15. Kils 6 rendezések

A kiilsé rendezési algoritmusokban alkalmazhaté miveletek specifikaciéja.

15.1.

File absztrakt adattipus

Tipusolt file: File of E

Ertékhalmaz: FileE = {(ayp,...,a-1)(&,...,ar-1) & € E,i=1,...,n}
Mveletek:
F :FileE,FN: String x: E, j : Longint
{lgaz} AssigriF,FN) {F =az FN allomany tartalma}
{F=(a0,....,a-1)(&,...,an-1)} ResetF) {F=()(ao,....a&,...,an)}
{F=F} RewritdF) {F=((}
{F=F} EoF(F) {EoF = (Pre(F) = (ag,...,an-1){))}
{F=(a0,-.-,&-1)(&,...,an-1)Ai<n} ReadF,x) {x=aAF=(a,...,&)(@+1,---,81)}
{F=(a0,...,a-1)(@,...,a-1)} Write(F,x) {F =(ao,...,a,X)(@11,...,a8n-1)}
{F =(ag,...,a-1)(&,...,an-1)} FilePogF) {FilePos=iAF =Pre(F)}
{F =(ao,...,a-1)(&,...,an-1)} FileSizédF) {FileSize=nAF =Pre(F)}
{F=FAO0<j<FileSizdF)} = SeekF,j) {F =(ag,...,aj-1)(aj,...,an-1)}
{F =(ag,...,a-1)(&,...,an-1)} TruncatéF) {F = (ag,...,a-1)()}
Tipustalan (binaris) file: File
Ertékhalmaz: File = {(ap,...,a-1){&,...,an-1) : & € Bytei =1,...,n}
Mveletek:
F :File,FN: Stringx: E,k, j,r : LongintV : Array[1..]of E
{lgaz} Assigr{F,FN) {F = az FN allomany tartalma}
(F=(a0,....a-1)(a,....an-1)} ResetF,RN) {F=()(a0,....a...,an),|a| = Rh}
{F=F} RewritgF, Rh) {L=00}
{(F=F) EoF(F) {EOF = (Pre(F) = (ao,...,an-1)())}
{F =(ao,...,a-1){&,...,an—1) Al < n} ReadF, x) {Xx=aANF =(ag,...,a&)(@+1,...,an-1)}
{F =(a0,...,8-1)(a,...,an-1) } Write(F, x) {F = (a0,...,&,X)(@i4+1,...,a8n-1)}
{F =(ao,...,a8_-1){(&,...,an-1) } FilePogF) {FilePos=iAF = Pre(F)}
{F =(ao,...,8-1){(&,...,an-1)} FileSizéF) {FileSize=nAF = Pre(F)}
{F=FAO0<j< F|IeS|zQF)} SeekF, j) {F =(ag,...,aj-1)(aj,...,an-1)}
{F < ao, ..., ai- 1>< &,...,8n- 1>} TI’UI’]C&tE{F) {F:<a07"'7ai—1><>}
{F=(a0,...,ai-1)(a,...,an-1)} BlockReadF,V.k[r]) {V[j]l=ai1j-1,j=1,....rA
F=(ao,...,&4+r—1)(@+r,--,8n-1) A
r=min(k,n—i)}
{F =(a0,...,8-1){(&,...,an—1)} BlockWritdF,V,k) {F = (a,...,a-1,V[1],...V[K])
(@K, .- 8n-1)}

Minden bels6 témbds rendezési algoritmus mechanikusan atirhaté kiilsé rendezési algoritmussa, mivel a Seek m(ive-
lettel megvalodsithéak a pozicié szerinti kiolvasé és médositdé miveletek:

X:=T[i] - Seek(F,1i); Read(F,X)
T[i]:=X - Seek(F,1); Write(F,X)

Azonban igy olyan algoritmust kapnank, amely haszalhatatlanul lassu, mert az adatelemeket egyesével mozgatnank
alemez és a f6tar kdzott, ami minden esetben fizikai mozgast igényelhet.

15.2. Gyorsrendezés virtudlis memariaval

Ha az operacids rendszer lehetévé teszi virtualis memadria hasznalatat, akkor barmely bels6é rendezés egyszerlien
atirhato kulsd rendezéssé. Akkora virtualis memariat kell foglalni, amekkora a rendezendd file mérete, virtualisan be-
olvasni a teljes file-t, bels6é rendezéssel rendezni, és végiil visszairni a file-ba. Tehat amikor egy elemre (rekordra)
hivatkozunk a belsd rendezés soran, akkor az operaciés rendszer gondoskodik réra, hogy bekertiljon a fizikai memori-
aba.

