
Algoritmizálás

Horváth Gyula
Szegedi Tudományegyetem

Természettudományi és Informatikai Kar
horvath@inf.u-szeged.hu

2. Kombinatorikus feladatok

2.1. Feladat: Ládák pakolása.
Egy vállalat udvarán egyetlen sorban vannak az elszállításra várakozó üres ládák. Három különböző típusú láda van, jelölje
ezeket A, B és C. Minden láda a felső oldalán nyitott kocka alakú. Az A-típusú láda a legnagyobb és a C-típusú a legkisebb. Tehát
minden C-típusú láda belerakható A-típusú és B-típusú ládába, minden B-típusú belerakható A-típusúba és A-típusúba belerakható
B-típusú, majd ebbe egy C-típusú. Az a cél, hogy a ládákat úgy pakoljuk össze, hogy a lehető legkevesebb összepakolt láda
legyen. A pakolást olyan robot végzi, amely a ládasor felett tud mozogni mindkét irányban, de ládát csak balról jobbra mozogva
tud szállítani.
Írjon programot, amely megadja, hogy legkevesebb hány ládába lehet összepakolni a ládasort!

Bemenet
A pakol.be szöveges állomány első sorában a ládák n (1≤ n≤ 10000) száma van. A második sor pontosan n karaktert tartalmaz
(szóközök nélkül), a ládasor leírását. Minden karakter vagy ’A’, vagy ’B’ vagy ’C’.

Kimenet
A pakol.kiszöveges állomány első és egyetlen sorába azt a legkisebb K számot kell írni, amelyre a bemeneti ládasor összepakol-
ható K ládába!

Példa bemenet és kimenet
bemenet

11
CABCACCBACB

kimenet

5

Megoldás
Jelölje S = 〈x1,x2, . . . ,xn〉 az elpakolandó ládasort, és M(S) a megoldás értékét az S sorozatra. M(S) kiszámítását vezessük vissza
ugyanilyen, de kisebb méretű probléma (sorozat) megoldására.
Oldjuk meg a probléma egyszerűbb változatát, amikor csak kétféle betű fordul elő a sorozatban, mondjuk ’A’ és ’B’. Ekkor a
megoldás egyszerű: balról-jobbra haladva, ha ’A’ betű esetén maradt el ’B’, amit nem raktunk bele ’A’-ba, akkor azt rakjuk bele
az aktuális ’A’-ba. Ha az aktuális betű ’B’, akkor növeljük az nB számláló értékét, amelynek értéke az olyan ’B’ betűk száma,
amelyet nem raktunk bele ’A’-ba.

1 nB: = 0 ; { azon B−k száma , amelyeket nem raktunk b e l e A−ba }
2 m:=n ; { a megoldás }
3 f o r i :=1 to n do
4 case X[i] o f
5 ’A’ : i f nB>o then dec (m) ;
6 ’B ’ : i n c (nB) ;
7 end { case } ;

1

Tegyük fel, hogy mindhárom betű előfordul a sorozatban, és tekintsük az ’A’, ’B’ és ’C’ betű első előfordulását az S sorozatban.
A betűk sorrendjét tekintve Az alábbi három eset lehetséges:

1. 2. 3.
C ... B ... A ... C ... A ... B ... A ... B ... C ...
B ... C ... A ... B ... A ... C ... A ... C ... B ...

Ekkor a megoldás 1+M(S), ahol S a három esetben a következő:
1. eset: Ekkor A-ba berakható B, majd ebbe C, tehát S-t az S-ből úgy kapjuk, hogy töröljük ’A’, ’B’ és ’C’ betű első előfordulását.
2. eset: Ekkor a sorozat első betűje (’C’ vagy ’B’) rakható az első A-ba és S-t az S-ből úgy kapjuk, hogy töröljük az első betűt.
3. eset: Az első A-ba nem tudunk rakni, és S-t az S-ből úgy kapjuk, hogy töröljük az első betűt.
Kivitelezés. A törléseket nem kell ténylegesen elvégezni, ha balról-jobbra vizsgáljuk a sorozatot, és számítjuk, hogy hány olyan
elemet hagytunk el eddig, amely berakható másikba. Ezeket az nB, nC, nBC változókban számítjuk.

