
15. Küls ő rendezések

A külső rendezési algoritmusokban alkalmazható műveletek specifikációja.

15.1. File absztrakt adattípus

Típusolt file: File of E
Értékhalmaz: FileE = {〈a0, . . . ,ai−1〉〈ai , . . . ,an−1〉 : ai ∈ E, i = 1, . . . ,n}
Műveletek:

F : FileE,FN : String,x : E, j : Longint

{Igaz} Assign(F,FN) {F = az FN állomány tartalma}
{F = 〈a0, . . . ,ai−1〉〈ai , . . . ,an−1〉} Reset(F) {F = 〈〉〈a0, . . . ,ai , . . . ,an〉}

{F = F} Rewrite(F) {F = 〈〉〈〉}
{F = F} EoF(F) {EoF = (Pre(F) = 〈a0, . . . ,an−1〉〈〉)}

{F = 〈a0, . . . ,ai−1〉〈ai , . . . ,an−1〉∧ i < n} Read(F,x) {x = ai ∧F = 〈a0, . . . ,ai〉〈ai+1, . . . ,an−1〉}
{F = 〈a0, . . . ,ai−1〉〈ai , . . . ,an−1〉} Write(F,x) {F = 〈a0, . . . ,ai ,x〉〈ai+1, . . . ,an−1〉}
{F = 〈a0, . . . ,ai−1〉〈ai , . . . ,an−1〉} FilePos(F) {FilePos= i∧F = Pre(F)}
{F = 〈a0, . . . ,ai−1〉〈ai , . . . ,an−1〉} FileSize(F) {FileSize= n∧F = Pre(F)}
{F = F ∧0≤ j ≤ FileSize(F)} Seek(F, j) {F = 〈a0, . . . ,a j−1〉〈a j , . . . ,an−1〉}

{F = 〈a0, . . . ,ai−1〉〈ai , . . . ,an−1〉} Truncate(F) {F = 〈a0, . . . ,ai−1〉〈〉}

Típustalan (bináris) file: File
Értékhalmaz: File = {〈a0, . . . ,ai−1〉〈ai , . . . ,an−1〉 : ai ∈ Byte, i = 1, . . . ,n}
Műveletek:

F : File,FN : String,x : E,k, j, r : Longint,V : Array[1..]o f E

{Igaz} Assign(F,FN) {F = az FN állomány tartalma}
{F = 〈a0, . . . ,ai−1〉〈ai , . . . ,an−1〉} Reset(F,Rh) {F = 〈〉〈a0, . . . ,ai , . . . ,an〉, |ai | = Rh}

{F = F} Rewrite(F,Rh) {L = 〈〉〈〉}
{F = F} EoF(F) {EoF = (Pre(F) = 〈a0, . . . ,an−1〉〈〉)}

{F = 〈a0, . . . ,ai−1〉〈ai , . . . ,an−1〉∧ i < n} Read(F,x) {x = ai ∧F = 〈a0, . . . ,ai〉〈ai+1, . . . ,an−1〉}
{F = 〈a0, . . . ,ai−1〉〈ai , . . . ,an−1〉} Write(F,x) {F = 〈a0, . . . ,ai ,x〉〈ai+1, . . . ,an−1〉}
{F = 〈a0, . . . ,ai−1〉〈ai , . . . ,an−1〉} FilePos(F) {FilePos= i∧F = Pre(F)}
{F = 〈a0, . . . ,ai−1〉〈ai , . . . ,an−1〉} FileSize(F) {FileSize= n∧F = Pre(F)}
{F = F ∧0≤ j ≤ FileSize(F)} Seek(F, j) {F = 〈a0, . . . ,a j−1〉〈a j , . . . ,an−1〉}

