
18. Függvények rekurzív megadása, a mester módszer

Algoritmusok futási idejének számítása gyakran vezet rekurzív egyenlethez, különösen akkor, ha az algoritmus rekurzív. Tekintsük
például ha az összefésülő rendezés alábbi algoritmusát.

OSSZEFESULO-RENDEZES(A, bal, jobb);
Begin

If bal < jobb Then Begin
kozep:=(bal+jobb) div 2;
OSSZEFESULO-RENDEZES(A, bal, kozep);
OSSZEFESULO-RENDEZES(A, kozep, jobb);
OSSZEFESUL(A, bal,kozep, jobb);

End
End; {Osszefesulo-rendezes}

18.1. Oszd-meg-és-uralkodj elvű algoritmusok elemzése

Jelölje T(n) az n-méretű bemenetre a futási időt. Tegyük fel, hogy egy oszd-meg-és-uralkodj elvű algoritmus a kimenetet köz-
vetlenül kiszámítja, ha n < c v.m. c konstansra, egyébként a bemenetet a darab részre osztja, amelyek mindegyikének mérete
n/b és ezeket a részfeladatokat rekurzívan oldja meg. Ha D(n) idő kell a részekre osztáshoz, és egy (n-méretű) bemenetre az
részproblémák megoldásaiból C(n) időben tudja összerakni a kiindulási feladat megoldását, akkor a futási időre az alábbi rekurzív
egyenlőséget kapjuk.

T(n) =
{

Θ(1) ha n≤ c ,
aT(n/b)+D(n)+C(n) egyébként .

Az összefésülő rendezés esetén a = 2 és D(n) = Θ(1), továbbá az összefésülés elvégezhető lineáris időben, így C(n) = Θ(n)
tehát

T(n) =
{

Θ(1) ha n = 1 ,
2T(n/2)+Θ(n) ha n > 1 .

(1)

Írjuk át az (1) egyenletet a következő alakra.

T(n) =
{

c ha n = 1 ,

2T(n/2)+cn ha n > 1 .
(2)

A következő ábrán látható rekurziós fa alapján azt kapjuk, hogy T(n) = Θ(nlgn)

18.2. Helyettesít ő módszer

Rekurzív egyenlet megoldásának helyettesítő módszere két lépésből áll:
1. Sejtsük meg a megoldást.
2. Teljes indukcióval határozzul meg a konstansokat és igazoljuk a megoldás helyességét.
Példaként határozzuk meg a

T(n) = 2T(bn/2c)+n (3)

egyenlet egy felső korlátját. Sejtésünk az, hogy T(n) = O(nlgn). Megmutatjuk, hogy alkalmas c > 0 konstansra T(n) ≤ cnlgn.
Tegyük fel, hogy bn/2c-re teljesül a bizonyítandó, vagyis T(bn/2c)≤ cbn/2c lg(bn/2c). Ezt behelyettesítve a rekurzív egyenletbe
kapjuk, hogy

T(n) ≤ 2(cbn/2c lg(bn/2c))+n

≤ cnlg(n/2)+n

= cnlgn−cnlg2+n

= cnlgn−cn+n

≤ cnlgn ,

ahol az utolsó lépés akkor igaz, ha c≥ 1.
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1. ábra. Az összefésülő rendezés rekurziós fája.
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18.3. A rekrziós fa módszer

A rekurziós fa olyan fa, amelynek minden pontja egy eljáráshívást jelent adott aktuális paraméterekre, úgy, hogy a pont fiai
megfelelnek azoknak az eljáráshívásoknak, amelyek végrehajtódnak az aktuális paraméterek esetén.
Szintenként összegezzük a pontok költségét, majd a szinteket összeadva kapjuk a teljes költséget.
Példaként rekurziós fa alkalmazásával oldjuk meg a T(n) = 3T(bn/4c)+Θ(n2) rekurziós egyenletet.
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2. ábra. Rekurziós fa

