] : = 0 ;
27 f o r i := j−1 DownTo 1 do begin
28 i f Odd( j−i +1) then begin { 2 . j á t é k o s l é p }
29 i f Opt [ i +1 , j ] <Opt [ i , j−1] then
30 Opt [ i , j ] : = Opt [ i +1 , j ]
31 e l s e
32 Opt [ i , j ] : = Opt [ i , j−1]
33 end e l s e begin { 1 . j á t é k o s l é p }
34 PontBal :=A[ i ]+ Opt [ i +1 , j ] ;
35 PontJobb :=A[ j ]+ Opt [ i , j −1];
36 i f PontBal >PontJobb then begin
37 Opt [ i , j ] : = PontBal ; Lt [ i , j ] : = ’L ’
38 end e l s e begin
39 Opt [ i , j ] : = PontJobb ; Lt [ i , j ] : = ’R’
40 end
41 end ;
42 end { f o r i } ;
43 end { f o r j } ;
44 end { E l o f e l d o l g o z } ;

45 procedure J a t s z a s ;
46 var
47 Bal , Jobb :Word; { az a k t u á l i s j á t é k á l l á s : A[ Bal . . Jobb ] }
48 L1 , L2 : Char ; { a két j á t é k o s a k t u á l i s l é p é s e }
49 begin
50 Bal : = 1 ; Jobb :=N; { a kezdő j á t é k á l l á s b e á l l í t á s a }
51 whi le Bal <=Jobb do begin { amíg nem üres a t á b l a }
52 MyMove( Lt [ Bal , Jobb ] ) ; { az én lépésem }
53 i f Lt [ Bal , Jobb ]= ’L ’ then { a j á t é k á l l á s a k t u a l i z á l á s a }
54 Inc ( Bal )
55 e l s e
56 Dec ( Jobb ) ;
57 L2:=YourMove ; { az e l l e n f é l l é p é s e }
58 i f L2= ’L ’ then { a j á t é k á l l á s a k t u a l i z á l á s a }
59 Inc ( Bal )
60 e l s e
61 Dec ( Jobb ) ;
62 end { whi l e } ;
63 end { J a t s z a s } ;
64 begin
65 Beolvas ;
66 E l o f e l d o l g o z ;
67 StartGame ;
68 J a t s z a s ;
69 end .

3



Kitalálós feladatok

8.2. Feladat: Atomlánc (CEOI’2001)
Kutatók egy speciális molekulát vizsgálnak. Tudják, hogy a molekula n különböző atomot tartalmaz, amelyek egy lineáris láncot
alkotnak. A kutatóknak van egy olyan mérőműszerük, amellyel meg tudják mérni a molekula két adott atomjának a távolságát.
A műszer által mért távolság a két atom pozíció különbségének abszolút értéke. Az elvégezhető mérések azonban korlátozottak,
egyetlen atom sem szerepelhet négynél több mérésben, mert ez tönkretenné a molekulát.
Olyan programot kell írni, amely meghatározza a molekula szerkezetét, azaz minden atom pozícióját a molekulában!

1 3 5 2 4

1. 2. 3. 5.4.Pozíciók:

Atomok:

3. ábra. Atomlánc példa

A mérőműszer használatát a Meter könyvtár három művelete biztosítja:
Size Egyszer kell hívni a program elején, az atomok n számát adja.

Span Két atom sorszámát kell argumentumként megadni, a visszaadott érték a két atom távolsága.

Answer A program végén kell hívni, a kiszámított eredmény közléséhez. Két argumentuma van, i és x, ami azt jelenti, hogy a
molekulában az i-edik pozíción a x sorszámú atom van. Minden i-re (1 ≤ i ≤ n) pontosan egyszer kell hívni, tetszőleges
sorrendben. A megoldás tükörkép erejéig egyértelmű, a két megoldás közül bármelyiket meg lehet adni.

A Meter könyvtár két szöveges állományt készít: chain.out és chain.log. A chain.out két sort tartalmaz, az első sor
a program által egy atomra végrehajtott legtöbb Span művelet számát tartalmazza. Ez a szám legfeljebb 5 lehet. A második
sor az Answer műveletekkel közölt atom sorszámok sorozatát tartalmazza. A program és könyvtár közötti dialógust chain.log
tartalmazza.
Utasítások Pascal programozóknak:
A uses meter; import utasítás szerepeljen a program első sorában.
Utasítások C/C++ programozóknak:
A #include "meter.h " import utasítás szerepeljen a program első sorában. Készítsen egy chain.gpr projekt állományt a
feladatköyvtárban és adja hozza a projekthez a chain.c (chain.cpp) és meter.o állományokat és compile/make paranccsal
végezze a fordítást.
HASZNÁLAT Készíteni kell egy meter.in szöveges állományt, amely két sort tartalmazzon. Az első sorban legyen az atomok n
száma. A második sor pontosan n különböző számot tartalmazzon egy-egy szóközzel elválasztva, az atomok sorszámait. Minden
szám 1 és n közötti egész szám legyen.