{F = 〈a0, . . . ,ai−1〉〈ai , . . . ,an−1〉} Truncate(F) {F = 〈a0, . . . ,ai−1〉〈〉}
{F = 〈a0, . . . ,ai−1〉〈ai , . . . ,an−1〉} BlockRead(F,V,k, [r]) {V[j] = ai+ j−1, j = 1, . . . , r ∧

F = 〈a0, . . . ,ai+r−1〉〈ai+r , . . . ,an−1〉∧
r = min(k,n− i)}

{F = 〈a0, . . . ,ai−1〉〈ai , . . . ,an−1〉} BlockWrite(F,V,k) {F = 〈a0, . . . ,ai−1,V[1], . . .V[k]〉
〈ai+k, . . . ,an−1〉}

1

Minden belső tömbös rendezési algoritmus mechanikusan átírható külső rendezési algoritmussá, mivel a Seek műve-
lettel megvalósíthóak a pozíció szerinti kiolvasó és módosító műveletek:

X:=T[i] - Seek(F,i); Read(F,X)
T[i]:=X - Seek(F,i); Write(F,X)

Azonban így olyan algoritmust kapnánk, amely haszálhatatlanul lassú, mert az adatelemeket egyesével mozgatnánk
a lemez és a főtár között, ami minden esetben fizikai mozgást igényelhet.

15.2. Gyorsrendezés virtuális memóriával

Ha az operációs rendszer lehetővé teszi virtuális memória használatát, akkor bármely belső rendezés egyszerűen
átírható külső rendezéssé. Akkora virtuális memóriát kell foglalni, amekkora a rendezendő file mérete, virtuálisan be-
olvasni a teljes file-t, belső rendezéssel rendezni, és végül visszaírni a file-ba. Tehát amikor egy elemre (rekordra)
hivatkozunk a belső rendezés során, akkor az operációs rendszer gondoskodik róra, hogy bekerüljön a fizikai memóri-
ába.

{ Külső rendezés virtuális memóriával}
Const MaxN=999999999;
Type
ElemTip=???;
MemTip=Array[1..MaxN] Of Elemtip;

Var
FNev : String; { a rendezendő file neve}
N : Longint; { rekordok száma}
Rh : Longint; { rekord méret}
F: File;
Mem:^MemTip;

Begin{külső rendezés virtuális memóriával}
Rh:=Sizeof(Elemtip);
Assign(F, FNev); Reset(F, Rh);{ file megnyitás}
N:=FileSize(F); { elemszám lekérdezése}
GetMem(Mem, N*Rh); { memória foglalás}
BlockRead(F, Mem^[1], N); { virtuális beolvasás}
GyorsRendez(Mem^, N); { belső rendezés}
Seek(F,0);
BlockWrite(F, Mem^[1], N); { kiíratás (visszaírás)}
FreeMem(Mem, N*Rh); { a memória felszabadítása}
Close(F);

End.

Azonban, az operációs rendszer nem tudja, hogy mely elemekre, milyen sorrendben fogunk hivatkozni. Tudjuk,
hogy a gyorsrendezés esetén kizárólag a FELOSZT hivatkozik adatelemekre, és tudjuk azt is, hogy adott elem után
mely elem következhet. Ezt figyelembe véve lényegesen gyorsíthatjuk az algoritmust. Belátható, hogy ekkor nem a
Lomuto, hanem a Hoare-féle felosztást célszerű használni.
Tegyük fel, hogy a rendezésre használható fizikai memória mérete m adatelem, tehát egyszerre ennyi elem lehet a
memóriában (feltehetjük, hogy mpáros szám). Az F file bal.. jobbpozíciói által meghatározott rész adatsor felosztása

