~N NN W=

Algoritmizalas

Horvdth Gyula
Szegedi Tudomédnyegyetem
Természettudomdanyi és Informatikai Kar
horvath@inf.u-szeged.hu

2. Kombinatorikus feladatok
2.1. Feladat: Ladak pakolasa.

Egy vallalat udvardn egyetlen sorban vannak az elszallitisra varakozo iires ldddk. Héarom kiilonbo6z6 tipusd lada van, jeldlje
ezeket A, B és C. Minden lada a fels6 oldaldn nyitott kocka alaki. Az A-tipust lada a legnagyobb és a C-tipusu a legkisebb. Tehat
minden C-tipust ldda belerakhat6 A-tipusu és B-tipusu 1addba, minden B-tipusu belerakhat6 A-tipusiba és A-tipustiba belerakhat6
B-tipusid, majd ebbe egy C-tipusti. Az a cél, hogy a laddkat dgy pakoljuk 6ssze, hogy a lehetd legkevesebb 6sszepakolt lada
legyen. A pakoldst olyan robot végzi, amely a lddasor felett tud mozogni mindkét irdnyban, de 1ad4t csak balrél jobbra mozogva
tud széllitani.

[rjon programot, amely megadja, hogy legkevesebb hany ladaba lehet 5sszepakolni a ladasort!

Bemenet

A pakol.be szoveges dllomdny elsd sordban a laddk n (1 <n < 10000) szdma van. A mdsodik sor pontosan n karaktert tartalmaz
(sz6kozok nélkiil), a ladasor leirdsat. Minden karakter vagy *A’, vagy "B’ vagy 'C’.

Kimenet

A pakol.kiszoveges dllomany els6 és egyetlen sordba azt a legkisebb K szamot kell irni, amelyre a bemeneti ladasor dsszepakol-

hat6 K ladébal!

Példa bemenet és kimenet

bemenet kimenet
11 5
CABCACCBACB

Megoldas

Jelolje S = (x1,x2,...,%,) az elpakolandd ladasort, és M(S) a megoldds értékét az S sorozatra. M(S) kiszamitédsat vezessiik vissza
ugyanilyen, de kisebb méretli probléma (sorozat) megolddsara.

Oldjuk meg a probléma egyszer(ibb valtozatat, amikor csak kétféle betii fordul el a sorozatban, mondjuk *A’ és *B’. Ekkor a
megoldés egyszerti: balrél-jobbra haladva, ha *A’ betli esetén maradt el *B’, amit nem raktunk bele ’A’-ba, akkor azt rakjuk bele
az aktudlis *A’-ba. Ha az aktudlis betdi *B’, akkor noveljiik az nB szamldl6 értékét, amelynek értéke az olyan "B’ betlik szdma,
amelyet nem raktunk bele ’A’-ba.

nB:=0;
m:=n;
for i:=1 to n do
case X[i] of
’A’: if nB>o0 then dec(m);
’B’: inc(nB);
end H

[c BN e NV I O R

—_
— O O

12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Tegyiik fel, hogy mindhdrom betii el6fordul a sorozatban, és tekintsiik az *A’, 'B’ és *C’ beti els6 el6forduldsét az S sorozatban.
A betiik sorrendjét tekintve Az aldbbi harom eset lehetséges:

1 2. 3
C B A C . A B A B C
B C A B . A C A C B

Ekkor a megoldés 1+ M(S), ahol S a hdrom esetben a kovetkezs:

1. eset: Ekkor A-ba berakhat6 B, majd ebbe C, tehdt S-t az S-bs] tigy kapjuk, hogy tordljiik *A’, *B’ és *C’ betti els el6forduldsat.
2. eset: Ekkor a sorozat elsé bettije CC’ vagy 'B’) rakhat6 az elsé A-ba és S-t az S-bdl tigy kapjuk, hogy toroljiik az elsd betit.

3. eset: Az els6 A-ba nem tudunk rakni, és S-t az S-bdl gy kapjuk, hogy toroljiik az elsé betit.