Példa bemenet és kimenet
meter.in
5
1 3 5 2 4
Eljárás hívások, amelyek egy megoldását adják a példa bemenetnek:
1. Size ( Pascal-ban) vagy Size() ( C/C++-ban) 5 értéket ad
2. Span(1,3) 1-et ad
3. Span(2,5) 1-et ad
4. Span(3,5) 1-et ad
5. Span(1,4) 4-et ad
6. Answer(1,1) Answer(5,4) Answer(3,5) Answer(4,2) Answer(2,3)
FELTÉTELEK

• Az atomok n számára: 5≤ n≤ 10000

• Ha bármely atom négynél többször szerepel Span műveletben, akkor a program megszakítását eredményezi.

• A megoldás program nem olvashat és nem írhat semmilyen állományt.

4



a

a b x

ba y x

y

b

b

b

b

b

b

b

b

b

b

a

a

a

a

a

a

a

a

a

x

x

y

y

x y

y x

x y

xy

x y

xy

x y

xy

5. ábra. x és y lehetséges elhelyezkedése a−b-hez képest.

xa b

x a y b

y

6. ábra. Vigyázat! Ha Tav(a,b) = Tav(x,y), akkor nem egyértelmű. A két lehetséges esetet mutatja az ábra.
De ha van három olyan a, b és c atomunk, amelyek pozícióját ismerjük, és mindegyik legfeljebb 2 kérdésben szerepelt, akkor
ezek közül kettő távolsága biztosan nem egyenlő Tav(x,y)-al. Ez biztosítható kezdetben úgy, hogy meghatározzuk az 1. 2. és 3.
atom pozícióját.

5



• Az atomok pozícióira: 1≤ i≤ n.

1 program Chain ;
2 uses Meter ;
3 c o n s t
4 MaxN=10000; { az atomok max . száma }
5 var
6 N: I n t e g e r ; { az atomok száma }
7 S : array [ 0 . . MaxN] of I n t e g e r ; { a megoldás }
8 i : I n t e g e r ;
9

10 procedure Szamit ; { Global : N, S }
11 var
12 Poz : array [ 0 . . MaxN] of −MaxN . . MaxN; { r e l a t í v atom p o z í c i ó k 1−hez k ép es t }
13 a , b , c , x , y : I n t e g e r ; { atom címkék }
14 Dab , Dxy , Dax , Dbx , Dby : I n t e g e r ; { t á v o l s á g o k }
15 i , k , min , z : I n t e g e r ;
16
17 begin { Szamit } ;
18 a : = 1 ; b : = 2 ; c : = 3 ; { 3 atom v á l s z t á s a }
19 Dab:= Span ( a , b ) ; Dax:= Span ( a , c ) ; Dbx:= Span ( b , c ) ;
20 Poz [ 1 ] : = 0 ; Poz [ 2 ] : = Dab ;

21 i f ( Dax=Dab+Dbx ) or ( Dab=Dax+Dbx ) then { c a−>b r e l a t í v p o z í c i ó j á n a k k i s z á m í t á s a }
22 Poz [ c ] : = Poz [ a ]+Dax
23 e l s e i f ( Dbx=Dax+Dab ) then
24 Poz [ c ] : = Poz [ a]−Dax ;
25 i : = 3 ;
26 whi le i +2<=N do begin
27 { a , b és c 3−s zor s z e r e p e l t kérdésben és r e l . p o z í c i ó j u k i sm e r t }
28 x := i +1; y := i +2; { a következ ő 2 atom : x , y }
29 Inc ( i , 2 ) ;
30 Dxy:= Span ( x , y ) ; { x és y távo l ságának l e k é r d e z é s e }
31 { vá las szunk 2 atomot [ a , b , c ] közül , hogy t á v o l s á g u k különböző
32 l e gy en Dxy−t ő l . }
33 i f Dxy<>Abs ( Poz [ b]−Poz [ c ] ) then begin {b−−c<>x−−y }
34 z := a ; a := c ; c := z ;
35 end e l s e i f Dxy<>Abs ( Poz [ a]−Poz [ c ] ) then begin { a−−c<>x−−y }
36 z :=b ; b:= c ; c := z ;
37 end ; { e l s e a−−b<>x−−y }
38 Dab:= Abs ( Poz [ a]−Poz [ b ] ) ;
39 i f Poz [ b] < Poz [ a ] then begin { Poz [ a ] < Poz [ b ] b i z t o s í t á s a }
40 z := a ; a :=b ; b:= z ;
41 end ;

42 { Poz [ a ] < Poz [ b ] , Dab<>Dxy}
43 Dax:= Span ( a , x ) ;
44 Dby:= Span ( b , y ) ;
45 { x és y r e l t í v p o z í c i ó j á n a k meghatározása }
46 i f ( Dax=Dab+Dby+Dxy ) Or { a−−b−−y−−x }
47 ( Dax+Dxy=Dab+Dby ) then begin { a−−b−−x−−y }
48 Poz [ x ] : = Poz [ a ]+Dax ; { a−−x−−b−−y }
49 Poz [ y ] : = Poz [ b]+Dby ;
50 end e l s e i f ( Dab=Dax+Dxy+Dby ) Or { a−−x−−y−−b}
51 ( Dab+Dxy=Dax+Dby ) then begin { a−−y−−b−−x }
52 Poz [ x ] : = Poz [ a ]+Dax ; { a−−y−−x−−b}
53 Poz [ y ] : = Poz [ b]−Dby ; { y−−a−−b−−x }
54 { y−−a−−x−−b}

