
14. Mediánok és rendezett minták

Kiválasztási probléma
Bemenet: Azonos típusú (különböző) elemek H = {a1, . . . ,an} halmaza, amelyeken értelmezett egy ≤ lineáris rende-
zési reláció és egy i (1≤ i ≤ n) index.
Kimenet: Olyan x∈ H, hogy |{y : y∈ H ∧y≤ x}| = i.
A kimenetben szereplő x-et a H rendezett minta i-edik (legkisebb) elemének nevezzük. A középső elemet a rendezett
minta mediánjának nevezzük. Pontosabban, az i = b(n+ 1)/2c-edik elem az alsó, az i = d(n+ 1)/2e-edik elem a
felső medián.

Minimum és maximum egyidejű meghatározása.
Procedure MiniMax(Const A:Tomb; N:Longint Var i,j:Longint);
{Kimenet: A[i]=Min(A[1..N]), A[j]=Max(A[1..N])}
Var M,k:Longint; Begin

M:=(N div 2)*2;
If A[1] < A[2] Then Begin
i:=1; j:=2

Else Begin
i:=2; j:=1

End;
For k:=1 To M-1 Do
If A[k]<A[k+1] Then Begin {párok összehasonlítása}

If A[k]<A[i] Then j:=k;
If A[k+1]>A[j] Then i:=k+1;

End Else Begin
If A[k+1]<A[i] Then i:=k+1;
If A[k]>A[j] Then i:=k;

End;
If N<>M Then Begin
If A[N]<A[i] Then i:=N;
Else If A[N]>A[j] Then j:=N

End;
End{MiniMax};
A MINIMAX algoritmus legfeljebb 3bn/2c összehasonlítást végez.

Kiválasztás ismételt felosztással (iterált particionálás)
Elvi algoritmus:

Valaszt(H:Halmaz, i:Word):Elemtip;
{1≤ k≤ |H|}
Var Hb,H j :Halmaz; x:Elemtip;
Begin {Valaszt}

If |H| = 1 Then Begin
Valaszt:=x (* H = {x} *);

End Else Begin ;
Feloszt(H,Hb,H j ,x);
{H = Hb∪H j ∪{x},max(Hb) ≤ x < min(H j)}
q := |Hb|;

1

If i ≤ q Then
Valaszt:=Valaszt(Hb, i);

Else If i > q Then
Valaszt:=Valaszt(H j , i−q−1);

Else
Valaszt:=x

End {|H| > 1};
End {Valaszt};

Function Kivalaszt(Var T : Tomb; i:Longint):Longint;
Var

bal,jobb,f:Longint;
Function Feloszt(bal, jobb : Longint):Longint;
Var x,E : Elemtip;

i,j : Longint;
Begin {Feloszt}
x:= T[jobb];
i:=bal-1;
For j:=bal To jobb-1 Do

If T[j]<=x Then Begin
i:=i+1
E:=T[i]; T[i]:=T[j]; T[j]:=E;

End;
i:=i+1;
E:=T[i]; T[i]:=T[jobb]; T[jobb]:=E;
Feloszt:=i;

End{Feloszt};

Begin{Kivalaszt}
bal:=1; jobb:=N;
While bal < jobb Do Begin
f = Feloszt(bal,jobb);
If i=f Then Begin

bal:=f; Break;
End Else If i<f-bal Then

jobb:=f-1
Else Begin

i:= i-(f-bal+1);
bal:=f+1

End
End{while};
Kivalaszt:=bal

End{Kivalaszt};

A futási idő elemzése.
Tlr (n) = O(n2), lásd a gyorsrendezés legrossabb esetét.

2

Tl j (n) = O(n).
Átlagos eset
Feltesszük, hogy minden bemenet egyformán valószínű.
Felosztás az Fe felosztó elemmel, akkor az f felosztó index lehet:

f = 1,2, · · · ,n−1,n

Feltéve, hogy Ta(n) monoton növekvő függvény,

Ta(n) ≤ 1
n

(n

∑
f=1

Ta(max(f −1,n− f))+O(n)

Mivel a felosztás ideje O(n). Ha n páros, akkor a maxkifejezés mindkét argumentuma 1-től n−1-ig kétszer szerepel
az összegzésben, ha n páratlan, akkor pedig bn/2c egyszer, a többi kétszer. Tehát

max(f −1,n− f) =
{

f −1 ha f > dn/2e ,
n− f ha f ≤ dn/2e .