1 program Pakol ;
2 Var
3 n :Word; { a ládák száma }
4 BeF , KiF : Text ; { Be−Ki állományok }
5 nB , { nB db B láda marad e l }
6 nC , { nC db C láda marad e l }
7 nBC, { nBC db B−benC láda marad e l }
8 a t P a k o l t :Word; { e n n y i t pakoltunk be másikba }
9 k , i :Word;

10 X: char ;
11
12 begin { }
13 Assign (BeF , ’ pakol . be ’) ; Reset (BeF) ;
14 Assign (Kif , ’ pakol . k i ’) ; Rewrite (KiF) ;
15
16 ReadLn (BeF , n) ;
17
18 a t P a k o l t : = 0 ;
19 nB: = 0 ; nC: = 0 ; nBC: = 0 ;

20 f o r i :=1 to n do begin
21 read (BeF ,X) ;
22 case X of
23 ’A’ : i f (nB>0) and (nC>0) then begin
24 Dec (nB) ; Dec (nC) ;
25 Inc (a tPako l t , 2) ;
26 end e l s e i f nBC>0 then begin
27 Dec (nBC) ;
28 Inc (a t P a k o l t) ;
29 end e l s e i f nB>0 then begin
30 Dec (nB) ;
31 Inc (a t P a k o l t) ;
32 end e l s e i f nC>0 then begin
33 Dec (nC) ;
34 Inc (a t P a k o l t) ;
35 end ;
36 ’B ’ : i f nC>0 then begin
37 Dec (nC) ;
38 Inc (a t P a k o l t) ;
39 Inc (nBC)
40 end e l s e
41 Inc (nB)
42 ’C’ : Inc (nC)
43 end { case } ;

2

44 end { f o r i−>n} ;
45
46 WriteLn (KiF , n−a t P a k o l t) ;
47
48 Close (BeF) ;
49 Close (KiF) ;
50 end .

2.2. Feladat: Kód
A processzorgyártó cégek megállapodtak abban, hogy milyen rendszert alkalmaznak az általuk gyártott processzorok egyedi
azonosítására. Minden cég kap egy betűkészletet, és ezekből kell az azonosító kódot képeznie, úgy, hogy minden betű meghatáro-
zott számszor szerepeljen az azonosítóban. Például egy cég azt kapta, hogy minden azonosítója pontosan 3 db ’a’ betűt, 2 db
’b’betűt és 1 db ’c’ betűt tartalmazhat.
Készítsen olyan programot, amely adott kódra meghatározza a lexikografikus (ábécé szerinti) sorrendben rákövetkező szabályos
kódot, ha van rákövetkező!

Bemenet
A kod.be szöveges állomány első sorában a kódok m száma (1≤m≤ 1000) van. A további m sorban az egyes kódok találhatók.
Minden kód legfeljebb 200 betűből állhat, csak az angol ábécé kis betűit tartalmazhatja.

Kimenet
A kod.ki szöveges állományba pontosan m sort kell írni! Az i-edik sorba a bemeneti állomány i + 1-edik sorában lévő kód
rákövetkezőjét kell írni, ha nincs rákövetkezője, akkor a NINCS szót.

Példa bemenet és kimenet
bemenet

2
abaacb
cbbaaa

kimenet

ababac
NINCS

Megoldás
A megoldás elemzése. Tegyük fel, hogy a K = 〈k1, . . . ,kn〉 bemenetre a megoldás a K = 〈k1, . . . ,kn〉 karaktersorozat. A lexiko-
grafikus rendezés definíciója szerint K akkor és csak akkor előzi meg a rendezésben a K-t, ha van olyan 1 ≤ i ≤ n index, hogy
k j = k j ha j < i és ki < ki. Mivel minden kódban minden betű ugyanannyiszor fordul elő, ezért ki = k j valamely j > i indexre.
Tehát

ki < max{k j : i < j ≤ n} (1)

Ha több ilyen i index lenne, akkor a legnagyobb olyan i-t kell venni, amelyre teljesül az (1) képlet.

ki = min{k j : i < j ≤ n∧ ki < k j} (2)