Mivel a részproblémák mérete egyre csökken, ahogy egyre távolabb kerülünk a gyökértől, előbb-utóbb a részprobléma mérete
olyan kicsi lesz, hogy rá nem a rekurziós képlet vonatkozik, hanem a kezdeti feltétel. Milyen messze leszünk ekkor a gyökértől?
Az i-edik szinten lévő részprobléma mérete n/4i , így a részprobléma mérete akkor lesz 1, ha n/4i = 1, azaz ha i = log4n. Tehát
a fának log4n+1 szintje van, (0,1,2, . . . , log4n).
Ezután meghatározzuk a fa minden szintjének költségét. Minden szinten háromszor annyi pont van, mint a felette lévő szin-
ten, ezért az i-edik szinten 3i pont van. A részproblémák mérete szintenként negyedére csökken, ezért minden szinten i =
0,1,2, . . . , log4n−1-re a költség c(n/4i)2. Ezeket összegezve az összes pontra azt kapjuk, hogy az i-edik szinten lévő pontok
költsége i = 0,1,2, . . . , log4n−1-re 3ic(n/4i)2 = (3/16)icn2. Az utolsó log4n-edik szinten 3log4 n = nlog4 3 pont van, mindegyik
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T(1) költségű, tehát az utolsó szint költsége nlog4 3T(1), ami Θ(nlog4 3).
A teljes fára összegezve:

T(n) = cn2 +
3
16

cn2 +
(

3
16

)2

cn2 + · · ·+
(

3
16

)log4 n−1

cn2 +Θ(nlog4 3)

=
log4 n−1

∑
i=0

(
3
16

)i

cn2 +Θ(nlog4 3)

=
(3/16)log4 n−1

(3/16)−1
cn2 +Θ(nlog4 3) .

T(n) =
log4 n−1

∑
i=0

(
3
16

)i

cn2 +Θ(nlog4 3)

<
∞

∑
i=0

(
3
16

)i

cn2 +Θ(nlog4 3)

=
1

1− (3/16)
cn2 +Θ(nlog4 3)

=
16
13

cn2 +Θ(nlog4 3)

= O(n2) .

Tehát a T(n) = O(n2) sejtést kaptuk a T(n) = 3T(bn/4c)+ Θ(n2) rekurzív egyenletre. Ha O(n2) felső korlát, akkor erős felső
korlát is egyben, mert az első rekurzív hívás költsége rögtön Θ(n2), így T(n) = Θ(n2). A T(n) = O(n2) sejtés helyességének
igazolása helyettesítő módszerrel. Meg kell mutatni, hogy T(n)≤ dn2 valamely d > 0 konstansra.

T(n) ≤ 3T(bn/4c)+cn2

≤ 3dbn/4c2 +cn2

≤ 3d(n/4)2 +cn2

=
3
16

dn2 +cn2

≤ dn2

Az utolsó egyenlőtlenség d ≥ (16/13)c esetén teljesül.

18.4. A mester módszer

A mester módszer a
T(n) = aT(n/b)+ f (n) (4)

típusú rekurzív egyenletek megoldására ad receptet, ahol a≥ 1 és b > 1 konstansok, továbbá f (n) aszimptotikusan pozitív függ-
vény.
A (4) képlet olyan rekurzív algoritmus futási idejét adja meg, amely n méretű feladatot a darab részproblémára bont, mindegyik
mérete n/b, valamely a and b pozitív konstansokra és az a darab részproblémát rekurzívan oldja meg, mindegyiket T(n/b) időben.
A részproblémákra bontás és a részproblémák megoldásaiból a kiindulási probléma megoldásának összerakásának idejét a f (n)
függvény adja meg. (Tehát a korábbi f (n) = D(n)+C(n).) például, a OSSZEFESULO-RENDEZES algoritmus esetén a = 2, b = 2,
és f (n) = Θ(n).

A mester tétel

18.1. tétel. (mester tétel.) Legyenek a≥ 1 és b > 1 konstansok, f (n) függvény, T(n) pedig a nemnegatív egészeken a

T(n) = aT(n/b)+ f (n)

rekurzív egyenlettel definiált függvény, ahol n/b jelentheti akár az bn/bc, akár a dn/be értéket. Ekkor T(n)-re a következő aszimp-
totikus korlátok adhatók.
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1. Ha f (n) = O(nlogb a−ε) valamely ε > 0 konstansra, akkor T(n) = Θ(nlogb a).

2. Ha f (n) = Θ(nlogb a), akkor T(n) = Θ(nlogb a lgn).

3. Ha f (n) = Ω(nlogb a+ε) valamely ε > 0 konstansra, és ha a f(n/b)≤ c f(n) valamely c < 1 konstansra és eléggé nagy n-re,
akkor T(n) = Θ( f (n)).

Példák a mester módszer használatára.
Első példaként tekintsük a

T(n) = 9T(n/3)+n

rekurzív egyenletet. Ebben az esetben a= 9, b= 3, f (n) = n, tehát nlogb a = nlog3 9 = Θ(n2). Mivel f (n) = O(nlog3 9−ε), ahol ε = 1,
ezért a mester tétel 1. esetét alkalmazhatjuk, és kapjuk a T(n) = Θ(n2) megoldást. Másik példaként tekintsük a

T(n) = T(2n/3)+1

egyenletet, ahol a = 1, b = 3/2, f (n) = 1. nlogb a = nlog3/2 1 = n0 = 1. A 2. esetet alkalmazhatjuk, mivel f (n) = Θ(nlogb a) = Θ(1),
tehát a megoldás T(n) = Θ(lgn).