{ Kuls6 rendezés virtudlis memdridval}
Const MaxN=999999999;
Type

ElemTip=2?7?7?;

MemTip=Array[l..MaxN] Of Elemtip;

Var
FNev : String; { a rendezend6 file neve}
N : Longint; { rekordok szama}
Rh : Longint; { rekord méret}
F: File;

Mem: *MemTip;
Begin{klils® rendezés virtudlis meméridval}
Rh:=Sizeof (Elemtip);
Assign (F, FNev); Reset(F, Rh);
N:=FileSize (F);

{ file megnyitéas}

{
GetMem (Mem, N*Rh); { meméria foglalas}

{

{

elemszam lekérdezése}

BlockRead (F, Mem”[1], N);
GyorsRendez (Mem”, N);

virtudlis beolvasés}
belsd rendezés}

Seek (F, 0);
BlockWrite (F, Mem”[1], N); { kiiratéds (visszairés)}
FreeMem (Mem, N*Rh); { a memdéria felszabaditéasa}
Close (F);

End.

Azonban, az operaciés rendszer nem tudja, hogy mely elemekre, milyen sorrendben fogunk hivatkozni. Tudjuk,
hogy a gyorsrendezés esetén kizardlag a FELOSzT hivatkozik adatelemekre, és tudjuk azt is, hogy adott elem utan
mely elem kovetkezhet. Ezt figyelembe véve lényegesen gyorsithatjuk az algoritmust. Belathatd, hogy ekkor nem a
Lomuto, hanem a Hoare-féle felosztast célszer(hasznalni.

Tegyik fel, hogy a rendezésre hasznalhato fizikai memoéria mérete m adatelem, tehat egyszerre ennyi elem lehet a
memoridban (feltehetjiik, hogy m paros szam). Az F file bal.. jobb poziciéi altal meghatéarozott rész adatsor felosztasa

2

ugy kezdddik, hogy a bal poziciétdl beolvasunk m/2 elemet, és a jobb végérél, azaz a jobb— (m/2) + 1 poziciotél
is beolvasunk m/2 elemet. Ha jobb— bal+ 1 < m, akkor természetesen a teljes részt beolvassuk. Majd valasztunk
egy Fe feloszt6 elemet, és felosztjuk a memoridban levd részt. A baloldali és jobboldali rész kézil az egyik biztosan
legalabb m/2 elemet tartalmaz. Ebbdl a részb6él m/2 hosszl 6sszefuiggd részt ki tudunk irni a file-ba, oda, ahonnan
beolvastunk. Az altalanos helyzetet a 2. abra mutataja. Tehéat a beolvasas/kiirds a BLOCKREAD/BLOCKWRITE

jobb
m/2 m/2
Me|

L m
m/2 m/2

1. dbra. Kezd6 lépés; a file-bdl bal- és jobb végérdl m/2 elem beolvasasa.

m/2

2. dbra. A memodridban felosztott elemekbdl m/2 méretl rész kiirasa és Gjabb m/2 méret(i szelet beolvasasa. A
pirossal jelolt részekben az eleme < Fe, a kékkel jelolt részekben pedig > Fe. A sziirkék a még felosztatlan elemek,
a fehér részek jelzik a file-nak azt a részét, ahonnan beolvastunk a memariaba, tehat "lresek".

mvelettel mindig m/2 méret(i szeletekben torténik (kivéve, amikor osszer a két rész).

15.3. Kils 6 rendezés osszefésiléssel

Az F = (ap,...,ayp_1) rendezendd adatsorozat rendezett a,...,a; reszsorozatat futamnak nevezink. A futam maxi-
malis futam, ha a1 > a; és a; > aj1.

3 file-os egyenletes dsszefésil 6 rendezés.

Tegytiik fel, hogy 3 szekvencidlis file-t hasznalhatunk a rendezésre: A,B,C, és az A tartalmazza a bemeneti, rende-
zend6 halmazt. Els6 lépésként osszuk szét a maximalis futamokat egyenletesen A-rél B-re és C-re. Az egyenletes
szétosztas azt jelenti, hogy a B-re és C-re keriil6 futamok szama legfeljebb eggyel térjen el. Ez elérhetd gy, hogy a
paratlan sorszamu futamokat B-re, a parosakat C-re masoljuk at. Majd a B-rél és C-r6l futamparokat fésiljiink 6ssze
A-ra, amely a szétosztas utan Uresithetd. A szétosztast-osszefésilés fazisokat addig ismételjik, amig egyetlen futam
keletkezik.