Legyen j az az index, amelyre a (2) formulában a minimum adódik. Nyilvánvaló, hogy a 〈ki+1, . . . ,kn〉 sorozat a {ki, . . . ,kn}−{k j}
karakterekből képezhető lexikografikus rendezés szerinti első kell legyen. Tehát a megoldás:
Kovet(K) = 〈k1, . . . ,ki−1〉k j〈ki+1, . . . ,kn〉, ahol 〈ki+1, . . . ,kn〉 a {ki, . . . ,kn}−{k j} betűkből képzett lexikografikus rendezés szerinti
első szó.
A megoldás kiszámítása.
Az (1) feltételt teljesítő legnagyobb i kiszámítása egyszerű.
Ez után a (2) képlet szerinti j kiszámítható lenne a K[i..n] sorozaton végigmenve. A ki+1, . . . ,kn sorozat kiszámítható lenne a
ki+1, . . . ,kn sorozat rendezésével, számláló rendezést alkalmazva. Azonban, ha tovább elemezzük a ki, . . . ,kn sorozatot, akkor
egyszerűbb megoldáshoz juthatunk. Ha i a legnagyobb olyan index, amelyre teljesül az (1) feltétel és j amelyre teljesül (2), akkor

ki < ki+1 ≥ ·· · ≥ k j ≥ ·· · ≥ kn (3)
ki < k j (4)

ki ≥ k j+1 (5)

3

Ugyanis bármely j > i-re nem lehet k j < k j+1, mert i a legnagyobb olyan index, hogy van xi-nél nagyobb tőle jobbra. Továbbá,
ki ≥ ki+1 sem lehet, mert akkor i nem a legnagyobb olyan index lenne, amelyre (1) teljesül. Tehát a ki+1, . . . ,kn sorozat a
ki+1, . . . ,kn sorozat fordított sorrenden, de k j helyébe ki-t írva.

1 program Kod;
2 c o n s t
3 MaxN=200;
4 var
5 K, { a bementi s o r o z a t }
6 KK: S t r i n g ; { a k imenet i s o r o z a t }
7 M:Word; { a bemeneti soroza tok száma }
8 N:Word; { a bemenet s o r o z a t hossza }
9 Van : Boolean ;

10 BeF , { a bemeneti ál lomány }
11 KiF : Text ; { a bemeneti ál lomány }
12 t :Word; { a t e s z t e s e t e k sz ma }

13 procedure Szamit ;
14 { Global : K, KK}
15 var
16 i , j : word ;
17 x : char ;
18 begin
19 N:= Length (K) ;
20 i :=N−1;
21 Van:= f a l s e ;
22 whi le (i >0) and (K[i] >= K[i + 1]) do
23 Dec (i) ;
24 Van:= i >0;
25 i f i =0 then Ex i t ;
26 KK:=K;
27 x :=K[i] ;
28 f o r j :=N downto i +1 do begin
29 i f K[j] >X then begin
30 KK[i] : =K[j] ;
31 KK[i +N−j +1] :=K[i] ;
32 X:= ’ z ’ ;
33 end e l s e
34 KK[i +N−j +1] :=K[j] ;
35 end ;
36 end { Szamit } ;

37 begin {Kod}
38 Assign (BeF , ’ kod . be ’) ; Reset (BeF) ;
39 ReadLn (BeF ,M) ;
40 Assign (KiF , ’ kod . k i ’) ; Rewrite (KiF) ;
41 f o r t :=1 to M do begin
42 ReadLn (BeF ,K) ;
43 Szamit ;
44 i f Van then
45 WriteLn (KiF ,KK)
46 e l s e
47 WriteLn (KiF , ’NINCS ’)
48 end { f o r t } ;
49 Close (BeF) ;
50 Close (KiF) ;
51 end {Kod} .

4

2.3. Feladat: Vasúti kocsik rendezése.

B C

E

F

DA

1. ábra. Az állomás vágányrendszere.

Veremsor város vasútállomásán nagy gondot okoz a szerelvények rendezése. Az állomásról továbbítandó szerelvényeket úgy
kell kialakítani, hogy amikor az megérkezik a célállomásra, a szerelvény végéről mindig lekapcsolható legyen az oda továbbított
kocsisor. Minden továbbítandó szerelvény négy állomást érint, ezért a rendezés előtt minden kocsit megjelölnek az 1, 2, 3 vagy 4
számokkal. A szerelvény kocsijait rendezzük át úgy, hogy a szerelvény elején legyenek az 1-essel, aztán a 2-essel, majd a 3-assal,
végül a 4-essel megjelöltek. Kezdetben a kocsik az ábrán látható C-D pályaszakaszon vannak. A vasúti váltók működése csak a
következő műveleteket teszi lehetővé. Az átrendezendő kocsisorból balról az első kocsit át lehet mozgatni vagy a B-C szakaszba
a már ott lévő kocsik mögé, vagy az E-F szakaszba a már ott lévő kocsik elé. A B-C szakaszban lévő első kocsi átmozdítható és
hozzáilleszthető az A-B szakaszon kialakítandó kocsisor végére. Hasonlóan, az E-F szakasz első (tehát az utolsónak oda érkezett)
kocsija átmozdítható és hozzáilleszthető az A-B szakaszon kialakítandó kocsisor végére.
A feladat annak eldöntése, hogy egy adott kocsisor rendezhető-e a megengedett mozgatásokkal?

