
Mohó algoritmusok

Optimalizálási probléma megoldására szolgáló algoritmus gyakran olyan lépések sorozatából áll, ahol minden lépésben adott
halmazból választhatunk. Sok optimalizálási probléma esetén a dinamikus programozási megoldás túl sok esetet vizsgál annak
érdekében, hogy az optimális választást meghatározza. Ennél egyszerűbb, hatékonyabb algoritmus is létezik. A mohó algoritmus
mindig az adott lépésben optimálisnak látszó választást teszi. Vagyis, a lokális optimumot választja abban a reményben, hogy ez
globális optimumhoz fog majd vezetni. Olyan optimalizálási problémákkal foglalkozunk, amelyek megoldhatók mohó algoritmussal.

Mohó algoritmus nem mindig ad optimális megoldást, azonban sok probléma megoldható mohó algoritmussal. Először egy
olyan egyszerű, de nem triviális problémát vizsgálunk, az esemény-kiválasztás problémáját, amelyre a mohó algoritmus hatékony
megoldást ad. A mohó algoritmushoz úgy jutunk, hogy először dinamikus programozási megoldást adunk, aztán megmutatjuk,
hogy a mohó választás mindig optimális megoldást eredményez. Ezután áttekintjük a mohó stratégia elemeit, ami mohó algorit-
musok helyességének közvetlenebb bizonyítását teszi lehetővé.

Egy esemény-kiválasztási probléma

Az első probléma, amit vizsgálunk közös erőforrást igénylő, egymással versengő események ütemezése, azzal a céllal, hogy
kiválasszunk egy maximális elemszámú, kölcsönösen kompatibilis eseményekből álló eseményhalmazt. Tegyük fel, hogy adott
események egy S= {a1,a2, . . . ,an} n elemű halmaza, amelyek egy közös erőforrást, például egy előadótermet kívánnak hasz-
nálni, amit egy időben csak egyik használhat. Minden ai eseményhez adott az si kezdő id őpont és az fi befejez ő id őpont ,
ahol si ≤ fi . Ha az ai eseményt kiválasztjuk, akkor ez az esemény az [si , fi) félig nyitott időintervallumot foglalja le. Az ai és a j

események kompatibilisek , ha az [si , fi) és [sj , f j) intervallumok nem fedik egymást (azaz ai és a j kompatibilisek, ha si ≥ f j

vagy sj ≥ fi ). Az esemény-kiválasztási probléma azt jelenti, hogy kiválasztandó kölcsönösen kompatibilis eseményeknek egy
legnagyobb elemszámú halmaza. Például tekintsük azt az Seseményhalmazt, amelynek elemeit a befejezési idejük szerint nem-
csökkenő sorrendbe rendeztünk.

i 1 2 3 4 5 6 7 8 9 10 11
si 1 3 0 5 3 5 6 8 8 2 12
fi 4 5 6 7 8 9 10 11 12 13 14

(Hamarosan látni fogjuk, hogy miért célszerű így rendezni az eseményeket.) Az {a3,a9,a11} részhalmaz kölcsönösen kompatibilis
eseményeket tartalmaz. Azonban nem maximális, mert az {a1,a4,a8,a11} részhalmaz nagyobb elemszámú. A {a1,a4,a8,a11}
részhalmaz ténylegesen a legbővebb kölcsönösen kompatibilis események halmaza, és egy másik ilyen legnagyobb elemszámú
részhalmaz az {a2,a4,a9,a11} halmaz.

Ezt a feladatot több lépésben oldjuk meg. Dinamikus programozási megoldással kezdünk, amelyben két részprobléma optimá-
lis megoldását kombináljuk, hogy az eredeti probléma optimális megoldását kapjuk. Sok választási lehetőséget tekintünk, amikor
meghatározzuk, hogy mely részproblémákból épül fel az optimális megoldás. Aztán megállapítjuk, hogy csak egy választást kell
nézni – a mohó választást – és amikor a mohó választást tesszük, akkor az egyik részprobléma üres, tehát csak egy nemüres
részprobléma marad. Erre az észrevételre alapozva egy rekurzív mohó algoritmust fejlesztjük ki az esemény-kiválasztási feladat
megoldására. Azzal tesszük teljessé a mohó algoritmus kifejlesztését, hogy a rekurzív algoritmust átalakítjuk iteratív algoritmussá.
Lépéseknek a sorozata, amelyeken keresztülmegyünk ebben az alfejezetben egy kicsit bonyolultabb annál, mint amit általában
alkalmazunk mohó algoritmusok kifejlesztésénél, de jól szemlélteti a dinamikus programozás és a mohó algoritmus viszonyát.