2

úgy kezdődik, hogy a bal pozíciótól beolvasunk m/2 elemet, és a jobb végéről, azaz a jobb− (m/2)+ 1 pozíciótól
is beolvasunk m/2 elemet. Ha jobb−bal+1≤ m, akkor természetesen a teljes részt beolvassuk. Majd választunk
egy Fe felosztó elemet, és felosztjuk a memóriában levő részt. A baloldali és jobboldali rész közül az egyik biztosan
legalább m/2 elemet tartalmaz. Ebből a részből m/2 hosszú összefüggő részt ki tudunk írni a file-ba, oda, ahonnan
beolvastunk. Az általános helyzetet a 2. ábra mutataja. Tehát a beolvasás/kiírás a BLOCKREAD/BLOCKWRITE

1 m

bal jobb

m/2 m/2

m/2 m/2

F

Mem

1. ábra. Kezdő lépés; a file-ból bal- és jobb végéről m/2 elem beolvasása.

1 m

bal jobb

m/2

m/2 m/2m/2

F

Mem

bal
F

jobb

m/2
m

Mem

1

2. ábra. A memóriában felosztott elemekből m/2 méretű rész kiírása és újabb m/2 méretű szelet beolvasása. A
pirossal jelölt részekben az eleme ≤ Fe, a kékkel jelölt részekben pedig ≥ Fe. A szürkék a még felosztatlan elemek,
a fehér részek jelzik a file-nak azt a részét, ahonnan beolvastunk a memóriába, tehát "üresek".

művelettel mindig m/2 méretű szeletekben történik (kivéve, amikor összer a két rész).

15.3. Küls ő rendezés összefésüléssel

Az F = 〈a0, . . . ,an−1〉 rendezendő adatsorozat rendezett ai , . . . ,a j részsorozatát futamnak nevezünk. A futam maxi-
mális futam, ha ai−1 > ai és a j > a j+1.

3 file-os egyenletes összefésül ő rendezés.
Tegyük fel, hogy 3 szekvenciális file-t használhatunk a rendezésre: A,B,C, és az A tartalmazza a bemeneti, rende-
zendő halmazt. Első lépésként osszuk szét a maximális futamokat egyenletesen A-ról B-re és C-re. Az egyenletes
szétosztás azt jelenti, hogy a B-re és C-re kerülő futamok száma legfeljebb eggyel térjen el. Ez elérhető úgy, hogy a
páratlan sorszámú futamokat B-re, a párosakat C-re másoljuk át. Majd a B-ről és C-ről futampárokat fésüljünk össze
A-ra, amely a szétosztás után üresíthető. A szétosztást-összefésülés fázisokat addig ismételjük, amíg egyetlen futam
keletkezik.
4 file-os egyenletes összefésül ő rendezés.
Látható, hogy ha 4 file-t használhatunk a rendezésre, akkor a futamok szétosztása megtakarítható, kivéve az első,
u.n. kezdeti szétosztást.

3

A: 13 24 33 12 31 22 45 63 11 15 17 88 44 77

C:

B: 13 24 33

12 31

22 45 63

11 15 17 88

44 77

Futamok egyenletes szétosztása A-ról B-re, C-re

A: 12 13 24 31 33

44

C:

B:
Futamok egyenletes szétosztása A-ról B-re, C-re
12 13 24 31 33 44 77

Futampárok összefésülése B-C-rõl A-ra:

Futampárok összefésülése B-C-rõl A-ra:

A:

Futamok egyenletes szétosztása A-ról B-re, C-re
B:

44C: 77

Futampárok összefésülése B-C-rõl A-ra:

A:

774488634522171511

88634522171511

7744886345333124221715131211

886345333124221715131211

8877634544333124221715131211

3. ábra. 3 file-os egyenletes összefésülő rendezés menetei.

4

A: 13 24 33 12 31 22 45 63 11 15 17 88 44 77

13 24 33

12 31

22 45 63

11 15 17 88

44 77

A: 12 13 24 31 33

44

Futamok kezdeti szétosztása A-ról C-re és D-re:

C:

D:

Futampárok összefésülése C-D-rõl A-B-re:

B:

44 77

Futampárok egyenletes összefésülése A-B-rõl C-D-re:

C:

D: 44 77

Futampárok összefésülése C-D-rõl A-B-re:

A:

B:

88634522171511

886345333124221715131211

8877634544333124221715131211

4. ábra. 4 file-os egyenletes összefésülő rendezés menetei.