Megoldás
Jelölje K = (k1, . . . ,kn) a bemeneti kocsisor címkéinek sorozatát (ki ∈ {1,2,3,4}). Tegyük fel, hogy a bemenet rendezhető és a
rendezés során az első i−1 kocsit már átmozgattuk a C-D szakaszról, és ki = 1. Ekkor az alábbi 3 feltétel mindegyikének igaznak
kell lenni:

• Az A-B szakaszon csak 1-el címkézett kocsi van.

• A B-C szakaszon (sor) lévő kocsik címkéi balról jobbra monoton nemcsökkenőek.

• Az E-F szakaszon (verem) lévő kocsik címkéi felülről lefelé monoton nemcsökkenőek.

4

B C

E

DA

F

1 1 1 1 3 2 4 3 42 2 3 3 3 4 4

3

3

4

4

2. ábra.

Ekkor az i-edik kocsi (ki = 1) a vermen keresztül helyére rakható. Ha ki = 1 és ez az utolsó 1-es a bemenetben, akkor a rendezés
folytatható a következőképpen: az utolsó 1-est kivisszük a vermen át a helyére, majd a veremből minden 2-est kiviszünk a helyére,
azaz az A-B szakasz végére, majd a C-D szakaszon várakozó minden kocsira: ha az 2-es, akkor a vermen át átvisszük az A-B
szakasz végére, ha 3-as, akkor a verembe viszünk (ott az utolsó elem nem 2-es, tehát továbbra is monoton lesz), ha 4-es, akkor
a sor végére viszünk (ami továbbra is monoton lesz), végül a sorból és a veremből a kocsikat összefésülve kivisszük a helyükre.
Állítás: A bemenet akkor és csak akkor rendezhető, ha az utolsó 1-es előtti részből elhagyva az 1-eseket, az felbontható egy
monoton nemcsökkenő és egy monoton nemnövekvő sorozat fésűs egyesítéseként. (A növekvő megy a sorba, a csökkenő megy a

5

verembe.) Hogyan dönthető el, hogy az állítás feltétele teljesül-e?
Legyen A(i) = {(s,v) : a(k1, . . . ,ki) sorozat elemei berakhatók a sorba és a verembe úgy, hogy a sor végén s, a verem tetején pedig
v lesz }.

A(i+1) = {(ki,v) : ∃(s,v) ∈ A(i),s≤ ki}
⋃
{(s,ki) : ∃(s,v) ∈ A(i),ki ≤ v}

A(0) = {(2,4)}
A bemenet akkor és csak akkor rendezhető, ha A(u−1) 6= /0 , ahol u az utolsó 1-es pozíciója (vagy 0, ha nincs 1-es).

1 program Vasut i ;
2 c o n s t
3 MaxN=1000;
4 type
5 KocsiSor=array [1 . . MaxN] of byte ;
6
7 f u n c t i o n Rendezheto (c o n s t K: Kocs i sor ; n : word) : Boolean ;
8 var
9 A, A0 : array [2 . . 4 , 2 . . 4] o f Boolean ; { az á l l a p o t }

10 OK: Boolean ;
11 x , s , v : Byte ;
12 i , U1 : I n t e g e r ;
13 begin { Rendezheto }
14 U1: = 0 ;
15 f o r i :=n downto 1 do
16 i f K[i]=1 then U1 : = 1 ; {U1 az u t o l s ó 1−es indexe }
17 i f U1<=1 then begin
18 Rendezheto := true ; e x i t ;
19 end ;
20 f o r v :=2 to 4 do { a kezdő á l l a p o t e l ő á l l í t á s a }
21 f o r s :=2 to 4 do
22 A0 [s , v] : = f a l s e ;
23 A0 [2 , 4] : = true ;