Ta(n) ≤ 2
n

n−1

∑
f=bn/2c

Ta(f)+O(n)

Tegyük fel, hogy van olyan c konstans, hogy Ta(n) ≤ cn és hogy c teljesíti a rekurziv képlet kezdeti feltételét, azaz
T(n) = O(1) valamely konstansnál kisebb n-ekre. Tegyük fel továbbá, hogy a felosztás futási idejét kifejező O(n) tagra
teljesül, hogy ≤ an.

Ta(n) ≤ 2
n

n−1

∑
f=bn/2c

c f +an

=
2c
n

(
n−1

∑
f=1

f −
bn/2c−1

∑
f=1

f

)
+an

=
2c
n

(
(n−1)n

2
− (bn/2c−1)bn/2c

2

)
+an

≤ 2c
n

(
(n−1)n

2
− (n/2−2)(n/2−1)

2

)
+an

=
2c
n

(
n2−n

2
− n2/4−3n/2+2

2

)
+an

=
c
n

(
3n2

4
+

n
2
−2

)
+an

= c

(
3n
4

+
1
2
− 2

n

)
+an

≤ 3cn
4

+
c
2

+an

= cn−
(cn

4
− c

2
−an

)
.

3

Más csak azt kell megmutatnunk, hogy elég nagy n-ekre a fenti kifejezés legfejlebb cn, ami ekvivalens azzal, hogy
cn/4− c/2− an≥ 0. Mindkét oldalhoz c/2-t adva és kiemelve n-et, azt kapjuk, hogy n(c/4− a) ≥ c/2. Ha a c
konstanst úgy választjuk, hogy c/4−a > 0, vagyis c > 4a, oszthatunk c/4−a-val, és kapjuk

n≥ c/2
c/4−a

=
2c

c−4a
.

Tehát feltéve, hogy Ta(n) = O(1) ha n < 2c/(c−4a), Ta(n) = O(n).
Kiválasztás legroszabb esetben lineáris id őben
Alapötlet: a felosztó elem "jó" választása.

LinValaszt(H:Halmaz, i:Longint):Elemtip;
{1≤ i ≤ |H|}
Var Hb,H j :Halmaz;
Begin {LinKiValaszt}

If |H| = 1 Then Begin
LinKiValaszt:=x (* H = {x} *);

End Else Begin ;
L := Ndiv 5;
H = H1 + · · ·+HL +HL+1; {ötös csoportok}
{|Hi | = 5, i = 1..L, |HL+1| < 5 };
Med5 := {Valaszt(H1,3), · · · ,Valaszt(HL,3)};
Fe := LinValaszt(Med5,L/2);
Feloszt(H,Fe,Hb,x,H j); {felosztás az Fe felosztó elemmel}
{max(Hb) ≤ x < min(H j)}
q := |Hb|;
If i = q+1 Then

LinKiValaszt:=x;
Else If i ≤ q Then

LinKiValaszt:=LinKiValaszt(Hb, i);
Else Begin {q+1 < i}

LinKiValaszt:=LinKiValaszt(H j , i−q−1);
End ;

End {LinKiValaszt};

A futási id ő elemzése
Képzeljük el, hogy rendeztük az ötös csoportokat, majd ezeket a középső elemük szerint. Ezt szemléteti az 1. ábra.
Az ábrán szürkére festett elemek mindegyike kisebb vagy egyenlő, mint az Fe felosztó elem, a feketék pedig nagyob-
bak, mint Fe.

q = |Hb| ≥ 3

(⌈
1
2

⌈n
5

⌉⌉
−2

)
≥ 3n

10
−6

Tegyük fel, hogy a legfeljebb 140 elemű bemenetekre a futási idő Θ(1). Ekkor, mivel a felosztás ideje O(n), azt kapjuk,
hogy

Tlr (n) ≤
{

Θ(1) ha n≤ 140,
Tlr (dn/5e)+Tlr (7n/10+6)+O(n) ha n > 140.