6



55 end e l s e i f ( Dxy=Dab+Dax+Dby ) then begin { x−−a−−b−−y }
56 Poz [ x ] : = Poz [ a]−Dax ;
57 Poz [ y ] : = Poz [ b]+Dby ;
58 end e l s e i f ( Dby=Dxy+Dax+Dab ) Or { y−−x−−a−−b}
59 ( Dax+Dab=Dby+Dxy ) then begin { x−−y−−a−−b}
60 Poz [ x ] : = Poz [ a]−Dax ; { x−−a−−y−−b}
61 Poz [ y ] : = Poz [ b]−Dby ;
62 end { i f } ;
63 a := x ; b:= y ; { a , b h e l y e t t x és y }
64 end { whi l e } ;

65 i f Not Odd(N) then begin { az u t o l s ó elem f e l d o l g o z á s a , ha N páros }
66 i f Poz [ b] < Poz [ a ] then begin
67 z := a ; a :=b ; b:= z ;
68 end ;
69 Dab:= Abs ( Poz [ a]−Poz [ b ] ) ;
70 Dax:= Span ( a ,N) ;
71 Dbx:= Span ( b ,N ) ; ;
72 i f Dax=Dab+Dbx then
73 Poz [N] : = Poz [ b]+Dbx
74 e l s e i f Dab=Dax+Dbx then
75 Poz [N] : = Poz [ a ]+Dax
76 e l s e
77 Poz [N] : = Poz [ a]−Dax
78 end ;
79 min := Poz [ 1 ] ;
80 f o r i :=2 to N do
81 i f Poz [ i ] <min then min := Poz [ i ] ;
82 min:=−min +1;
83 f o r i :=1 to N do { a r e l a t í v p o z í c i ó k 1 . . N tartományba l é p t e t é s e }
84 S [ Poz [ i ]+ min−1]:= i ;
85 end { Szamit } ;

86 begin { program }
87 N:= S i z e ;
88 Szamit ;
89 f o r i :=0 to N−1 do
90 Answer ( i +1 ,S [ i ] ) ;
91 end .

8.3. Feladat: Többségi elem kiválasztása (CEOI’2001)
Iskolád tanulói két csoportba tartoznak. Tudjuk, hogy az egyik csoportban többen vannak, mint a másikban, ezt nevezzük többségi
csoportnak. Ki kell választani egy tanulót, aki a többségi csoporthoz tartozik. Ehhez egyetlen műveletet használhatunk, nevezete-
sen két tanulótól megkérdezhetjük, hogy ugyanabba a csoportba tartoznak-e.
Olyan programot kell írni, amelyik a lehető legkevesebb kérdéssel meghatároz egy többségi csoporthoz tartozó tanulót. A tan-
ulókat sorszámukkal azonosítjuk.
KÖNYVTÁRI MŰVELETEK
A feladat megoldásához három könyvtári művelet van.

Size A tanulók n számát adja. Ezt kell először hívni.

Member Két tanuló sorszámát kell argumentumként megadni, és a függvényeljárás 1 értéket ad, ha a két tanuló ugyanazon
csoport eleme, egyébként 0-át.

Answer Ezzel a művelettel kell közölni a kiválasztott, többségi csoportba tartozó tanuló sorszámát.

A programod és a könyvtári modul közötti párbeszédet a select.out szöveges állományban rögzítik. Ez a nap állomány a
programod által közölt megoldást is tartalmazza, továbbá azt is, hogy az helyes-e. A megoldást csak akkor fogadják el, ha a

7



tanulók bármely olyan diszjunkt A és B részhalmazára, amely kompatibilis az általad feltett kérdésekkel, a közölt megoldás a
nagyobb elemszámú részhalmazban van.
A válaszadó arra kényszerít, hogy szükséges számú kérdést tegyél fel.
Pascal program esetén
uses query; import direktívát kell használni.
C/C++ program esetén
#include "query.h " direktívát kell használni.
GYAKORLÁS
A könyvtári modul úgy használható, hogy a select.in szöveges állomány első és egyetlen sorába a tanulók n számát kell írni,
ami páratlan szám kell legyen!

Példa bemenet és kimenet
select.in select.out
7 Size=7

Member(1,2)=0
Member(3,4)=1
Member(5,6)=1
Member(4,6)=0
Your Answer: 7, Correct
Majority Group:
2 5..7
Non-majority Group:
1 3 4
Number of Queries: 4
Full Possible Score: 3
Your Score: 3

Például, az 1 válasz nem elfogadható, mert minden feltett kérdésre a {2,5,6,7} és {1,3,4} halmazok esetén a MEMBER függvény
ugyanazt eredményezné, de 1 nem eleme a {2,5,6,7} többségi csoportnak. Az a..b jelölés az a és b közötti egész számok halmazát
jelenti. FELTÉTELEK

• A tanulók n számára 5≤ n≤ 30000, n páratlan teljesül.