5

Többutas egyenletes összefésül ő rendezés.
A 4 file-os egyenletes összefésülő rendezés általánosítható tetszőleges p-re, tehát amikor 2p darab filet használunk,
p input file-ról fésülünk össze p output file-ra.

Procedure PUtasEgyenletesFesuloRendezes(Var F);
Var SF:Array[Boolean, 1..P] of Elemtip; {segéd fileok}

i:Word; be,ki:Boolean;
Begin

Reset(F); be:=True; ki:=False;
Futamok kezdeti egyenletes szétosztása F-ről SF[be,1],. . .,SF[be,p]-re;
While FutamSzam>1 Do Begin {összefésülő menet}

For i:=1 To P Do Begin
Reset(SF[be,i]);
Rewrite(SF[ki,i]);

End {For i};
Futamok egyenletes összefésülése

SF[be,1..p]-ről SF[ki,1..p]-re
be:=ki; ki:=Not be;

End {while};
End ;

Költségmodell és bonyolultsági mérték.
Olyan költségmodellt és bonyolutsági mértéket keresünk, amelly adeqvát abban az értelemben, hogy hűen adja meg
a külső rendezési algoritmusok várható futási idejét. Pontosabban, elég csak az átviteli időt (beolvasás/kiírás) tekin-
teni, mivel ez nagyságreddel nagyobb, mint a belső müveletek ideje. Azt kell figyelembe venni, hogy a file műveletek
végrehajtása fizikai mozgást igényel. Nevezetesen, a lemezmeghajtó író/olvasó fejét pozíciónálni kell, majd egy kö-
rülfordulás alatt a kívánt szektor elérhető olvasás/írás művelet céljából. Az író/olvasó fej pozícionálása nagyságreddel
lassabb, mint a lemez forgási sebessége. Tekintsük az alábbi három programrészletet. Mindegyik ugyanazt teszi, az
F file-ból az i-pozíciótól k adatelemet olvas be.

A: For j:= 1 To K Do Begin
Seek(F,i+j-1); Read(F, V[j])

End;
B: Seek(F, i);

For j:= 1 To K Do Read(F, V[j])
C: Sek(F, i);

BlockRead(F, V[1], k)

Három bonyolultsági mértékeket vizsgálunk.

1. Minden file művelet költsége 1.

2. A file művelet költsége a művelettel átvitt adatelemek (rekordok) száma.

3. Ha a művelet k db. rekordot visz át, akkor a költsége αk+β, valamely α és β konstansra.

6

1. 2. 3.
A 2k k k(α +β)
B k k k(α +β)
C 2 k αk+β

Nyilvánvaló, hogy csak a 3. bonyolultsági mérték elfogadható. Az α és β konstansok értéke függ az operációs rend-
szertől, pontosabban, az alkalmazott filerendszer megvalósítástól. Azonban majd látni fogjuk, hogy vizsgálatainkban
csak a β/α hányados számít, amire könnyű jó becslést adni.

A P-utas egyenletes összefésül ő rendezés elemzése.
Jelölje a továbbiakban a rendezendő F file elemszámát n, tehát FileSize(F) = n. Feltesszük, hogy rögzített, madate-
lemet befogadó memóriat használhatunk az algoritmusban.
A futamok kezdeti szétosztása helyett képezzünk m hosszú futamokat úgy, hogy egy BLOCKREAD művelettel olvas-

m

m.p

m.p2

m.p m.p m.p

m m m m m m m m m m m m m m’

n

F
0 n-1

0. menet

1. menet

2. menet

3. menet

5. ábra. A menetek szemléltetése p = 3 esetre.

