18. Fuggvenyek rekurziv megadasa, a mester modszer

Algoritmusok futasi idejének szamitasa gyakran vezet rekurziv egyenlethez, kiilondsen akkor, ha az algoritmus rekurziv. Tekintsiik
példaul ha az 6sszefésiilé rendezés alabbi algoritmusat.

OSSZEFESULO-RENDEZES(A, bal, jobb);
Begin
If bal < jobb Then Begin
kozep:=(bal+jobb) div 2;
OSSZEFESULO-RENDEZES(A, bal, kozep);
OSSZEFESULO-RENDEZES(A, kozep, jobb);
OsszEFESUL(A, bal,kozep, jobb);
End
End; {Osszefesulo-rendezes}

18.1. Oszd-meg-és-uralkodj elv( algoritmusok elemzése

Jelolie T(n) az n-méret(i bemenetre a futasi idét. Tegyik fel, hogy egy oszd-meg-és-uralkodj elv(i algoritmus a kimenetet koz-
vetlenll kiszamitja, ha n < ¢ v.m. C konstansra, egyébként a bemenetet a darab részre osztja, amelyek mindegyikének mérete
n/b és ezeket a részfeladatokat rekurzivan oldja meg. Ha D(n) id6 kell a részekre osztashoz, és egy (n-méretli) bemenetre az
részproblémak megoldasaibél C(n) idében tudja dsszerakni a kiindulasi feladat megoldasat, akkor a futasi idére az alabbi rekurziv
egyenléséget kapjuk.

T(n) = 0(1) han<c,
~ | aT(n/b)+D(n)+C(n) egyébként .
Az Osszeféslls rendezés esetén a = 2 és D(n) = O(1), tovabba az dsszefésiilés elvégezhetd linearis idGben, igy C(n) = ©(n)

tehat

[ e han=1,
T(n)_{ 2T(n/2)+0O(n) han>1. @

irjuk &t az (1) egyenletet a kévetkez6 alakra.

c han=1,
T(m = { 2T(n/2)+cn han>1. @

A kovetkezd abran lathatd rekurzids fa alapjan azt kapjuk, hogy T (n) = ©(nlgn)

18.2. Helyettesit 6 médszer

Rekurziv egyenlet megoldasanak helyettesité mdédszere két [épésbdl all:
1. Sejtsik meg a megoldast.
2. Teljes indukciéval hatarozzul meg a konstansokat és igazoljuk a megoldas helyességét.
Példaként hatarozzuk meg a
T(n)=2T(|n/2])+n 3)

egyenlet egy fels6 korlatjat. Sejtéstink az, hogy T (n) = O(nlgn). Megmutatjuk, hogy alkalmas ¢ > O konstansra T (n) < cnign.
Tegytk fel, hogy |n/2]-re teljestl a bizonyitando, vagyis T (|n/2]) < c|n/2]1g(|n/2]). Ezt behelyettesitve a rekurziv egyenletbe
kapjuk, hogy

T(n) < 2(c[n/2]lg([n/2]))+n
< cnlg(n/2)+n
= cnlgn—cnlg2+n
= cnlgn—cn+n
< cnlgn,

ahol az utolso6 lépés akkor igaz, hac > 1.
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1. abra. Az 6sszefésul6 rendezés rekurzids faja.



18.3. A rekrzios fa médszer

A rekurziés fa olyan fa, amelynek minden pontja egy eljarashivast jelent adott aktudlis paraméterekre, Ugy, hogy a pont fiai
megfelelnek azoknak az eljarashivasoknak, amelyek végrehajtédnak az aktudlis paraméterek esetén.

Szintenként 6sszegezzilk a pontok kéltségét, majd a szinteket 6sszeadva kapjuk a teljes koltséget.

Példaként rekurzios fa alkalmazasaval oldjuk meg a T(n) = 3T (|n/4|) + ©(n?) rekurziés egyenletet.

T(n) cn
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nlogad

@ Osszesen: O(n?)