• A programod nem olvashat és nem írhat semmilyen filet.

• A tanulók azonosítói: 1≤ i≤ n

• FreePascal könyvtári modulok filenevei: query.ppw, query.ow.

• A könyvtári műveletek Pascal deklarációi:
function Size: integer;
function Member(x, y: integer): integer;
procedure Answer(x: integer);

• C/C++ könyvtári modulok filenevei: query.h , query.o

• C/C++ deklarációk:
int Size(void);
int Member(int x, int y);
void Answer(int x);

PONTOZÁS
Helyes válasz esetén a kapott pontszám: max(0,n− k), ha a programod k MEMBER műveletet hajtott végre.
Megoldás
Jelölje H = {1, . . . ,n} a tanulók halmazát. Azt mondjuk, hogy egy A⊆ H homogén részhalmaz, ha A minden eleme ugyanabba
a csoportba tartozik, azaz ha ∀x,y ∈ A ,member(x,y) = 1. Azt mondjuk, hogy U,V ⊆ H ellentétes részhalmazok, ha U minden
eleme az egyik, V minden eleme a másik csoportba tartozik, azaz ha ∀x ∈U ∀y ∈V ,member(x,y) = 0.

Vegyük észre, hogy ha member(x,y) = 0, akkor x és y elhagyható a halmazból, mert biztosan marad még többségi csoportba
tartozó elem. Általánosan, ha U,V ⊆ H homogén részhalmazok és elemszámuk megegyezik, továbbá valamely x ∈U és y ∈ V

8



elemekre member(x,y) = 1 -et kapunk, akkor U és V törölhető H-ból.
Bármely kérdéssorozat által nyert ismeret ábrázolható egy olyan halmazzal, amelynek az elemei diszjunkt halmazpárok. Pon-
tosabban, az alábbi feltételeket kielégítő halmazzal.

I = {(U1,V1), . . . ,(Um,Vm)} (1)

az Ui,Vj halmazok páronként diszjunktak 1≤ i, j ≤ m (2)
Ui és Vi homogén részhalmaz ,1≤ i≤ m (3)

Ui az Vi ellentétesek 1≤ i≤ m (4)
m⋃

i=1

(Ui∪Vi) = {1, . . . ,n} (5)

(6)

A kezdeti helyzetet, amikor nincs semmi ismeretünk, az

I = {({1}, /0), . . . ,({n}, /0)} (7)

halmaz ábrázolja. Tegyük fel, hogy az eddig elvégzett kérdésekkel nyert információt az (4) halmaz ábrázolja, és a Member(x,y)
kérdést tesszük fel. Mivel az I-beli részhalmazok páronként diszjunktak, pontosan egy olyan i és pontosan egy olyan j index van,
hogy

x ∈Ui∪Vi és y ∈U j ∪Vj

Ha i = j, akkor a kérdés redundáns, azaz a kérdésre a válasz megadható a korábbi kérdésekre kapott válaszok alapján, nevezete-
sen, a válasz Igaz, ha x ∈Ui és y ∈Ui vagy x ∈Vi és y ∈Vi, egyébként a válasz 0. Ekkor nem jutunk új ismerethez.
Ha i 6= j, akkor új ismerethez jutunk, amit az

I′ = I−{(Ui,Vi),(U j,Vj)}∪{(U,V )} (8)

halmazzal ábrázolhatunk, ahol az (U,V ) párt az alábbiak szerint kapjuk.
Ha Member(x,y) = Igaz, akkor

(U,V ) =
{

(Ui∪U j,Vi∪Vj) ha (x,y ∈Ui∪U j)∨ (x,y ∈Vi∪Vj)
(Ui∪Vj,U j ∪Vi) ha (x,y ∈Ui∪Vj)∨ (x,y ∈U j ∪Vi)

Ha Member(x,y) = 0, akkor

(U,V ) =
{

(Ui∪U j,Vi∪Vj) ha (x,y ∈Ui∪Vj)∨ (x,y ∈U j ∪Vi)
(Ui∪Vj,U j ∪Vi) ha (x,y ∈Ui∪U j)∨ (x,y ∈Vi∪Vj)

Nyilvánvaló, hogy bármely x akkor és csak akkor fogadható el a feladat helyes megoldásának, ha az elvégzett kérdésekhez tartozó
I ismeretre teljesül, hogy x ∈Ui∪Vi esetén, ha x ∈Ui akkor |Ui|> |Vi|, illetve ha x ∈Vi akkor |Vi|> |Ui|, és

max(|Ui| , |Vi|)+
n

∑
j=1
j 6=i

min(
∣∣U j
∣∣ , ∣∣Vj

∣∣) > min(|Ui| , |Vi|)+
n

∑
j=1
j 6=i

max(
∣∣U j
∣∣ , ∣∣Vj

∣∣) (9)

Ha az I ismeretre teljesül a (13) egyenlőtlenség valamely i indexre, akkor azt mondjuk, hogy I biztos ismeret. Ekkor az Ui és Vi
halmazok közül a nagyobbik elemszámú halmaz mindegyik eleme biztosan a többségi csoportba tartozik.
A (13) feltétel ekvivalens a (14) feltétellel.