sunk be m adatelemet, rendezzük öket belső gyorsrendezéssel és egy BLOCKWRITE művelettel írjuk vissza a file-ba.
Ezt nevezzük 0. menetnek. Ennek az lesz az előnye, hogy a futamok hossza azonos, kivéve az utolsó csonka futamot,
amelynek hossza n modm.
Elegendő lesz egy segéd filet használni, amiben a futamokat tároljuk, hiszen minden futam file-beli pozícióját ki tudjuk
számítani a futam sorszámábol, és hogy hanyadik öszzefésülő menetet végezzük. A 0. menet után az i-edik futam
kezdőpozíciója (i−1)més hossza m, kivéve az dn/me-edik utolsót, amelynek hossza n modm. Ha mindig p futamot
fésülünk össze (kivéve az utolsó fésülést, amire esetleg nem marad p futam), az r-edik menet után a futamok hossza
m pr . A futamok összefésüléséhez mind a p futamból egy, az soron következő adatelemnek a memóriában kell lennie.
Ezt úgy biztosítjuk, hogy felosztjuk a memóriát p+1 egyenlő részre, az első p blokk lesz az input blokk, ide olvasunk
be a futamokból. A p+1-edik memória blokk az output blokk, ide visszük át a futamok aktuális elemeinek a legkiseb-
bikét. Ha az output blokk beltelik, kiírjuk az F [ki] output fileba (szekvenciálisan). Ha egy input blokk kifogy, akkor egy
blokknyit (illetve csonka futam esetén amennyi maradt a futamból) beolvasunk a megfelelő futamból. A legkisebb elem
kiválasztását kupaccal végezzük.
Tegyük fel, hogy k rekord átviteli költsége (egy BlocRead/BlockWrite): kα+β.
Jelölje K(n, m, p) a rendezési algoritmus átviteli összköltségét, ha a memória mérete m és minden menetben p futa-
mot fésülünk össze.
Milyen p-re lesz K(n, m, p) minimális ?
A kezdeti (m-hosszú) futamok előállításanak
költsége: K0(n,m, p)

7

Mem

1. blokk 2. blokk 3. blokk p+1=4. blokk

1. futam 2. futam p. futam

.F[be] . . .

F[ki]

6. ábra. Futamok beolvasása és kiírása összefésüléskor.

K0(n,m, p) = 2(nα+ dn/meβ)

A menetek száma, ha minden menetben p futamot fésülünk össze: az a legkisebb r , amelyre m pr ≥ n.

r =
⌈
logpn/m

⌉
(1)

p =
⌈

r
√

n/m
⌉

(2)

p lehetséges értékei: 2 .. m−1
r lehetséges értékei:

⌈
logm−1n/m

⌉
..

⌈
log2n/m

⌉
Jelölje B a blokkméretet:

B =
⌊

m
(p+1)

⌋
(B(p+1) = m)

Egy összefésülő menet költsége K1(n, m, p):

K1(n, m, p) = 2(αn+ dn/Beβ) = 2(αn+ d(p+1)n/meβ)

Tehát a fésülő menetek költsége: rK1(n,m, p).

K(n, m, p) = K0(n,m, p)+ rK1(n,m, p)
= K0(n,m, p)+

⌈
logpn/m

⌉
(αn+(p+1)dn/meβ))

Mivel K0(n,m, p) nem függ p-től ezért a K(n, m, p) kifejezésből hagyjuk el. Továbbá, sok számítást takaríthatunk meg,
ha az átviteli költséget nem p, hanem r (a menetek száma) függvényeként fejezzük ki, mert a lehetséges r-ek száma
nagyságrenddel kisebb, mint a p-k száma. Ha meghatároztuk, hogy mely r-re lesz minimális az átviteli költség, a (2)
képlettel kiszámítjuk a hozzá tartozó p-t.