24 f o r i :=1 to U1−1 do begin
25 x :=K[i] ;
26 i f x=1 then Continue ; { az 1−e s e k e t kihagyjuk }
27 OK:= F a l s e ;
28 f o r s :=2 to 4 do { az új á l l a p o t i n i c i a l i z á l á s a }
29 f o r v :=2 to 4 do A[s , v] : = F a l s e ;
30 f o r s :=2 to 4 do {A[s , v]= True <=> a K[1 . . i −1] sor f e l b o n t h a t ó }
31 f o r v :=2 to 4 do { úgy , hogy a sor végén s , a verem t e t e j é n v van }
32 i f A0 [s , v] then begin
33 i f (s <=x) then begin { x a sorba rakható }
34 OK:= True ;
35 A[x , v] : = True ;
36 end ;
37 i f (v>=x) then begin { x a verembe rakható }
38 OK:= True ;
39 A[s , x] : = True ;
40 end ;
41 end { i f , f o r s , v } ;
42 i f not OK then Break ;
43 A0:=A;
44 end { f o r i } ;
45 Rendezheto :=OK;
46 end { Rendezheto } ;

6

2.4. Feladat: Riadólánc készítése.
Egy osztály diákjai elhatározták, hogy riadóláncot alkotnak. Minden diák választ magának egyetlen társat (szomszédot), akinek a
hozzá beérkező üzenetet közvetlenül továbbítja. Amikor egy diák megkap egy üzenetet, továbbítja szomszédjának. Riadóláncnak
azt a hozzárendelést nevezzük, melyre a következők teljesülnek: Tegyük fel, hogy valaki elküld egy üzenetet a szomszédjának,
aki a következő lépésben továbbítja azt, és így tovább. Az üzenet egy idő után minden diákhoz, köztük az üzenet küldőjéhez is
megérkezik. Természetesen nem minden hozzárendelés riadólánc.
Írjon programot amely kiszámítja, hogy minimálisan hány módosítás szükséges a bemeneti hozzárendelés riadólánccá változ-
tatásához és adjon is meg egy módosítást.

Bemenet
A riado.be szöveges állomány első sora a tanulók n (1 < n ≤ 10000) számát tartalmazza. A tanulókat az 1, . . . ,n számokkal
azonosítjuk. A második sor pontosan n egész számot tartalmaz egy-egy szóközzel elválasztva. A sorban az i-edik szám annak a
tanulónak a sorszáma, aki az i-edik tanuló szomszédja, tehát akinek az üzenetet továbbítja az i-edik tanuló.

Kimenet
A riado.be szöveges állomány első sora egyetlen számot tartalmazzon, a lehető legkevesebb szükséges módosítások k számát!
A következő k sor mindegyike egy-egy módosítást tartalmazzon, két egész számot egy szóközzel elválasztva: i j. Ez azt jelenti,
hogy a módosítás következtében az i-edik tanuló a j-edik tanulónak fogja átadni az üzenetet. Több megoldás esetén bármelyik
kiírható.

Példa bemenet és kimenet
bemenet

10
6 9 2 7 3 1 9 3 7 9

kimenet

5
2 4
6 10
8 5
9 1
10 8

Megoldás
A tanulókat az 1..n számokkal azonosítva, a bement egy F : {1, . . . ,n}→ {1, . . . ,n} függvény.
Tekintsük az F függvény gráfját, tehát azt a gráfot, amelynek pontjai (csúcsai) az 1..n számok, és irányított élei pedig az (x,F(x))
párok. Jelölje Fk : 1..n→ 1..n az F függvény k-adik iteráltját, amelynek definíciója:
F0(x) = x,Fk(x) = F(Fk−1(x))ha k > 0. Azt mondjuk, hogy x és y ugyanazon komponenshez tartozik, ha van olyan q≥ 0 és r≥ 0,
hogy Fq(x) = Fr(y). Egy x pont befoka azon y pontok száma, amelyre F(y) = x. A megoldás biztosan nagyobb, vagy egyenlő,
mint a 0-befokú pontok száma + a farok nélküli körök száma. Megmutatjuk, hogy ennyi módosítással egyetlen körré alakítható a
függvény gráfja.

A 6. ábrán látható módosítással egy 0-befokú pont megszüntethető. Tehát ha egy komponensben m 0-befokú pont van, akkor
m − 1 módosítással olyanná alakítható, amelyben pontosan egy 0-befokú pont van.

7

2 5

7

3

1 11

9 12

15

16

20

18

21
22

19

23

14

6

13

810

4

17

3. ábra. Egy függvény gráfja.