||Ui|− |Vi||>
n

∑
j=1, j 6=i

∣∣∣∣U j
∣∣− ∣∣Vj

∣∣∣∣ (10)

9



ELVI ALGORITMUS

I := {{1}, . . . ,{n}};
x:=0;
while |Max(I)| ≤ n/2 begin

x := x+1;
y := x+1;
if Member(x,y) then begin

U := {x,y};
while van olyan V ∈ I, hogy |U |= |V | do begin

y := V egy tetszőleges eleme;
I := I−{V };
if Member(x,y) then

U := U ∪V ;
else begin

n := n−2 |U |;
U := /0;
Break;

end
end;
if U 6= /0 then

I := I∪{U }
end else

n := n−2;
end;
t := Max(I) egy eleme;

Az algoritmus legfeljebb
n−b(n) (11)

kérdést tesz fel, ahol b(n) az n szám kettes számrendszerbeli felírásában az egyes bitek száma, azaz

b(n) =
k

∑
i=1

bi (12)

ha

n =
k

∑
i=1

bi 2i(bk 6= 0) (13)

Megvalósítás

1 program S e l e c t ;
2 uses Query ;
3 c o n s t
4 MaxN=30000; {max . tanulószám }
5 MaxK=20; {MaxN<=2^MaxK}
6 var
7 N : 1 . . MaxN; { atanulók száma }
8 M: 0 . . MaxN; { a r e d u k á l t halmaz elemszáma }
9 Fel : Longint ; { a t ö b b s é g i c s o p o r t elemszáma }

10 B: array [ 0 . . MaxK] Of Boolean ; { 2^k elemű r é s z c s o p o r t o k }
11 R: array [ 0 . . MaxK] Of 0 . . MaxN; { a r é s z c s o p o r t o k egy reprezentánsa }
12 Pow2 : array [ 0 . . MaxK] Of Longint ; {Pow2 [ k]=2^k}
13 L:Word; { a legnagyobb r é s z c s o p o r t elemszáma 2^L}
14 i , k : I n t e g e r ;
15 begin
16 Pow2 [ 0 ] : = 1 ;
17 f o r k:=1 to MaxK do { 2 hatványok k i s z á m í t á s a }

10



18 Pow2 [ k ] : = Pow2 [ k−1] Shl 1 ;
19 N:= S i z e ; { a tanulók számának l e k é r d e z é s e }
20 M:=N;
21 Fel :=M div 2 +1;
22 L: = 0 ; i : = 0 ;

23 whi le i <N do begin {M elemű halmaz t ö b b s é g i elemének k e r e s é s e }
24 k : = 0 ; B[ 0 ] : = True ;
25 Inc ( i ) ; R[ 0 ] : = i ;
26 Inc ( i ) ; { a két következ ő elem : i é s i +1 }
27 i f i >N then Break ; { n i n c s több }
28 whi le B[ k ] do begin { van két 2^k elemszámú r é s z c s o p o r t }
29 i f Member (R[ k ] , i )=1 then begin { i−t é s R[ k]− t tar ta lmazó két 2^k elememű }
30 B[ k ] : = F a l s e ; { r é s z c s o p o r t e g y e s í t é s e }
31 Inc ( k ) ; { 2^k+1 elemű l e s z az új r é s z c s o p o r t }
32 i f k>L then L:=k ; { új legnagyobb r é s z c s o p r t ? }
33 end e l s e begin {nem azonos csoportba t a r t o z ó r é s z c s o p o r t o k }
34 Dec (M, Pow2 [ k + 1 ] ) ; {M:=M−2^(k+1) }
35 Dec ( Fel , Pow2 [ k ] ) ; { Fe l := Fel−2^k}
36 B[ k ] : = F a l s e ; { t ö r ö l j ü k a r é s z c s o p o r t o t }
37 i f k=L then {L a k t u a l i z á l á s a }
38 whi le (L>0)And Not B[L] do
39 Dec (L ) ;
40 k:=−1;
41 Break ;
42 end ;
43 end { whi l e B[ k ] } ;

44 i f k>=0 then begin
45 B[ k ] : = True ; { új 2^k elemszámú r é s z c s o p p o r t o t kaptunk }
46 R[ k ] : = i ; { i az új r é s z c s o p o r t reprezentánsa }
47 end ;
48
49 i f (L>0)And( Pow2 [L] >= Fel ) then { a legnagyobb r é s z c s o p o r t a t ö b b s é g i ? }
50 Break ;
51 end { whi l e i <N} ;
52
53 Answer (R[L ] ) ; { a legnagyobb r é s z c s o p o r t reprezentánsa a megoldás }
54 end .