4 file-os egyenletes osszefésil 6 rendezés.

Lathat6, hogy ha 4 file-t hasznalhatunk a rendezésre, akkor a futamok szétosztasa megtakarithatd, kivéve az elsé,
u.n. kezdeti szétosztast.

w

Futamok egyenletes szétosztasa A-rél B-re, C-re

13 24 33 12 31 22 45 63 11 15 17 88 44 77

13 24 33 22 45 63 44 77

12 31 11 15 17 88

Futamparok 6sszefésiilése B-C-rél A-ra:

12 13 24 31 33 11 15 17 22 45 63 88 44 77

Futamok egyenletes szétosztasa A-rol B-re, C-re
12 13 24 31 33 44 77

11 15 17 22 45 63 88

Futamparok osszefésiilése B-C-rol A-ra:

11 12 13 15 17 22 24 31 33 45 63 88 44 77

Futamok egyenletes szétosztasa A-rél B-re, C-re
11 12 13 15 17 22 24 31 33 45 63 88

44 77

Futamparok osszefésiilése B-C-rol A-ra:

11 12 13 15 17 22 24 31 33 44 45 63 77 88

. dbra. 3 file-os egyenletes dsszefésiilé rendezés menetei.

D:

A:

Futamok kezdeti szétosztasa A-rdl C-re és D-re:

13 24 33 12 31 22 45 63 11 15 17 88 44 77

13 24 33 22 45 63 44 77

12 31 11 15 17 88

Futamparok 6sszefésiilése C-D-r6l A-B-re:

12 13 24 31 33 44 77

11 15 17 22 45 63 88

Futamparok egyenletes dsszefésiilése A-B-rél C-D-re:

11 12 13 15 17 22 24 31 33 45 63 88

44 77

Futamparok 6sszefésilése C-D-rdl A-B-re:

11 12 13 15 17 22 24 31 33 44 45 63 77 88

B:

. dbra. 4 file-os egyenletes dsszefésiilé rendezés menetei.

Tobbutas egyenletes dsszefésil 6 rendezés.
A 4 file-os egyenletes dsszefésiilé rendezés altalanosithaté tetszéleges p-re, tehat amikor 2 p darab filet hasznalunk,
p input file-rél fésulunk dssze p output file-ra.

Procedure PUtasEgyenletesFesuloRendezes(Var F);
Var SF:Array[Boolean, 1..P] of Elemtip; {segéd fileok}
i:Word; be,ki:Boolean;
Begin
Reset(F); be:=True; ki:=False;
Futamok kezdeti egyenletes szétosztasa F-r6l SF[be,1],...,SF[be,p]-re;
While FutamSzam>1 Do Begin {0sszefésilé menet}
For i:=1 To P Do Begin
Reset(SF[be,i]);
Rewrite(SF[ki,i]);
End{For i};
Futamok egyenletes 6sszefésiilése
SF[be,1..p]-rél SF[ki,1..p]-re
be:=ki; ki:=Not be;
End{while};
End;

Kdltségmodell és bonyolultsagi mérték.

Olyan kéltségmodellt és bonyolutsagi mértéket keresiink, amelly adeqvat abban az értelemben, hogy hiien adja meg
a kilsé rendezési algoritmusok varhat6 futasi idejét. Pontosabban, elég csak az atviteli idét (beolvasas/kiiras) tekin-
teni, mivel ez nagysagreddel nagyobb, mint a bels6 miiveletek ideje. Azt kell figyelembe venni, hogy a file mliveletek
végrehajtasa fizikai mozgéast igényel. Nevezetesen, a lemezmeghajtd ird/olvasé fejét pozicionalni kell, majd egy ko-
rulfordulas alatt a kivant szektor elérhet6 olvasas/iras mivelet céljabdél. Az ir6/olvasé fej pozicionalasa nagysagreddel
lassabb, mint a lemez forgasi sebessége. Tekintsik az alabbi harom programrészletet. Mindegyik ugyanazt teszi, az
F file-bdl az i-poziciétél k adatelemet olvas be.

A: For j:= 1 To K Do Begin
Seek (F,i+j-1); Read(F, V[]j])
End;
B: Seek (F, 1);
For j:= 1 To K Do Read(F, V[j])
C: Sek(F, 1);
BlockRead (F, VI[1], k)

Harom bonyolultsagi mértékeket vizsgalunk.