2. dbra. Rekurziés fa

Mivel a részproblémak mérete egyre csokken, ahogy egyre tavolabb kerilink a gyokértél, el6bb-utébb a részprobléma mérete
olyan kicsi lesz, hogy r4 nem a rekurziés képlet vonatkozik, hanem a kezdeti feltétel. Milyen messze lesziink ekkor a gyokértél?
Az i-edik szinten Iév6 részprobléma mérete n/4i, igy a részprobléma mérete akkor lesz 1, ha n/4i =1, azaz hai =log,n. Tehat
a fanak log,n+ 1 szintje van, (0,1,2,...,log, n).

Ezutan meghatarozzuk a fa minden szintjének koltségét. Minden szinten haromszor annyi pont van, mint a felette 1évé szin-
ten, ezért az i-edik szinten 3 pont van. A részproblémak mérete szintenként negyedére csokken, ezért minden szinten i =
0,1,2,...,loggn—1-re a koltség C(n/4i)2. Ezeket 0sszegezve az Gsszes pontra azt kapjuk, hogy az i-edik szinten 1évé pontok
koltsége i = 0,1,2,...,log,n— 1-re 3'c(n/4)2 = (3/16)'cr?. Az utols6 log, n-edik szinten 3°%4" = n/°%3 pont van, mindegyik



T(1) koltségdi, tehat az utolsé szint koltsége n'°9%3T (1), ami ©(n/°%3),
A teljes fara 6sszegezve:

3 3 2 3 loggn—1 a3
T(n) = cn2+160n2+(16) cn2+---+(16) cr? + O(n'°%3)

logyn—1 3 i n2 l003
izo (16) cnt+0O(n°9%7)

e oo

T(n) log_’gl (f’G)icn2+e(n'°943)

= T o)

_ 176 log, 3
= 13cr12+6(n )
= on?).

Tehat a T(n) = O(n?) sejtést kaptuk a T(n) = 3T(|n/4]) 4+ O(n?) rekurziv egyenletre. Ha O(n?) fels korlat, akkor ergs fels6
korlat is egyben, mert az els6 rekurziv hivas kéltsége rogton ©(n?), igy T(n) = ©(n?). A T(n) = O(n?) sejtés helyességének
igazolasa helyettesité mddszerrel. Meg kell mutatni, hogy T (n) < dr? valamely d > O konstansra.

T(n) < 3T(|n/4])+cr?
< 3d|n/4)?+cr?
< 3d(n/4)?+cr?
3

< dr?
Az utolsé egyenl6tlienség d > (16/13)c esetén teljestil.
18.4. A mester médszer
A mester modszer a

T(n) =aT(n/b) + f(n) @)

tipus rekurziv egyenletek megoldasara ad receptet, ahol a > 1 és b > 1 konstansok, tovabba f (n) aszimptotikusan pozitiv fligg-
vény.

A (4) képlet olyan rekurziv algoritmus futasi idejét adja meg, amely n méret(i feladatot a darab részproblémara bont, mindegyik
mérete n/b, valamely a and b pozitiv konstansokra és az a darab részproblémat rekurzivan oldja meg, mindegyiket T (n/b) id6ben.
A részprobléméakra bontas és a részproblémak megoldasaibol a kiindulasi probléma megoldasanak dsszerakasanak idejét a f(n)
fuggvény adja meg. (Tehat a korabbi f(n) = D(n) +C(n).) példaul, a OSSZEFESULO-RENDEZES algoritmus esetén a= 2, b= 2,
és f(n) =0O(n).

A mester tétel

18.1. tétel. (mester tétel.) Legyenek a > 1 és b > 1 konstansok, f(n) fiiggvény, T (n) pedig a nemnegativ egészeken a
T(n)=aT(n/b)+ f(n)

rekurziv egyenlettel definialt fiiggvény, ahol n/b jelentheti akar az |[n/b|, akar a [n/b] értéket. Ekkor T (n)-re a kovetkez& aszimp-
totikus korlatok adhatok.



1. Ha f(n) = O(nl°%23 ) valamely & > O konstansra, akkor T (n) = @(n'°%2),
2. Ha f(n) = ©(n'°%2), akkor T (n) = O(n'°%2|gn).

3. Ha f(n) = Q(n'°%3*¢) valamely £ > 0 konstansra, és ha af(n/b) < cf(n) valamely ¢ < 1 konstansra és eléggé nagy n-re,
akkor T(n) = ©(f(n)).