8.4. Feladat: Median (IOI’2000)
Egy űrkísérletben n tárgyat használunk, melyeket 1-től n-ig számozunk, ahol n páratlan. Minden tárgy különböző súlyú (ter-
mészetes számok), de magukat a súlyokat nem ismerjük. Minden y súlyra igaz, hogy 1 ≤ y ≤ n. Mediánnak nevezzük azt a
tárgyat, amelyiknél ugyanannyi könnyebb, mint nehezebb tárgy van. Írj programot, amely meghatározza a mediánt! A tárgyak
súlyát olyan eszközzel hasonlíthatjuk össze, amely három tárgy közül megadja a mediánt.
Könyvtár
A device nevű könyvtárból az alábbi három művelet használható:

GetN egyszer kell meghívni, a programod legelején; az argumentum nélküli függvényhívás eredménye az n értéke.

Med3 három különböző tárgy sorszámával kell hívni, függvényértéke e három sorszám közül a mediánjuk sorszáma.

Answer egyszer kell meghívni, a programod végén; argumentumként az N tárgy mediánjának a sorszámát kell megadnod. Ez a
hívás le is állítja a programodat.

A device könyvtár függvényei két szöveges állományt hoznak létre MEDIAN.OUT és MEDIAN.LOG néven. A MEDIAN.OUT első
sorában egy egész szám lesz, az, amit az ANSWER eljárásnak adtál át. A második sorban a MED3 hívások száma lesz. A
programod és a könyvtár közötti párbeszédet a MEDIAN.LOG tartalmazza.

11



Pascal programozóknak:
programodba írd be a következő sort: uses device;
Kipróbálás

Programod kipróbálásához készíts DEVICE.IN néven olyan állományt, amely két sorból áll. Az elsőbe a tárgyak számát (n)
kell írni. A második sor a tárgyak súlyát (1 és n közötti különböző egész számok) tartalmazza, ahol az i-edik érték az i-edik tárgy
súlya.
Kikötések

• 5≤ n≤ 1499 és n páratlan.

• Minden i sorszámra igaz: 1≤ i≤ n.

• Minden y súlyra igaz: 1≤ yn és minden súly különböző.

• A Pascal könyvtár neve: device.tpu

• A Pascal függvények és eljárás deklarációja:
function GetN: integer;
function Med3(x,y,z:integer):integer;
procedure Answer(m:integer);

• Futtatásonként a MED3 legfeljebb 7777-szer hívható.

• Programod nem olvashat és nem írhat egyetlen állományt sem.

Megoldások

Alapelv: ismételten határozzuk meg és távolítsuk el a két szélső elemet.
A H ⊆ {1, . . . ,n} halmaznak a,b ∈ H két szélső eleme, ha minden x ∈ H elemre, ha x 6= a és x 6= b

Med3(a,x,b) = x

1 program Median1 ; {Hagymahámozó a l g o r i t m u s }
2 uses Device ;
3 c o n s t
4 MaxN=3000;
5 type
6 Node = 1 . .MaxN;
7 var
8 N: Node ;
9 M: I n t e g e r ;

10 f u n c t i o n Compute : I n t e g e r ;
11 var
12 S : array [ 1 . . MaxN] Of 0 . . MaxN;
13 L , R, x , y , mi : I n t e g e r ;
14 begin { Compute } ;
15 f o r x :=1 to N do S [ x ] : = x ;
16 L: = 1 ; R:=N;
17 whi le L<R do begin
18 f o r x :=L+1 to R−1 do begin
19 mi :=Med3( S [L] , S [ x ] , S [R ] ) ;
20 i f mi=S [L] then begin
21 y :=S [L ] ; S [L] : = S [ x ] ; S [ x ] : = y ;
22 end e l s e i f mi=S [R] then begin
23 y :=S [R] ; S [R] : = S [ x ] ; S [ x ] : = y ;
24 end ;
25 end { f o r x } ;

12



26 Inc (L ) ; Dec (R) ;
27 end { whi l e } ;
28
29 Compute :=S [L ] ;
30 end { Compute } ;

A két szélső elem n−2 kérdéssel határozható meg, tehát a kérdések száma:

(n−2)+(n−4)+ . . .+3+1 =
(

n−1
2

)2

Ha n≤ 177, akkor legfeljebb 7744 hívás kell, de ha n≥ 179, akkor legalább 7921. Rendezést használó algoritmusok.
Egy 〈a1,a2, . . . ,am〉 elemsorozatot rendezettnek nevezünk, ha

(∀i, j,k)(1≤ i < j < k ≤ m)(Med3(ai,a j,ak) = a j)

Definiálhatnánk egy x < y bináris lineáris rendezési relációt, amely lehetővé tenné, hogy bármely ismert rendezést használhassunk.

x,y,1,2
x,1,y,2
x,1,2,y

1,x,y,2
1,x,2,y

1,2,x,y

Ehhez azonban két Med3 hívás kell.
Rendezett sorozat előállítható ismételt beszúrással, indulva egy kételemű sorozattal.
A beszúrás helye meghatározható:
Lineáris kereséssel. A beszúrandó x elemet a sorozat két utolsó eleméhez hasonlítjuk
MED3(am−1,x,am) lekérdezéssel.
〈a1,a2, . . . ,am−1,am〉
Bináris kereséssel. A beszúrandó x elemet a sorozat középső két eleméhez hasonlítjuk; MED3(ak−1,x,ak) lekérdezéssel.
〈abal , . . . ,ak−1,ak, . . . ,a jobb〉
Harmadoló kereséssel.
A beszúrandó x elemet a sorozat egy-harmad és kétharmad pozíciójában lévő két eleméhez hasonlítjuk; MED3(ak,x,al) lekérdezés-
sel.
〈abal , . . . ,ak, . . . ,al , . . . ,a jobb〉
1. Teljes rendezés algoritmus.
Képezzünk az {1, . . . ,n} elemekből rendezett sorozatot:

S = 〈a1, . . . ,an〉

A keresett medián am, m = (n+1)/2.
2. Felét rendező algoritmus.
Legyen m = (n+1)/2. Első lépésként állítsunk elő m elemből pl. az {1, . . . ,m} elemekből rendezett sorozatot:

S = 〈a1, . . . ,am〉

Minden további x elemet szúrjuk be az S sorozatba és hagyjuk el az utolsót. A keresett medián a sorozat utolsó eleme lesz.
3. Szűkítő rendezés algoritmus.
Legyen m = (n+1)/2. Első lépésként állítsunk elő m elemből pl. az {1, . . . ,m} elemekből rendezett sorozatot:

S = 〈a1, . . . ,am〉

Minden további x elemet szúrjuk be az S sorozatba

S = 〈a1, . . . ,ai,x,ai+1, . . . ,am〉

Nyilvánvaló, hogy S első eleme nem lehet a medián, mert van legalább m nálánál nagyobb elem. Hasonlóképpen S utolsó eleme
sem lehet a medián, mert van legalább m nálánál kisebb.
Tehát hagyjuk el S első és utolsó elemét.

13



Beszúrási mód Változat Legrosszabb eset Legjobb eset
Teljes 561749 282532

Lineáris Fél 421499 169655
Szűkítő 281623 141676
Teljes 12953 11680

Bináris Fél 12477 11492
Szűkítő 11481 10471
Teljes 9399 8977

Harmadoló Fél 9399 8522
Szűkítő 8319 8041

1. táblázat. Med3 hívások száma N = 1499 elemre

1 Program Median4 ;
2 { Sz űk í t ő rendezés }
3 Uses Device ;
4 c o n s t
5 MaxN=3000; {max . number of e l ements }
6 var
7 N: I n t e g e r ; { number of e l ements }
8 M: I n t e g e r ; { s o l u t i o n }
9 S : array [ 1 . . MaxN] Of I n t e g e r ; { s o r t e d sequence }

10
11 Funct ion FindPos (L , R,X:Word ) : Word; { Finds p o s i t i o n of x by ternary search in the
12 ordered sequence S [L . . R] } var
13 L0 , R0 ,Lm,Rm, mi , d ,Xm:Word;
14 begin { FindPos }
15 L0:=L; R0:=R;
16 L:=L0−1; R:=R0+1;
17
18 whi le (L+2<R) do begin
19 d : = (R−L) Div 3;
20 i f (R−L) Mod 3=2 then begin { p a r t i t i o n s o f l e n g t h ( d +1) , d , ( d+1) }
21 Lm:=L+d+1; Rm:=R−(d + 1 ) ;
22 end e l s e begin { p a r t i t i o n s o f l e n g t h d , ( d +1) , d }
23 Lm:=L+d ; Rm:=R−d ;
24 end ;
25 Xm:=Med3( S [Lm] , S [Rm] , X) ;
26 i f Xm=S [Lm] then
27 R:=Lm
28 e l s e i f Xm=S [Rm] then
29 L:=Rm
30 e l s e begin
31 L:=Lm; R:=Rm;
32 end ;
33 end { whi l e } ;
34
35 i f (R=L+2) then begin { handle extremal c a s e s }
36 i f L=0 then L: = 1 ;
37 R:=L+1;
38 Xm:=Med3( S [L] , S [R] , X) ;
39 i f Xm=S [L] then
40 L:=L−1
41 e l s e i f (Xm=S [R] ) then
42 L:=R
43 end ;
44

14



45 FindPos :=L;
46 end { FindPos } ;
47
48 Funct ion Compute : I n t e g e r ; var
49 L , R, x , xp , i , Mi : I n t e g e r ;
50 begin { Compute } ;
51 Mi:=N div 2+1;
52 L: = 1 ; R: = 2 ;
53 S [ 1 ] : = 1 ; S [ 2 ] : = 2 ;
54 f o r x :=3 to Mi do begin { b u i l d s o r t e d sequence of e l ements 1 . . Mi}
55 xp := FindPos (L , R, x ) ;
56 f o r i :=R downto xp+1 do { i n s e r t x }
57 S [ i +1] := S [ i ] ;
58 S [ xp +1] := x ;
59 Inc (R) ;
60 end { f o r } ;
61 {S [ 1 . . Mi ] ordered }
62 f o r x :=Mi+1 to N do begin
63 { I n v a r i a n t : There are N/ 2 e lements g r e a t e r then S [L] and
64 t h e r e are N/ 2 e lements l e s s then S [R ] . }
65 xp := FindPos (L , R, x ) ;
66 i f ( xp<L) then { e l i m i n a t e the two extemals : }
67 Dec (R) { one o v e r f l o w s on the l e f t , e l i m i n a t e the r ightmos t }
68 e l s e i f ( xp=R) then
69 Inc (L) { one o v e r f l o w s on the r i g h t , e l i m i n a t e the l e f t m o s t }
70 e l s e begin { i n s e r t x i n t o S [L . . R] }
71 f o r i :=R downto xp+1 do { one o v e r f l o w s on the r i g h t }
72 S [ i +1] := S [ i ] ;
73 S [ xp +1] := x ;
74 Inc (L ) ; { e l i m i n a t e the l e f t m o s t }
75 end ;
76 end { f o r } ;
77
78 Compute :=S [R] ; {L=R}
79 end { Compute } ;
80
81 begin { program }
82 N:=GetN ;
83 M:= Compute ;
84 Answer (M) ;
85 end .