K
X

u

v

K
X

u

v

4. ábra. Egy módosítással egy 0-befokú pont megszüntethető.

8

F

Eleje

Vege

X

XX

F

5. ábra. Az Ele je→Vege lánchoz kapcsoljuk az x→ xx láncot. F [xx] már szerepel vagy az Ele je→Vege láncban, vagy x→ xx
láncban.

1 program RiadoLanc ;
2 c o n s t
3 MaxN=10000; { a tanulók max . száma }
4 type
5 P a l e t t a =(Feher , Fekete) ;
6 var
7 N:Word; { a tanulók száma }
8 F : array [1 . . MaxN] of Word; { a bemenet }
9 BeFok : array [1 . . MaxN] of Word;

10 MF: array [1 . . MaxN] of Word; { a m ó d o s í t o t t függvény }
11 Szin : Array [1 . . MaxN] Of P a l e t t a ;
12 Modos :Word; { a min . módosítások száma }
13 Ele je , Vege : Word; { a lánc e l e j e és vége }
14 x , xx : Word;
15 KiF : Text ; { a k imenet i l l omány }

16 procedure Beolvas ;
17 { Global : N, F}
18 var i , j , k :Word;
19 BeF : Text ;
20 begin { Beolvas }
21 Assign (BeF , ’ r iado . be ’) ;
22 Assign (KiF , ’ r iado . k i ’) ;
23 Reset (BeF) ; Rewrite (KiF) ;
24 Readln (BeF ,N) ;
25 For i := 1 to N do begin
26 Read (BeF , F [i]) ;
27 i n c (BeFok [F [i]]) ;
28 end ;
29 Close (BeF) ;
30 end { Beolvas } ;

9

31 begin { program }
32 Beolvas ;
33 f o r x :=1 to N do begin { i n i c i a l i z á l á s }
34 Szin [x] : = Feher ;
35 MF[x] : = 0 ;
36 end ;
37 E l e j e : = 0 ; Vege : = 0 ; Modos : = 0 ;
38 f o r x :=1 to N do
39 i f (Befok [x] = 0) then begin { x−t ő l indu ló lánc e l ő á l l í t á s a }
40 xx := x ;
41 Szin [xx] : = Fekete ;
42 whi le Sz in [F [xx]] = Feher do begin
43 xx :=F [xx] ;
44 Szin [xx] : = Fekete ;
45 end ;
46 i f Vege=0 then begin
47 E l e j e := x ; Vege := xx { a kezdő lánc e s e t é n }
48 end e l s e begin { az x−−>xx lánc bekapcso lása }
49 MF[xx] : = E l e j e ; { az e d d i g i Ele je−−>Vege lánchoz }
50 i n c (Modos) ; { x−−>xx−>Ele je−−>Vege }
51 end ;
52 E l e j e := x ; { x l e s z az új lánc kezde te }
53 end { for− i f } ;

54 f o r x :=1 to N do { az ö n á l l ó körben lév ők maradhattak csak k i }
55 i f (Sz in [x]= Feher) then begin { x−t ő l indu ló lánc e l ő á l l í t á s a }
56 xx := x ;
57 Szin [xx] : = Fekete ;
58 whi le Sz in [F [xx]] = Feher do begin
59 xx :=F [xx] ;
60 Szin [xx] : = Fekete ;
61 end ;
62 i f Vege=0 then
63 Vege := xx { a kezdő lánc e s e t é n }
64 e l s e i f F [xx]<>x then begin { az x−−>xx lánc bekapcso lása }
65 MF[xx] : = E l e j e ; { az e d d i g i Ele je−−>Vege lánchoz }
66 i n c (Modos) ; { x−−>xx−>Ele je−−>Vege }
67 end ;
68 E l e j e := x ; { x l e s z az új lánc kezde te }
69 end { for− i f } ;
70 i f F [Vege]<> E l e j e then begin { ha nem e g y e t l e n kör a bemenet }
71 MF[Vege] : = E l e j e ; { a lánc korbe zárása }
72 i n c (Modos) ;
73 end ;
74 Write ln (KiF , Modos) ;
75 f o r x :=1 to N do { a módosítások k i í r a t á s a }
76 i f MF[x] >0 then Write ln (KiF , x , ’ ’ ,MF[x]) ;
77 Close (KiF) ;
78 end .

10