Példak a mester modszer hasznalatara.
Elsd példaként tekintsik a
T(N)=9T(n/3)+n

rekurziv egyenletet. Ebben az esetben a=9, b=3, f(n) = n, tehat n'°%2 = n°%° — O(n?). Mivel f(n) = O(nl°%%¢), ahole =1,
ezért a mester tétel 1. esetét alkalmazhatjuk, és kapjuk a T (n) = ©(n?) megoldast. Masik példaként tekintsiik a

T(n)=T(2n/3)+1

egyenletet, ahol a= 1, b=3/2, f(n) = 1. n'°%2 = n'°%/21 — n0 — 1. A 2. esetet alkalmazhatjuk, mivel f(n) = @(nl°%2) = O(1),
tehat a megoldas T(n) = O(Ign).

Harmadik példank a
T(n)=3T(n/4)+nlgn
rekurziv egyenlet, ahol a =3, b = 4, f(n) = nign, és n'°%2 = nl°%3 — O(n°793), Mmivel f(n) = Q(n'°%3+¢), ahol € ~ 0.2, a 3.
esetet alkalmazhatjuk, feltéve, hogy f(n)-re teljesul, hogy aszimptotikusan pozitiv. Eléggé nagy n-re af(n/b) =3(n/4)lg(n/4) <
(3/4)nlgn = cf(n) ahol c = 3/4, tehat T(n) = ©(nlgn).
A mester tétel bizonyitasa.

18.5. A mester tétel bizonyitasa egész kitev  8s hatvanyokra

18.2. lemma. Legyenek a > 1és b > 1 konstansok, f(n) pedig legyen b egész kitevGs hatvanyain értelmezett nemnegativ fugg-
vény. A T(n) fuggvényt definidljuk b egész kitevés hatvanyain a kovetkezd rekurziv egyenlettel.

] e han=1,
“m—{anmm+um han—b

ahol i pozitiv egész. Ekkor
log, n—1

T(n) = O(N°%?) 4+ alf(n/bl). (5)
2,

Bizonyitas. A kovetkezd abran lathato rekurzids fat hasznaljuk a bizonyitas soran. A fa gyokerének koltsége f(n) és a fia van,
egyenként f(n/b) koltséggel. Minden filinak van a fia, egyenként f(n/b?) koltséggel, tehat pontosan @ pont van a gyokérts| 2
tavolsagra. Altalanosan, pontosan al pont van a gyokértél j tavolsagra, mindegyik koltsége f(n/bj). A levelek koltsége egyenként
T(1) = ©(1) és mindegyik levél a log,n szinten van, mivel n/b°%" = 1. A fanak 6sszesen a°%" = nl°%2 levele van. Ha
Osszegezziik a szintek koltségét, akkor az (5) egyenlethez jutunk. A j-edik szinten 1év6 pontok koltsége al f(n/bj), igy a belsd

pontok 6sszkoltsége
logyn—1

Z}éﬂmw
j=
A levelek dsszkoltsége pedig @(n'°%?) nagysagrend(i, mert ennyi darab részprobléma van. [ |
18.3. lemma. Legyenek a > 1 és b > 1 konstansok, f(n) pedig b egész kitevs hatvanyain értelmezett nemnegativ fiiggvény. A
g(n) fuggvényt definidljuk b egész kitevds hatvanyaira a kovetkez rekurziv képlettel:
logyn-1 )
g(n) = Z) alf(n/b') ®)
j=

Erre a fuggvényre b egész kitevi esetén a kdvetkezd aszimptotikus korlatok érvényesek.

1. Ha f(n) = O(n'°%2-¢) valamely & > 0 konstansra, akkor g(n) = O(n/°%?),
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nlogba

Osszesen: O(n'°5?) + Z a f(n/b?)

3. &bra. Rekurzios fa a mester tétel bizonyitasahoz.



2. Ha f(n) = ©(n'°%2), akkor g(n) = O(nl°%2|gn).
3. Haaf(n/b) < cf(n) valamely ¢ < 1 konstansra és minden n > b esetén, akkor g(n) = ©(f(n)).