Kivitelezés. A torléseket nem kell ténylegesen elvégezni, ha balrdl-jobbra vizsgéljuk a sorozatot, és szamitjuk, hogy hany olyan
elemet hagytunk el eddig, amely berakhaté masikba. Ezeket az nB, nC, nBC valtozékban szamitjuk.

program Pakol;
Var
n:Word;
BeF,KiF: Text;
nB,
nC,
nBC,
atPakolt :Word;
k,i:Word;
X:char;

begin
Assign (BeF, ’pakol.be’); Reset(BeF);
Assign (Kif, ’pakol.ki’); Rewrite (KiF);

ReadLn (BeF,n);

atPakolt:=0;
nB:=0; nC:=0; nBC:=0;

for i:=1 to n do begin
read (BeF ,X);
case X of
’A’: if (nB>0)and (nC>0) then begin
Dec(nB); Dec(nC);
Inc (atPakolt ,2);
end else if nBC>0 then begin
Dec(nBC);
Inc(atPakolt);
end else if nB>0 then begin
Dec(nB);
Inc(atPakolt);
end else if nC>0 then begin
Dec(nC);
Inc(atPakolt);
end ;
’B’: if nC>0 then begin
Dec(nC);
Inc(atPakolt);
Inc (nBC)
end else
Inc (nB)
’C’: Inc(nC)
end H

44
45
46
47
48
49
50

end H
WriteLn (KiF ,n—atPakolt);

Close (BeF);
Close (KiF);
end.

2.2. Feladat: Kod

A processzorgyarté cégek megallapodtak abban, hogy milyen rendszert alkalmaznak az altaluk gydrtott processzorok egyedi
azonositdsdra. Minden cég kap egy betiikészletet, és ezekbdl kell az azonosité kdédot képeznie, igy, hogy minden betli meghataro-
zott szamszor szerepeljen az azonositoban. Példdul egy cég azt kapta, hogy minden azonositdja pontosan 3 db ’a’ betfit, 2 db
’b’betlit és 1 db ¢’ betiit tartalmazhat.

Készitsen olyan programot, amely adott kédra meghatdrozza a lexikografikus (dbécé szerinti) sorrendben rakovetkezd szabalyos
koédot, ha van rakovetkezd!

Bemenet

A kod.be sziveges dllomdny elsd sordban a kddok m szama (1 < m < 1000) van. A tovébbi m sorban az egyes kédok taldlhatok.
Minden kéd legfeljebb 200 betiibdl 4llhat, csak az angol dbécé kis betit tartalmazhatja.

Kimenet

A kod.ki szdveges dllomanyba pontosan m sort kell {rni! Az i-edik sorba a bemeneti dllomany i + 1-edik sordban 1évd kod

rakovetkezdjét kell irni, ha nincs rakovetkezdje, akkor a NINCS sz6t.

Példa bemenet és kimenet

bemenet kimenet
2 ababac
abaachb NINCS
cbbaaa

Megoldas

A megoldds elemzése. Tegyiik fel, hogy a K = (ki,...,k,) bemenetre a megoldéds a K = (ky,...,k,) karaktersorozat. A lexiko-
grafikus rendez€s definicidja szerint K akkor €s csak akkor el6zi meg a rendezésben a K-t, ha van olyan 1 </ < n index, hogy
ki =kjha j <iés k; <k;. Mivel minden kédban minden betli ugyanannyiszor fordul el6, ezért k; = k; valamely j > i indexre.
Tehat

ki < max{k;j:i<j<n} (D
Ha tobb ilyen i index lenne, akkor a legnagyobb olyan i-t kell venni, amelyre teljesiil az (1) képlet.

ki = min{k;:i<j<nAki<kj} @

Legyen j az az index, amelyre a (2) formuldban a minimum adédik. Nyilvdnvald, hogy a (ki 1, ...,k,) sorozata {k;,... k,} —{k;}
karakterekbdl képezhetd lexikografikus rendezés szerinti elsd kell legyen. Tehat a megoldas:

Kovet(K) = (ki,... ki—1)kj{kit1,- .. ,kn), ahol (kit1,...,kn) a {ki,... ko } — {k;} betlkbd] képzett lexikografikus rendezés szerinti
elsd szo.