4

Fe

1. ábra. Az ötös csoportok szerepe a felosztásban.

Tegyük fel továbbá, hogy a felosztás futási idejét kifejező O(n) tagra teljesül, hogy ≤ an valamely a konstansra. Tehát

Tlr (n) ≤ cdn/5e+c(7n/10+6)+an

≤ cn/5+c+7cn/10+6c+an

= 9cn/10+7c+an

= cn+(−cn/10+7c+an) ,

amely legfeljebb cn, ha
−cn/10+7c+an≤ 0 . (1)

Az (1) egyenlőtlenség teljesül, ha c ≥ 10a(n/(n− 70)) és n > 70. Mivel feltettük, hogy n ≥ 140, kapjuk, hogy
n/(n−70) ≤ 2, és így c≥ 20a választása esetén teljesül a kívánt egyenlőtlenség , tehát Tlr (n) = O(n).
Megvalósítás

{ Globalis programelemek a LinKiv eljarashoz :
Const
MaxN = ??? ;(* maxi. elemszám *)

Type
Kulcstip = ??? ;(* a rendezési mező kulcstípusa *)
Adattip = ??? ;(* az adatmező típusa *)
Elemtip = Record

kulcs : Kulcstip;
adat : Adattip

End;
Tomb = Array[1..N] Of Elemtip;

}
Function LinKivalaszt(Var T:Tomb;N, i:Longint) : Longint;
Const
R0 = 2;
R = 2*R0+1;

Procedure BeszuroRend(Elso,Elszam,d: Longint);
{A rendezendő elemek T[Elso], T[Elso+d], T[Elso+d*(Elszam-1)]}
Var
i,Utolso : Longint; E : Elemtip;j:Longint;

5

Begin
i:= Elso+d; Utolso:= Elso+(Elszam-1)*d;
While i <= Utolso Do Begin

E := T[i]; j := i-d;
While (j >= Elso) And (T[j].kulcs > E.kulcs) Do Begin
T[j+d] := T[j]; Dec(j,d)

End{while};
T[j+d] := E;
Inc(i,d);

End
End (* BeszuroRend *);

Function Valaszt(Bal,Jobb, i : Longint) : Longint;
Var k,f,M,L:Longint; E:Elemtip;
Begin (* Valaszt *)

Repeat
M:=Jobb-Bal+1; L:= M Div R;
If M <= R Then Begin
Beszurorend(Bal,M,1);
Valaszt:=Bal+i-1; Break;

End Else Begin
For k:=1 To L Do Beszurorend(Bal+k-1,R,L);
f:= Valaszt(Bal+R0*L, Bal+(R0+1)*L-1, L Div 2);
f:= Feloszt(Bal,Jobb,f); {felosztás a T[f] elemmel}
If i=f Then Begin
Valaszt:=f; Break;

End Else If i<f-bal Then
jobb:=f

Else Begin
i:= i-(f-bal+1); bal:=f+1

End
End;

Until False;
End (* Valaszt *);

Begin LinKivalaszt := Valaszt(1,N,i) End;

Kiválasztás kupaccal.
A LINKIVALASZT algoritmus ugyan legrosszabb esetben is lineáris futási idejű, azonban az O(n) kifejezésben a kons-
tans elég nagy. Kis i-re gyorsabb algoritmust adhatunk kupac alkalmazásával.

Function KupacValaszt(Var T:Tomb;N, i:Longint) : Longint;
Var

E:Elemtip; k:Longint;
Begin{KupacValaszt}
k:=i Div 2 Downto 1 Do {kupacépítés}
Sullyeszt(k, i);

For k:=i+1 To N Do

6

{Invariáns: T[1] a tömb T[1..k] elemei közül az i-edik legkisebb}
If T[k]<T[1] Then Begin

E:=T[1]; T[1]:=T[k]; T[k]:=E;
Sullyeszt(1,i);

End;
KupacValaszt:=1;

End{KupacValaszt};

A KUPACVALASZT algoritmus futási ideje:
Tlr (n) = O(i)+(n− i)O(lg i).

7