1. Minden file mivelet koltsége 1.
2. Afile mivelet koltsége a miivelettel atvitt adatelemek (rekordok) szama.

3. Ha a mivelet k db. rekordot visz at, akkor a koltsége a k+ 3, valamely a és [3 konstansra.

1. | 2. 3.
A2k | Kk | k(o +P)
B| k | k| k(a—+p)
cC| 2| k| ak+pB

Nyilvanvald, hogy csak a 3. bonyolultsdgi mérték elfogadhatd. Az a és [3 konstansok értéke fligg az operacios rend-
szert6l, pontosabban, az alkalmazott filerendszer megval6sitastél. Azonban majd latni fogjuk, hogy vizsgalatainkban
csak a 3/a hanyados szamit, amire konny(i jé becslést adni.

A P-utas egyenletes dsszeféstl 6 rendezés elemzése.

Jelolje a tovabbiakban a rendezendd F file elemszamat n, tehat FileSiz€F) = n. Feltessziik, hogy rogzitett, m adate-
lemet befogadd memoériat hasznalhatunk az algoritmusban.

A futamok kezdeti szétosztasa helyett képezziink m hosszu futamokat ugy, hogy egy BLOCKREAD mdivelettel olvas-

0 n-1
F
\LO. menet
m m m m m m m m M m m m M m g
B S P P T s e B P T S B e B
1. menet
m.p m.p m.p m.p
> > > > >
2. menet
m.p2
I >
n ¢/3. menet
>

5. abra. A menetek szemléltetése p = 3 esetre.

sunk be m adatelemet, rendezziik dket bels6 gyorsrendezéssel és egy BLockWRITE mivelettel irjuk vissza a file-ba.
Ezt nevezzik 0. menetnek. Ennek az lesz az el6nye, hogy a futamok hossza azonos, kivéve az utolsé csonka futamot,
amelynek hosszan modm.

szamitani a futam sorszamabol, és hogy hanyadik 6szzefésllé menetet végezzik. A 0. menet utdn az i-edik futam
kezd6pozicidja (i — 1)m és hossza m, kivéve az [n/m]-edik utolsét, amelynek hossza n modm. Ha mindig p futamot
fésuliink 6ssze (kivéve az utolsé fésulést, amire esetleg nem marad p futam), az r-edik menet utdn a futamok hossza
m . A futamok 6sszefésiiléséhez mind a p futambol egy, az soron kévetkezd adatelemnek a memoriaban kell lennie.
Ezt Ggy biztositjuk, hogy felosztjuk a memériat p+ 1 egyenld részre, az elsé p blokk lesz az input blokk, ide olvasunk
be a futamokbdl. A p+ 1-edik memdria blokk az output blokk, ide visszik at a futamok aktudlis elemeinek a legkiseb-
bikét. Ha az output blokk beltelik, kiirjuk az F[Ki] output fileba (szekvencialisan). Ha egy input blokk kifogy, akkor egy
blokknyit (illetve csonka futam esetén amennyi maradt a futambdl) beolvasunk a megfeleld futambdl. A legkisebb elem
kivalasztasat kupaccal végezzik.

Tegyuk fel, hogy K rekord atviteli koltsége (egy BlocRead/BlockWrite): ka + [3.

Jeldlje K(n, m, p) a rendezési algoritmus atviteli 6sszkoltségét, ha a memoria mérete m és minden menetben p futa-
mot fésuluink dssze.

Milyen p-re lesz K(n, m, p) minimalis ?

A kezdeti (mrhosszu) futamok eléallitasanak

koltsége: Ko(n,m, p)

- d.futam 2 futam = _ - pfutam = _

1. blokk 2. blokk 3. blokk p+1=4. blokk

6. abra. Futamok beolvasasa és kiirasa 0sszefésiléskor.

Ko(n,m, p) = 2(na + [n/m]p)

A menetek szama, ha minden menetben p futamot fésuliink 6ssze: az a legkisebb r, amelyre mgd > n.
r = [logpn/m| 1)

p=|{/n/m| @
p lehetséges értékei: 2.. m—1
r lehetséges értékei: [logm—1n/m| .. [logzn/m|
Jeldlje B a blokkméretet:

Egy 0sszefésulé menet koltsége Kq(n, m, p):
Ki(n,m, p) =2(an+[n/B]B) = 2(an+[(p+ 1)n/m|p)
Tehat a fésulé menetek koltsége: rKi(n,m, p).