A megoldas kiszdmitasa.

Az (1) feltételt teljesitd legnagyobb i kiszamitasa egyszerd.

Ez utdn a (2) képlet szerinti j kiszamithat6 lenne a K[i..n] sorozaton végigmenve. A kii1,...,k, sorozat kiszdmithat6 lenne a
kit1,...,k, sorozat rendezésével, szdmlalé rendezést alkalmazva. Azonban, ha tovibb elemezziik a k;, ...k, sorozatot, akkor
egyszerlibb megolddshoz juthatunk. Ha i a legnagyobb olyan index, amelyre teljesiil az (1) feltétel és j amelyre teljesiil (2), akkor

ki<kipn>--2kj2>- 2>k 3)
k,’<kj 4
ki > kji1 ©)

0NN kW=

—_— =
o - O O

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

Ugyanis barmely j > i-re nem lehet k; < kj+1, mert i a legnagyobb olyan index, hogy van x;-nél nagyobb tSle jobbra. Tovébba,
ki > ki1 sem lehet, mert akkor i nem a legnagyobb olyan index lenne, amelyre (1) teljesiil. Tehét a k;11,...,k, sorozat a
kiy1,...,k, sorozat forditott sorrenden, de k; helyébe k;-t frva.

program Kod;

const
MaxN=200;
var
K, {a bementi sorozat}
KK: String;{a kimeneti sorozat}
M: Word ; {a bemeneti sorozatok szama}
N:Word; {a bemenet sorozat hossza}
Van: Boolean;
BeF, {a bemeneti allomany }
KiF: Text; {a bemeneti allomany }
t : Word; {a tesztesetek sz ma}

procedure Szamit;
{Global: K, KK}
var
i,j:word;
x:char;
begin
N:=Length (K);
i:=N—-1;
Van:=false;
while (i>0) and (K[i] >= K[i+1]) do
Dec(i);
Van:= i>0;
if i=0 then Exit;
KK:=K;
x:=K[i];
for j:=N downto i+1 do begin
if K[j]>X then begin
KK[i]:=K[]j];
KK[i+N—j+1]:=K[i];
X:=’z";
end else
KK[i+N-j+1]:=K[j];
end ;
end{Szamit};

begin { Kod}
Assign (BeF, ’kod.be’); Reset(BeF);
ReadLn (BeF M) ;
Assign (KiF, ’kod.ki’); Rewrite (KiF);
for t:=1 to M do begin
ReadLn (BeF ,K);
Szamit;
if Van then
WriteLn (KiF ,KK)
else
WriteLn (KiF, NINCS’)
end{for t};
Close (BeF);
Close (KiF);
end {Kod}.

2.3. Feladat: Vasuti kocsik rendezése.

1. dbra. Az édllomds vagdnyrendszere.

Veremsor varos vasttdllomasdn nagy gondot okoz a szerelvények rendezése. Az dllomasrdl tovabbitando szerelvényeket tigy
kell kialakitani, hogy amikor az megérkezik a céldllomadsra, a szerelvény végérdl mindig lekapcsolhaté legyen az oda tovabbitott
kocsisor. Minden tovabbitandé szerelvény négy allomast €rint, ezért a rendezés el6tt minden kocsit megjeldlnek az 1, 2, 3 vagy 4
szamokkal. A szerelvény kocsijait rendezziik 4t Gigy, hogy a szerelvény elején legyenek az 1-essel, aztdn a 2-essel, majd a 3-assal,
végiil a 4-essel megjeloltek. Kezdetben a kocsik az dbran lathaté C-D palyaszakaszon vannak. A vasuti valtok miikodése csak a
kovetkezd miiveleteket teszi lehet6vé. Az atrendezendd kocsisorbdl balrdl az els6 kocsit at lehet mozgatni vagy a B-C szakaszba
a mar ott 1évd kocsik mogé, vagy az E-F szakaszba a mar ott 1év6 kocsik elé. A B-C szakaszban 1év elsd kocsi dtmozdithato és
hozzaiilleszthetS az A-B szakaszon kialakitand6 kocsisor végére. Hasonldan, az E-F szakasz elsé (tehat az utolsénak oda érkezett)
kocsija atmozdithat6 és hozzdilleszthet6 az A-B szakaszon kialakitandé kocsisor végére.