Harmadik példánk a
T(n) = 3T(n/4)+nlgn

rekurzív egyenlet, ahol a = 3, b = 4, f (n) = nlgn, és nlogb a = nlog4 3 = O(n0.793). Mivel f (n) = Ω(nlog4 3+ε), ahol ε ≈ 0.2, a 3.
esetet alkalmazhatjuk, feltéve, hogy f (n)-re teljesül, hogy aszimptotikusan pozitív. Eléggé nagy n-re a f(n/b) = 3(n/4) lg(n/4)≤
(3/4)nlgn = c f(n) ahol c = 3/4, tehát T(n) = Θ(nlgn).
A mester tétel bizonyítása.

18.5. A mester tétel bizonyítása egész kitev ős hatványokra

18.2. lemma. Legyenek a≥ 1 és b > 1 konstansok, f (n) pedig legyen b egész kitevős hatványain értelmezett nemnegatív függ-
vény. A T(n) függvényt definiáljuk b egész kitevős hatványain a következő rekurzív egyenlettel.

T(n) =
{

Θ(1) ha n = 1 ,
aT(n/b)+ f (n) ha n = bi ,

ahol i pozitív egész. Ekkor

T(n) = Θ(nlogb a)+
logb n−1

∑
j=0

a j f (n/b j) . (5)

Bizonyítás. A következő ábrán látható rekurziós fát használjuk a bizonyítás során. A fa gyökerének költsége f (n) és a fia van,
egyenként f (n/b) költséggel. Minden fiúnak van a fia, egyenként f (n/b2) költséggel, tehát pontosan a2 pont van a gyökértől 2
távolságra. Általánosan, pontosan a j pont van a gyökértől j távolságra, mindegyik költsége f (n/b j). A levelek költsége egyenként
T(1) = Θ(1) és mindegyik levél a logbn szinten van, mivel n/blogb n = 1. A fának összesen alogb n = nlogb a levele van. Ha
összegezzük a szintek költségét, akkor az (5) egyenlethez jutunk. A j-edik szinten lévő pontok költsége a j f (n/b j), így a belső
pontok összköltsége

logb n−1

∑
j=0

a j f (n/b j)

A levelek összköltsége pedig Θ(nlogb a) nagyságrendű, mert ennyi darab részprobléma van. �

18.3. lemma. Legyenek a≥ 1 és b > 1 konstansok, f (n) pedig b egész kitevős hatványain értelmezett nemnegatív függvény. A
g(n) függvényt definiáljuk b egész kitevős hatványaira a következő rekurzív képlettel:

g(n) =
logb n−1

∑
j=0

a j f (n/b j) (6)

Erre a függvényre b egész kitevői esetén a következő aszimptotikus korlátok érvényesek.

1. Ha f (n) = O(nlogb a−ε) valamely ε > 0 konstansra, akkor g(n) = O(nlogb a).
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3. ábra. Rekurziós fa a mester tétel bizonyításához.
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2. Ha f (n) = Θ(nlogb a), akkor g(n) = Θ(nlogb a lgn).

3. Ha a f(n/b)≤ c f(n) valamely c < 1 konstansra és minden n≥ b esetén, akkor g(n) = Θ( f (n)).

Bizonyítás. Az 1. esetben f (n) = O(nlogb a−ε). Ebből következik, hogy f (n/b j) = O((n/b j)logb a−ε). Ezt a (6) egyenlőségbe
helyettesítve azt kapjuk, hogy

g(n) = O

(
logb n−1

∑
j=0

a j
( n

b j

)logb a−ε
)

. (7)

Az O jelölésen belüli összegre úgy adunk korlátot, hogy bizonyos tagokat kiemelünk, illetve egyszerűsítünk, így végül egy növekvő
mértani sorozathoz jutunk.

logb n−1

∑
j=0

a j
( n

b j

)logb a−ε
= nlogb a−ε

logb n−1

∑
j=0

(
abε

blogb a

) j

= nlogb a−ε
logb n−1

∑
j=0

(bε) j

= nlogb a−ε
(

bε logb n−1
bε−1

)
= nlogb a−ε

(
nε−1
bε−1

)
.