4. Iterált harmadoló algoritmus.
Elvi algoritmus:
Legyen H = {1,2, . . . ,n}. Válasszunk két különböző tetszőleges a,b ∈ H elemet, ezek lesznek a felosztó elemek. Majd H többi
elemét osszuk három részbe:

H1 = {x : Med3(a,b,x) = a} (14)
H2 = {x : Med3(a,b,x) = x} (15)
H3 = {x : Med3(a,b,x) = b} (16)

Tehát a keresést H1,H2,H3 valamelyikében kell folytatni attól függően, hogy hány elem került az egyes halmazokba a felosztás
során.

H1 < a < H2 < b < H3

1 Funct ion Keres (H: Halmaz ; k : I n t e g e r ) : I n t e g e r ;
2 {A H halmaz k−adik elemének k e r e s é s e harmadoló f e l o s z t á s s a l }
3 Var H1 , H2 , H3: Halmaz ;

15



4 a , b : I n t e g e r ;
5 Procedure F e l o s z t (H: Halmaz ; Var H1 , H2 , H3: Halmaz ; Var a , b : I n t e g e r ) ;
6 Begin { F e l o s z t } ;
7 V a l a s z t (H, a ) ; V a l a s z t (H, b ) ;
8 Rendez ( a , b ) ; { a<b}
9 H1 : = [ ] ; H2 : = [ ] ; H3 : = [ ] ;

10 For x In H Do
11 Case Med3( a , x , b ) o f
12 x : H2:=H2+[ x ] ;
13 a : H1:=H1+[ x ] ;
14 b : H3:=H3+[ x ] ;
15 End{ Case } ;
16 End{ F e l o s z t } ;

1 Begin { Keres } ;
2 I f |H| = 1 Then Begin
3 Keres :=H eleme
4 End Else I f |H| = 2 Then Begin
5 V a l a s z t (H, a ) ; V a l a s z t (H, b ) ;
6 Rendez ( a , b ) ; { a<b}
7 I f k=1 Then Keres := a El se Keres :=b
8 End Else Begin
9 F e l o s z t (H, H1 , H2 , H3 , a , b ) ;

10 I f k <=|H1 | Then
11 Keres := Keres (H1 , k )
12 Else I f k = |H1| + 1 Then
13 Keres := a
14 Else I f ( k > |H1 | + 1 ) And ( k <=|H1 | + | H2 | + 1 ) Then
15 Keres := Keres (H2 , k− |H1|−1)
16 Else I f k = |H1 | + | H2| + 1 Then
17 Keres :=b
18 Else
19 Keres := Keres (H3 , k− ( |H1 | + | H2 | + 2 )
20 End ;
21 End{ Keres } ;

22 Program Median5 ;
23 { I t e r á l t harmadoló f e l o s z t á s a l g o r i t m u s }
24 uses Device ;
25 c o n s t
26 MaxN=3000;
27 var
28 N: I n t e g e r ;
29 M: I n t e g e r ; { a megoldás }
30 S : array [ 1 . . MaxN] Of 0 . . MaxN;
31
32 Funct ion Keres (K: I n t e g e r ) : I n t e g e r ; var Veg1 , Veg2 , Veg3 : I n t e g e r ;
33 Bal , Jobb , a , b , i : I n t e g e r ;
34 H1 , H2 , H3: I n t e g e r ;
35 m12a , m1ab : I n t e g e r ;
36
37 procedure F e l o s z t ( Bal , Jobb : I n t e g e r ; var V1 , V2 , V3 , a , b : I n t e g e r ) ;
38 var i , X,m: I n t e g e r ;
39 begin { F e l o s z t } ;
40 a :=S [ Bal ] ; b :=S [ Bal + 1 ] ;
41 i f Bal >1 then begin { a~b rendezése 1−>2 höz ké pes t }
42 m12a:=Med3 ( 1 , 2 , a ) ;
43 m1ab:=Med3 ( 1 , a , b ) ;

16



f
f
f
f
f

6

6

6

6

- f
f
f
f
f

6

6

6

6

- f
f
f
f
f

6

6

6

6

- f
f
f
f
f

6

6

6

6

- f
f
f
f
f

6

6

6

6

- f
f
f
f
f

6

6

6

6

-. . . f
f
f
6

6

-

7. ábra. 2-dimenziós rendezett lista

17