A feladat annak eldontése, hogy egy adott kocsisor rendezhetS-e a megengedett mozgatdsokkal?

Megoldas

Jelolje K = (ky,...,k,) a bemeneti kocsisor cimkéinek sorozatét (k; € {1,2,3,4}). Tegyiik fel, hogy a bemenet rendezhet§ és a
rendezés sordn az elsd i — 1 kocsit mar dtmozgattuk a C-D szakaszr6l, és k; = 1. Ekkor az alabbi 3 feltétel mindegyikének igaznak
kell lenni:

e Az A-B szakaszon csak 1-el cimkézett kocsi van.
e A B-C szakaszon (sor) 1évd kocsik cimkéi balrél jobbra monoton nemcsokkendek.

e Az E-F szakaszon (verem) 1évs kocsik cimkéi feliilrdl lefelé monoton nemcsokkendGek.

[0l EEEIE I

A B C

EEEE
D

[(s][s][a][w][w]

2. abra.

Ekkor az i-edik kocsi (k; = 1) a vermen keresztiil helyére rakhaté. Ha k; = 1 és ez az utolsé 1-es a bemenetben, akkor a rendezés
folytathat6 a kovetkez&képpen: az utolsé 1-est kivissziik a vermen 4t a helyére, majd a verembsl minden 2-est kivisziink a helyére,
azaz az A-B szakasz végére, majd a C-D szakaszon vdrakozé minden kocsira: ha az 2-es, akkor a vermen &t dtvissziik az A-B
szakasz végére, ha 3-as, akkor a verembe visziink (ott az utols6 elem nem 2-es, tehat tovdbbra is monoton lesz), ha 4-es, akkor
a sor végére visziink (ami tovabbra is monoton lesz), végiil a sorbdl és a verembdl a kocsikat dsszefésiilve kivissziik a helyiikre.
Allitds: A bemenet akkor és csak akkor rendezhetd, ha az utolsé 1-es eldtti részbdl elhagyva az 1-eseket, az felbonthaté egy

2

monoton nemcsokkend és egy monoton nemnovekvd sorozat fésiis egyesitéseként. (A ndvekvd megy a sorba, a csokkend megy a

verembe.) Hogyan donthetd el, hogy az éllitas feltétele teljesiil-e?
Legyen A(i) = {(s,v) : a(ky,...,k;) sorozat elemei berakhatdk a sorba és a verembe gy, hogy a sor végén s, a verem tetején pedig
vlesz }.

A(i+1) = {(ki,v) : 3(s,v) €A(D),s < ki J{(s, k) - 3(s,v) €A(>D), ki < v}
A0) ={(2,4)}

A bemenet akkor és csak akkor rendezhetd, ha A(u— 1) # 0 , ahol u az utolsé 1-es pozicidja (vagy 0, ha nincs 1-es).

1 program Vasuti;

2 const

3 MaxN=1000;

4 type

5 KocsiSor=array[1..MaxN] of byte;

6

7 function Rendezheto(const K: Kocsisor; n:word): Boolean;
8 var

9 A,A0:array[2..4,2..4] of Boolean; {az allapot }
10 OK: Boolean;

11 X,s,v:Byte;

12 i,Ul:Integer;
13 begin{Rendezheto}

14 Ul:=0;

15 for i:=n downto 1 do

16 if K[i]=1 then Ul:=1; {Ul az utolsé 1-es indexe}

17 if Ul<=1 then begin

18 Rendezheto:=true; exit;

19 end ;