K(n7 m, p) = KO y p) +rKl(n7m7 p)

,p) + [logpn/m| (an+(p+1)[n/m|B))

n,m
n,m
Mivel Ko(n,m, p) nem fiigg p-t6l ezért a K(n, m, p) kifejezésbdl hagyjuk el. Tovabba, sok szamitast takarithatunk meg,
ha az atviteli kbltséget nem p, hanem r (a menetek szama) figgvényeként fejezzik ki, mert a lehetséges r-ek szama
nagyséagrenddel kisebb, mint a p-k szdma. Ha meghatéroztuk, hogy mely r-re lesz minimalis az atviteli kdltség, a (2)

képlettel kiszamitjuk a hozza tartoz6 p-t.

Kinym,r) = rKy(n,mp)

= anr+r ([{/Wn} +1> n/m|p
= <n+ ({\/an +1> (n/m}S) 3)

8

Tehét azt kell kiszamitani, hogy milyen r-re lesz a (3) kifejezés minimalis!

Megvalésitas.

Procedure FutamFesul (FTol :Longint); Var

S :Array[l..MaxP] Of Longint; {
Fveg, {
FPoz, {
BKezd, {
BVeg: Array[0..MaxP] Of Longint; {
Sm:Longint; {
aP:Longint; {
Poz:Longint; {
Ki, {
Reksz:Longint; {

{} Begin {FutamFesul}
Poz:=(Ftol-1) *FutamHossz; {
aP:=0; {
Repeat {
BKezd[aP] :=aP*BM;
FPoz[aP] :=Poz;
FVeglaP] :=Poz+FutamHossz-1;
If FVeglaP]>=N Then FVeg[aP]:=N-1;
S[aP+1]:=BKezd[aP];
Reksz:=FVeg[aP]-Poz+l;
If Reksz>BM Then Reksz:=BM;
BVeg[aP] :=BKezd[aP]+Reksz-1;
Seek (F[be], FPoz[aP]);
BlockRead (F[be], Mem[BKezd[aP]],
Inc (FPoz[aP], Reksz);

Inc(Poz, FutamHossz);
Inc(aP);
Until (aP=P)0Or (Poz>=N);

BKezd[aP] :=(aP) *BM;
BVeg[aP] :=BKezd[aP]+BM-1;

Sm:=aP;
KupacEpit (Sm);
Ki:=BKezd[aP];
While Sm>0 Do Begin
Sorbol;
Inc (Ki);
If Ki>BVeg[aP] Then Begin

a prioritasi sor (kupac)}

futam vege a fileban }

file rekord sorszdm a futamban}

blokk kezdbcime }

blokkvége }

a sor mérete }

az Osszefésiilendé futamok tégyl. széama}
file pozicid}

az output puffer akt. pozicidja}

az atvitelben a rekordok széama}

az elsdé futam file pozicidija}
a futamsorszém}
minden futambdél egy blokk beolvasésa}

Reksz);

{ az output blokk meméria-cime}
{ a blokk vége}

BlockWrite (F[ki], Mem[BKezd[aP]], BVeg[aP]-

Ki:=BKezd[aP];
End;
End;
BlockWrite (F[ki], Mem[BKezd[aP]]
End{FutamFesul};

Procedure FesuloMenet;
{Global: FutamSzam, FutamHossz,
Var
FTol, UFSz:Longint;
Begin{FesuloMenet}
be:=ki; ki:=Not ki;
Seek (F[ki],0);
UFSz:=0;
FTol:=1;
Repeat
FutamFesul (FTol) ;
Inc (UFSz);
Inc(FTol, P);
Until FTol>FutamSzam;
FutamSzam:=UFSz;

F}

FutamHossz:=P*FutamHossz;
End {FesuloMenet};

Begin{Prog}
Nyit;

If N<=M Then Begin
BlockRead (F[be], Mem[0], N);
BelsoRendez (0, N-1);
Seek (F [be],0);
BlockWrite (F[be], Mem[0], N);
Close (F[be]);
Exit;

End Else Begin
Menet0;
Repeat

FesuloMenet;

Until FutamSzam=1;

End;

Zar;

End.

4

e e

BKezd[aP]+1);

(Ki-BKezd[aP])); {a maradék kiirésa}

I/0 file valtéas }

poziciondléds az output file elejére}
a kelekezd6 Uj futamok szdama}
Osszeféslilés az FTol futamtdl}

futamok Osszefésiilése }
atlépés a kovetkezd P futamra}

a keletkezett Gj futamok szdama}
az uj futamok hossza}

megnyitds, optimdlis P kiszdmitédsa}

befér a memdridbal
beolvaséas}
belsd rendezés}

kiiratds (visszairéas)}

{kezdeti futamok képzése}

{6sszefésiilés}
{amig egy futamot kapunk}

10