Mivel b és ε állandók, ezért az utóbbi kifejezés egyszerűsíthető úgy, hogy nlogb a−εO(nε) = O(nlogb a). Ezt a (7) összefüggésbe
helyettesítve kapjuk, hogy

g(n) = O(nlogb a) ,

és ezzel az 1. esetet bebizonyítottuk. A 2. esetben a f (n) = Θ(nlogb a) feltétel mellett azt kapjuk, hogy f (n/b j) = Θ((n/b j)logb a).
A (6) egyenlőségbe helyettesítve arra jutunk, hogy

g(n) = Θ

(
logb n−1

∑
j=0

a j
( n

b j

)logb a
)

. (8)

A Θ-n belüli összegekre az 1. esethez hasonlóan adunk korlátot, de ekkor nem kapunk mértani sort. Vegyük azonban észre, hogy
minden tag ugyanaz.

logb n−1

∑
j=0

a j
( n

b j

)logb a
= nlogb a

logb n−1

∑
j=0

( a

blogb a

) j

= nlogb a
logb n−1

∑
j=0

1

= nlogb a logbn .

Ezt helyettesítve (8)-ba kapjuk, hogy

g(n) = Θ(nlogb a logbn)

= Θ(nlogb a lgn) ,

és ezzel a 2. esetet is bebizonyítottuk.
A 3. esetet is hasonlóan bizonyítjuk. Mivel f (n) előfordul g(n) definíciójában és g(n) minden tagja nemnegatív, arra jutunk,

hogy g(n) = Ω( f (n)) b minden egész kitevős hatványára. Feltételezésünk szerint a f(n/b) ≤ c f(n) v.m. c < 1-re minden n≥ b
esetén, tehát f (n/b)≤ (c/a) f (n). j-szer ismételve kapjuk, hogy f (n/b j)≤ (c/a) j f (n), vagy ami ezzel ekvivalens, a j f (n/b j)≤
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c j f (n). Ezt behelyettesítve és egyszerűsítve most egy csökkenő mértani sort kapunk, mivel c konstans.

g(n) =
logb n−1

∑
j=0

a j f (n/b j)

≤
logb n−1

∑
j=0

c j f (n)

≤ f (n)
∞

∑
j=0

c j

= f (n)
(

1
1−c

)
= O( f (n))

Tehát g(n) = Θ( f (n)) b minden egész kitevős hatványaira. Ezzel a 3. esetet is beláttuk. �

Mostmár bebizonyíthatjuk a mester tételt arra az esetre, amikor n egész kitevős hatványa b-nek.

18.4. lemma. Legyenek a≥ 1 és b > 1 konstansok, f (n) pedig legyen b egész kitevős hatványain értelmezett nemnegatív függ-
vény. A T(n) függvényt definiáljuk b egész kitevős hatványaira a következő rekurzív képlettel:

T(n) =
{

Θ(1) ha n = 1 ,
aT(n/b)+ f (n) ha n = bi ,

ahol i pozitív egész. Ekkor T(n)-re b egész kitevői esetén a következő aszimptotikus korlátok adhatók.

1. Ha f (n) = O(nlogb a−ε) valamely ε > 0 konstansra, akkor T(n) = Θ(nlogb a).

2. Ha f (n) = Θ(nlogb a), akkor T(n) = Θ(nlogb a lgn).

3. Ha f (n) = Ω(nlogb a+ε) valamely ε > 0 konstansra és a f(n/b) ≤ c f(n) valamely c < 1 konstanra és elég nagy n-re, akkor
T(n) = Θ( f (n)).

Bizonyítás. A bizonyításhoz a (18.3) lemma korlátait használjuk. Az 1. esetben

T(n) = Θ(nlogb a)+O(nlogb a)

= Θ(nlogb a) ,

a 2. esetben

T(n) = Θ(nlogb a)+Θ(nlogb a lgn)

= Θ(nlogb a lgn) ,

és a 3. esetben

T(n) = Θ(nlogb a)+Θ( f (n))

= Θ( f (n)) ,

mivel f (n) = Ω(nlogb a+ε). �

18.6. Alsó és fels ő egészrészek

A mester tétel bizonyításának teljessé tételéhez elemzésünket ki kell terjeszteni azokra az esetekre is, amikor a mester egyenletben
alsó és felső egészrészek is szerepelnek, azért, hogy a rekurzív egyenletet minden egész számra definiáljuk, ne csak b egész
kitevőire. Egyeszerűen adhatunk alsó korlát a

T(n) = aT(dn/be)+ f (n) (9)

egyenletre, és felső korlátot a
T(n) = aT(bn/bc)+ f (n) (10)
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egyenletre, mivel az 1. esetben a dn/be≥ n/b egyenlőtlenséget, a 2. esetben pedig a bn/bc≤ n/b egyenlőtlenséget használhatjuk
ki. A két eset hasonlóan bizonyítható, ezért csak az utóbbit fogjuk megmutatni.