20 for v:=2 to 4 do {a kezdo allapot eldallitasa }
21 for s:=2 to 4 do

22 AO0[s,v]:=false;

23 A0[2,4]:=true;

24 for i:=1 to Ul-1 do begin

25 x:=K[i];

26 if x=1 then Continue; {az 1-eseket kihagyjuk}

27 OK:=False;

28 for s:=2 to 4 do {az aj allapot inicializalasa }

29 for v:=2 to 4 do A[s,v]:=False;

30 for s:=2 to 4 do {A[s,v]=True <=> a K[1..i—1] sor felbonthato }
31 for v:=2 to 4 do {agy, hogy a sor végén s, a verem tetején v van}
32 if AO[s,v] then begin

33 if (s<=x) then begin{x a sorba rakhaté }

34 OK:=True;

35 Alx,v]:=True;

36 end ;

37 if (v>=x) then begin{x a verembe rakhaté }

38 OK:=True;

39 Als,x]:=True;

40 end;

41 end{if , for s,v};

42 if not OK then Break;

43 A0:=A;

44 end{for i};
45 Rendezheto :=0K;
46 end{Rendezheto};

2.4. Feladat: Riadolanc készitése.

Egy osztély didkjai elhataroztdk, hogy riad6lancot alkotnak. Minden didk vdlaszt magdnak egyetlen tarsat (szomszédot), akinek a
hozza beérkez{ iizenetet kdzvetleniil tovabbitja. Amikor egy didk megkap egy iizenetet, tovabbitja szomszédjanak. Riadélancnak
azt a hozzarendelést nevezziik, melyre a kovetkezok teljesiilnek: Tegyiik fel, hogy valaki elkiild egy tizenetet a szomszédjanak,
aki a kovetkezd 1épésben tovébbitja azt, és igy tovabb. Az iizenet egy id6 utdn minden didkhoz, koztiik az tizenet kiild6jéhez is
megérkezik. Természetesen nem minden hozzarendelés riaddlanc.

frjon programot amely kiszamitja, hogy minimélisan hany médositas sziikséges a bemeneti hozzarendelés riadélanccé valtoz-
tatdsdhoz és adjon is meg egy modositast.

Bemenet

A riado.be szoveges dllomany elsd sora a tanuldk n (1 < n < 10000) szdmat tartalmazza. A tanuldkat az 1,...,n szdmokkal
azonositjuk. A mdsodik sor pontosan n egész szamot tartalmaz egy-egy szo6kozzel elvdlasztva. A sorban az i-edik szdm annak a
tanulénak a sorszdma, aki az i-edik tanulé szomszédja, tehat akinek az lizenetet tovabbitja az i-edik tanuld.

Kimenet

A riado.be szoveges dllomany elsd sora egyetlen szamot tartalmazzon, a lehet6 legkevesebb sziikséges modositdsok k szamét!
A kovetkezd k sor mindegyike egy-egy mddositast tartalmazzon, két egész szamot egy szokozzel elvalasztva: i j. Ez azt jelenti,
hogy a médositas kovetkeztében az i-edik tanulé a j-edik tanulénak fogja 4tadni az iizenetet. Tobb megoldas esetén barmelyik
kifrhato.

Példa bemenet és kimenet

bemenet kimenet
10 5
6927319379 2
6 10
85
91
10 8
Megoldas
A tanul6kat az 1..n szdmokkal azonositva, a bement egy F : {1,...,n} — {1,...,n} fiiggvény.

Tekintsiik az F fiiggvény grafjat, tehat azt a grafot, amelynek pontjai (csucsai) az 1..n szamok, és irdnyitott élei pedig az (x, F(x))
parok. Jelolje F¥: 1..n — 1..n az F fiiggvény k-adik iteraltjat, amelynek definicigja:

FO(x) =x, F¥(x) = F(F*!(x))ha k > 0. Azt mondjuk, hogy x és y ugyanazon komponenshez tartozik, ha van olyan g > 0 és r > 0,
hogy F4(x) = F"(y). Egy x pont befoka azon y pontok szdma, amelyre F(y) = x. A megoldds biztosan nagyobb, vagy egyenld,
mint a 0-befoki pontok szdma + a farok nélkiili korok szama. Megmutatjuk, hogy ennyi mddositassal egyetlen korré alakithaté a
fuggvény grafja.