Bizonyitas. Az 1. esetben f(n) = O(n'°%2¢), Ebbdl kévetkezik, hogy f(n/bl) = O((n/bl)'°%a-¢) Ezt a (6) egyenldségbe

helyettesitve azt kapjuk, hogy
logyn-1 N logya—¢
a(n) _O< ZO a (a) i . 7
j=

Az O jeldlésen bellli 6sszegre gy adunk korlatot, hogy bizonyos tagokat kiemellnk, illetve egyszer(sitiink, igy végil egy névekvd
meértani sorozathoz jutunk.

logon-1 N\ logya—e | logyn—1 abf j
N (i) _ oma-e ar
= b! = pb'ogpa

logyn—1

logp a—¢ € J
n (b%)
2

nlogba—s bFlogn — 1
bt -1

nlogba—s nf-1 )
bt -1
Mivel b és € allandok, ezért az utébbi kifejezés egyszertisithetd gy, hogy n'°%3-¢0(nf) = O(nl°%a). Ezt a (7) 6sszefiiggésbe

helyettesitve kapjuk, hogy
g(n) = O(n°%?),

és ezzel az 1. esetet bebizonyitottuk. A 2. esetben a f(n) = O(n'°%?) feltétel mellett azt kapjuk, hogy f(n/bl) = ©((n/bi)"°%a),
A (6) egyenl6ségbe helyettesitve arra jutunk, hogy

logyn—1

g(n)=@< J; al (g‘j)"’g"a) . ®

A ©O-n bellli 6sszegekre az 1. esethez hasonléan adunk korlatot, de ekkor nem kapunk mértani sort. Vegytik azonban észre, hogy
minden tag ugyanaz.

logyn—-1 log,n—-1 ;
()™ = S )
];) bi I;) plogpa
logyn—-1
_ r]Iogba % 1
]:
= nl%%3jog,n.
Ezt helyettesitve (8)-ba kapjuk, hogy
g(n) = O(n%2log,n)

O(n°%2|gn)

és ezzel a 2. esetet is bebizonyitottuk.

A 3. esetet is hasonléan bizonyitjuk. Mivel f(n) el6fordul g(n) definicidjaban és g(n) minden tagja nemnegativ, arra jutunk,
hogy g(n) = Q(f(n)) b minden egész kitevGs hatvanyara. Feltételezésiink szerint af(n/b) < cf(n) vm. ¢ < 1-re mindenn>b
esetén, tehat f(n/b) < (c/a)f(n). j-szer ismételve kapjuk, hogy f(n/bl) < (c/a)l f(n), vagy ami ezzel ekvivalens, al f (n/bl) <



c) f(n). Ezt behelyettesitve és egyszeriisitve most egy csokkend mértani sort kapunk, mivel ¢ konstans.

logpn—1
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&
log,n—1

< J; c'f(n)
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=
f(n) (j;)

= O(f(m)

g(n)

IN

Tehat g(n) = ©(f(n)) b minden egész kitevGs hatvanyaira. Ezzel a 3. esetet is belattuk. |
Mostmar bebizonyithatjuk a mester tételt arra az esetre, amikor n egész kitevGs hatvanya b-nek.

18.4.lemma. Legyenek a > 1 és b > 1 konstansok, f(n) pedig legyen b egész kitevGs hatvanyain értelmezett nemnegativ fiigg-
vény. A T(n) fuggvényt definialjuk b egész kitevés hatvanyaira a kovetkezd rekurziv képlettel:

] e han=1,
T(”)—{ aT(n/b)+f(n) han="b

ahol i pozitiv egész. Ekkor T (n)-re b egész kitevGi esetén a kovetkezd aszimptotikus korlatok adhatok.

1. Ha f(n) = O(n'°%2-¢) valamely & > 0 konstansra, akkor T (n) = O(n'°%?2),

2. Ha f(n) = ©(n'°%2), akkor T (n) = O(n'°%2|gn).

3. Ha f(n) = Q(nl°%2*¢) valamely € > 0 konstansra és af(n/b) < cf(n) valamely ¢ < 1 konstanra és elég nagy n-re, akkor
T(n) =0O(f(n)).