Módosítsuk a korábbi rekurzíós fát úgy, hogy az argumentumok felső egészrészei szerepeljenek benne. Ahogy lefelé haladunk
a rekurziós fában, a következő sorozat szerinti argumentumokra történik hívás.

n ,

dn/be ,

ddn/be/be ,

dddn/be/be/be ,

...
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aaa

a

aaa

a

aaa

a

a

f(n1)f(n1)f(n1)

f(n2)f(n2)f(n2)f(n2)f(n2)f(n2)f(n2)f(n2)f(n2)

af(n1)

a2f(n2)

blogb nc

Θ(nlogb a)

Θ(1)Θ(1)Θ(1)Θ(1)Θ(1)Θ(1)Θ(1)Θ(1)Θ(1)Θ(1)Θ(1)Θ(1)Θ(1) Θ(nlogb a)

��������������	�

Θ(nlogb a) +

blogb nc−1∑

j=0

ajf(nj)

4. ábra. Módosított rekurziós fa a mester tétel bizonyításához.
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Jelölje n j a sorozat j-edik elemét, ahol

n j =
{

n ha j = 0 ,⌈
n j−1/b

⌉
ha j > 0 .

(11)

Először határozzuk meg azt a k mélységet, amelyre már nk konstans. A dxe ≤ x+1 egyenlőtlenséget fehasználva azt kapjuk, hogy

n0 ≤ n ,

n1 ≤ n
b

+1 ,

n2 ≤ n
b2 +

1
b

+1 ,

n3 ≤ n
b3 +

1
b2 +

1
b

+1 ,

...

Általánosan,

n j ≤ n
b j +

j−1

∑
i=0

1
bi

<
n
b j +

∞

∑
i=0

1
bi

=
n
b j +

b
b−1

.

és így j = blogbnc esetén

nblogb nc <
n

bblogb nc +
b

b−1

≤ n

blogb n−1 +
b

b−1

=
n

n/b
+

b
b−1

= b+
b

b−1
= O(1) ,

tehát a blogbnc mélységben a részproblémák mérete konstans.
Az ábra alapján azt kapjuk, hogy

T(n) = Θ(nlogb a)+
blogb nc−1

∑
j=0

a j f (n j) , (12)

ami nagyon hasonló a mester egyenlethez, kivéve, hogy n tetszőleges egész és nem csak b egész kitevős hatványa.
Most már kiszámíthatjuk az összeket, ami

g(n) =
blogb nc−1

∑
j=0

a j f (n j) (13)

A 3. esettel kezdve, legyen a f(dn/be) ≤ c f(n) ha n > b+ b/(b−1), ahol c < 1 konstans, tehát a j f (n j) ≤ c j f (n). Így a (13)
egyenletben lévő összeg ugyanúgy számítható ki, mint a 18.3. lemmában. A 2. esetben f (n) = Θ(nlogb a) teljesül. Ha meg tudjuk
mutatni, hogy f (n j) = O(nlogb a/a j) = O((n/b j)logb a), akkor a 18.3 lemma 2. esetre vonatkozó bizonyítása alkalmazható. Vegyük
észre, hogy j ≤ blogbnc miatt b j/n≤ 1. Az f (n) = O(nlogb a) korlát maga után vonja olyan c > 0 konstans létezését, hogy elég
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nagy n j -re

f (n j) ≤ c

(
n
b j +

b
b−1

)logb a

= c

(
n
b j

(
1+

b j

n
· b
b−1

))logb a

= c

(
nlogb a

a j

)(
1+
(

b j

n
· b
b−1

))logb a

≤ c

(
nlogb a

a j

)(
1+

b
b−1

)logb a

= O

(
nlogb a

a j

)
,

mivel c(1+b/(b−1))logb a konstans. Ezzel a 2. esetet bebizonyítottuk. Az 1. eset bizonyítása ezzel szinte azonos. A bizonyítás
kulcsa az, hogy egy bonyolultabb számítást igénylő, de a 2. eset megfelelő bizonyításához hasonló módon igazoljuk a f (n j) =
O(nlogb a−ε) korlátot.

Ezzel a mester tételben szereplő felső korlátokat minden egész n-re igazoltuk. Az alsó korlátok hasonlóan bizonyíthatók.

12