K(n, m, r) = rK1(n,m, p)

= αnr + r
(⌈

r
√

n/m
⌉
+1

)
dn/meβ

= r

(
n+

(⌈
r
√

n/m
⌉
+1

)
dn/meβ

α

)
(3)

8

Tehát azt kell kiszámítani, hogy milyen r-re lesz a (3) kifejezés minimális!
Megvalósítás.

Procedure FutamFesul(FTol :Longint); Var
S :Array[1..MaxP] Of Longint; { a prioritási sor (kupac)}
FVeg, { futam vege a fileban }
FPoz, { file rekord sorszám a futamban}
BKezd, { blokk kezdőcíme }
BVeg: Array[0..MaxP] Of Longint; { blokkvége }
Sm:Longint; { a sor mérete }
aP:Longint; { az összefésülendő futamok tégyl. száma}
Poz:Longint; { file pozíció}
Ki, { az output puffer akt. pozíciója}
Reksz:Longint; { az átvitelben a rekordok száma}

{} Begin {FutamFesul}
Poz:=(Ftol-1)*FutamHossz; { az első futam file pozíciója}
aP:=0; { a futamsorszám}
Repeat { minden futamból egy blokk beolvasása}

BKezd[aP]:=aP*BM;
FPoz[aP]:=Poz;
FVeg[aP]:=Poz+FutamHossz-1;
If FVeg[aP]>=N Then FVeg[aP]:=N-1;
S[aP+1]:=BKezd[aP];
Reksz:=FVeg[aP]-Poz+1;
If Reksz>BM Then Reksz:=BM;
BVeg[aP]:=BKezd[aP]+Reksz-1;
Seek(F[be], FPoz[aP]);
BlockRead(F[be], Mem[BKezd[aP]], Reksz);
Inc(FPoz[aP], Reksz);
Inc(Poz, FutamHossz);
Inc(aP);

Until (aP=P)Or(Poz>=N);

BKezd[aP]:=(aP)*BM; { az output blokk memória-címe}
BVeg[aP]:=BKezd[aP]+BM-1; { a blokk vége}

Sm:=aP;
KupacEpit(Sm);
Ki:=BKezd[aP];
While Sm>0 Do Begin

Sorbol;
Inc(Ki);
If Ki>BVeg[aP] Then Begin
BlockWrite(F[ki], Mem[BKezd[aP]], BVeg[aP]-

9

BKezd[aP]+1);
Ki:=BKezd[aP];

End;
End;
BlockWrite(F[ki], Mem[BKezd[aP]], (Ki-BKezd[aP]));{a maradék kiírása}

End{FutamFesul};

Procedure FesuloMenet;
{Global: FutamSzam, FutamHossz, F}
Var
FTol, UFSz:Longint;

Begin{FesuloMenet}
be:=ki; ki:=Not ki; { I/O file váltás }
Seek(F[ki],0); { pozícionálás az output file elejére}
UFSz:=0; { a kelekező új futamok száma}
FTol:=1; { összefésülés az FTol futamtól}
Repeat
FutamFesul(FTol); { futamok összefésülése }
Inc(UFSz);
Inc(FTol, P); { átlépés a következő P futamra}

Until FTol>FutamSzam;
FutamSzam:=UFSz; { a keletkezett új futamok száma}
FutamHossz:=P*FutamHossz; { az új futamok hossza}

End {FesuloMenet};

Begin{Prog}
Nyit; { megnyitás, optimális P kiszámítása}

If N<=M Then Begin { befér a memóriába}
BlockRead(F[be], Mem[0], N); { beolvasás}
BelsoRendez(0, N-1); { belső rendezés}
Seek(F[be],0);
BlockWrite(F[be], Mem[0], N); { kiíratás (visszaírás)}
Close(F[be]);
Exit;

End Else Begin
Menet0; {kezdeti futamok képzése}
Repeat

FesuloMenet; {ősszefésülés}
Until FutamSzam=1; {amíg egy futamot kapunk}

End;
Zar;

End.

10