A 6. dbran lathaté modositassal egy 0-befokd pont megsziintethetS. Tehat ha egy komponensben m 0-befoku pont van, akkor
m — 1 moddositdssal olyannd alakithat6, amelyben pontosan egy O-befokdi pont van.

O~E+-0—~G
S
©

3. abra. Egy fiiggvény gréfja.

4. abra. Egy médositassal egy 0-befoku pont megsziintethetd.

5. dbra. Az Ele je — Vege lianchoz kapcsoljuk az x — xx ldncot. F[xx] mdr szerepel vagy az Ele je — Vege lancban, vagy x — xx
lancban.

1 program RiadoLanc;

2 const

3 MaxN=10000;

4 type

5 Paletta=(Feher, Fekete);

6 var

7 N:Word;

8 F:array[1..MaxN] of Word;

9 BeFok:array[1..MaxN] of Word;
10 MF: array [1..MaxN] of Word;

11 Szin:Array[1..MaxN] Of Paletta;
12 Modos : Word ;

13 Eleje ,Vege: Word;

14 x,xx: Word;

15 KiF: Text;

16 procedure Beolvas;

17

18 var i,j,k:Word;

19 BeF: Text;

20 begin

21 Assign (BeF, riado.be’);
22 Assign (KiF, riado . ki’);
23 Reset (BeF); Rewrite (KiF);
24 Readln (BeF ,N);

25 For i:= 1 to N do begin
26 Read (BeF ,F[i]);

27 inc (BeFok[F[i]]);

28 end;

29 Close (BeF);

30 end ;

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

begin {program }

Beolvas;
for x:=1 to N do begin {inicializalas}
Szin[x]:=Feher;
MF[x]:=0;
end ;
Eleje:=0; Vege:=0; Modos:=0;
for x:=1 to N do
if (Befok[x]=0) then begin{x—t6l indulé lanc eldallitasa}
XX =X}
Szin[xx]:=Fekete;
while Szin[F[xx]]=Feher do begin
xx:=F[xx];
Szin[xx]:=Fekete;
end;
if Vege=0 then begin
Eleje:=x; Vege:=xx {a kezddé lanc esetén}
end else begin {az x—>xx lanc bekapcsolasa}
MF[xx]:=Eleje; {az eddigi Eleje —>Vege lanchoz}
inc (Modos); {x—>xx—>Eleje —>Vege}
end;
Eleje:=x; {x lesz az 4j lanc kezdete}
end{for—if};
for x:=1 to N do {az onallé korben 1évok maradhattak csak Ki}
if (Szin[x]=Feher) then begin{x—tol induld lanc eldallitasa}
XX:=X}
Szin[xx]:=Fekete;
while Szin[F[xx]]=Feher do begin
xx:=F[xx];
Szin[xx]:=Fekete;
end;
if Vege=0 then
Vege:=xx {a kezd6 lanc esetén}
else if F[xx]<>x then begin{az x—>xx lanc bekapcsolasa}
MF[xx]:=Eleje; {az eddigi Eleje —>Vege lanchoz}
inc (Modos); {x—>xx—>Eleje —>Vege}
end;
Eleje:=x; {x lesz az uj lanc Kkezdete}
end{for—if};
if F[Vege]<>Eleje then begin{ha nem egyetlen kor a bemenet}
MF[Vege]:=Eleje; {a lanc korbe zarasa}
inc (Modos);
end ;
Writeln (KiF ,Modos) ;
for x:=1 to N do {a modositasok Kkiiratasa}
if MF[x]>0 then Writeln (KiF, x,’ > ,MF[x]);
Close (KiF);
end.

10