Bizonyitas. A bizonyitashoz a (18.3) lemma korlatait hasznaljuk. Az 1. esetben

T(n) = ©(n'°%2)+0(n°%?)
O(n%?)
a 2. esetben
T(n) = O(n°%?)+0e(n'%2gn)

O(n*%®2ign) ,
és a 3. esetben
T(n) = ©n°%)+oe(f(n)
= O(f(n),

mivel f (n) = Q(nfo%ba+e). n

18.6. Alsé és fels 6 egészrészek

A mester tétel bizonyitasanak teljessé tételéhez elemzésiinket ki kell terjeszteni azokra az esetekre is, amikor a mester egyenletben
alsé és fels6 egészrészek is szerepelnek, azért, hogy a rekurziv egyenletet minden egész szamra definialjuk, ne csak b egész
kitevGire. Egyeszerlien adhatunk alsé korlat a

T(n)=aT([n/b])+ f(n) ©)

egyenletre, és felsé korlatot a
T(n)=aT(|n/b])+ f(n) (10)



egyenletre, mivel az 1. esetben a [n/b] > n/b egyenl6tienséget, a 2. esetben pedig a |n/b] < n/b egyenlétienséget hasznalhatjuk
ki. A két eset hasonl6an bizonyithatd, ezért csak az utdbbit fogjuk megmutatni.

Mddositsuk a korabbi rekurzios fat gy, hogy az argumentumok fels6 egészrészei szerepeljenek benne. Ahogy lefelé haladunk
a rekurziés faban, a kdvetkez6 sorozat szerinti argumentumokra térténik hivas.

n7

[n/b],

[[n/b] /b,
[T[n/b]/b]/b]



f(n) f(n)
Flny) Flm) ... Fny) o we af(n)
f(nz)  f(n2) - f(n2)  f(na) flng) = f(na) f(na)  f(ng) = f(ng) =i ? f(ng)

O(n'oz) llogy n)—1
ogp, ] —
Osszesen: O(n'# ) + Z o f(n)
Jj=0

4. dbra. Modositott rekurzids fa a mester tétel bizonyitasahoz.
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Jeldlje nj a sorozat j-edik elemét, ahol

o haj=0,
m——{ (nj1/b] haj>0. (1)

El6szor hatarozzuk meg azt a k mélységet, amelyre mar n konstans. A [X] < X+ 1 egyenl6tlenséget fehasznalva azt kapjuk, hogy

No

IN

N1

IN

nz

IN

n3

AN
+
+
+
H

Altalanosan,

ésigy j = [logyn| esetén

n b
Mlogon) < liogyn] T p—1
n b
Bo%n 1 b1
_n b
= nhb b-1
b
= b
= 0(1),

tehat a |[log,n| mélységben a részproblémak mérete konstans.
Az &bra alapjan azt kapjuk, hogy
[logynj—1
T(n) = O(n'°%?) + % af(ny), (12)
j=

ami nagyon hasonlé a mester egyenlethez, kivéve, hogy n tetszéleges egész és nem csak b egész kitevds hatvanya.
Most mar kiszamithatjuk az 6sszeket, ami
[logpn] -1

g(n) = al f(n)) (13)
2, 2o

A 3. esettel kezdve, legyen af([n/b]) < cf(n) han>b+b/(b— 1), ahol ¢ < 1 konstans, tehat al f (n;) < ¢! f(n). igy a (13)
egyenletben 1év6 6sszeg ugyantigy szamithatd ki, mint a 18.3. lemmaban. A 2. esetben f(n) = O(n'°%?) teljesiil. Ha meg tudjuk
mutatni, hogy f(nj) = O(n'°%?3/al) = O((n/b})"°®?), akkor a 18.3 lemma 2. esetre vonatkozé bizonyitasa alkalmazhaté. Vegyiik
észre, hogy j < |log,n| miatt bi/n < 1. Az f(n) = O(n'°%?) korlat maga utan vonja olyan ¢ > O konstans létezését, hogy elég
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nagy nj-re

IN

logpa
o<” . )
al

mivel ¢(1+4b/(b— 1))'°%2 konstans. Ezzel a 2. esetet bebizonyitottuk. Az 1. eset bizonyitasa ezzel szinte azonos. A bizonyitas
kulcsa az, hogy egy bonyolultabb szamitést igényl6, de a 2. eset megfelel bizonyitdsahoz hasonlé médon igazoljuk a f(n;) =

O(n'°%2-#) korlatot.

Ezzel a mester tételben szerepl felsd korlatokat minden egész n-re igazoltuk. Az alsé korlatok hasonléan bizonyithatok.
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