Az esemény-kiválasztási probléma optimális részproblémák szerkezete

Mint már mondtuk, esemény-kiválasztási feladat dinamikus programozási megoldásával indulunk. Mint a dinamikus programpzás
esetén, az első lépésünk az, hogy megtaláljuk az optimális szerkezetet, és felépítsük a feladat optimális megoldást a részproblémák
optimális megoldásaiból.

A dinamikus programozásnál már láttuk, hogy részproblémák alkalmas terét kell definiálnunk. Kezdjük azzal, hogy definiáljuk
a következő halmazokat.

Si, j = {ak ∈ S: fi ≤ sk < fk ≤ sj},

tehát Si, j azokat az S-beli eseményeket tartalmazza, amelyek ai befejeződése után kezdődhetnek, és befejeződnek a j kezdete
előtt. Valójában Si, j azokat az eseményeket tartalmazza, amelyek kompatibilisek mind ai -vel, mind a j -vel, és szintén kompatibilisek
az összes olyan eseménnyel, amely nem később fejeződik be, mint amikor ai befejeződik, és azokkal, amelyek a j kezdeténél nem
korábban kezdődnek. A teljes probléma kezeléséhez egészítsük ki az eseményhalmazt az a0 és an+1 eseményekkel, ahol f0 = 0,
sn+1 = ∞. Ekkor S= S0n+1, és a részproblémák indexeinek tartománya: 0≤ i, j ≤ n+1.
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Még tovább szűkíthetjük i és j tartományát a következőképpen. Tegyük fel, hogy az események a befejezésük szerint monoton
nem-csökkenő sorrendbe rendezettek.

f0≤ f1≤ f2≤ ·· · ≤ fn < fn+1. (1)

Azt állítjuk, hogy Si, j = /0, valahányszor j ≤ i. Miért? Tegyük fel, hogy van olyan ak ∈ Si, j esemény, hogy i > j , azaz ai

hátrább van a sorrendben, mint a j . Ekkor azt kapnánk, hogy fi ≤ sk < fk ≤ sj < f j . Tehát fi < f j lenne, ami ellentmond azon
feltevésünknek, hogy ai hátrább van a sorrendben, mint a j . Azt kaptuk, hogy feltételezve, hogy az események a befejezésük
szerint monoton nem-csökkenő sorrendbe rendezettek, az Si, j , 0≤ i < j ≤ n+1 részproblémák közül kell maximális elemszámú,
kölcsönösen kompatibilis eseményhalmazt kiválasztani, tudva, hogy minden más Si, j halmaz üres.

Az esemény-kiválasztási probléma részprobléma szerkezetének meghatározásához tekintsünk egy nem üres Si, j részproblé-
mát, 1 és tegyük fel, hogy valamely ak eleme a megoldásnak, azaz fi ≤ sk < fk≤ sj . Az ak eseményt használva két részproblémát
kaphatunk, Si,k-t (amely azon események halmaza, amelyek ai befejezése után kezdődnek, és befejeződnek ak kezdete előtt) és
Sk, j -t (amely azon események halmaza, amelyek ak befejezése után kezdődnek, és befejeződnek a j kezdete előtt). Nyilvánvaló,
hogy Si,k és Sk, j részhalmaza az Si, j eseményhalmaznak. Si, j megoldását megkapjuk, ha az Si,k és Sk, j megoldásának egyesíté-
séhez hozzávesszük az ak eseményt. Tehát az Si, j megoldásának elemszámát kapjuk, ha az Si,k megoldásának elemszámához
hozzáadjuk Sk, j megoldásának elemszámát és még egyet (ak miatt).

Az optimális részproblémák szerkezet a következő lesz. Tegyük fel, hogy Ai, j egy optimális megoldása az Si, j részproblémának
és ak ∈ Ai, j . Ekkor az Ai,k megoldás optimális megoldása kell legyen az Si,k részproblémának, és az Ak, j megoldás optimális
megoldása kell legyen az Sk, j részproblémának. A szokásos kivágás-beillesztés módszer alkalmazható a bizonyításhoz. Ha lenne
olyan A′i,k megoldása Si,k-nak, amely több eseményt tartalmazna, mint Ai,k, akkor Ai, j -ben Ai,k helyett A′i,k-t véve Si, j -nek egy
olyan megoldását kapnánk, amely több eseményt tartalmazna, mint Ai, j . Mivel feltettük, hogy Ai, j optimális, ezért ellentmondásra
jutottunk. Hasonlóan, ha lenne olyan A′k, j megoldása Sk, j -nek, amely több eseményt tartalmazna, mint Ak, j , akkor Ai, j -ben Ak, j

helyett A′k, j -t véve Si, j -nek egy olyan megoldását kapnánk, amely több eseményt tartalmazna, mint Ai, j .
Most az optimális részproblémák szerkezet felhasználásával megmutatjuk, hogy az eredeti probléma optimális megoldása fe-

lépíthető a részproblémák optimális megoldásaiból. Láttuk, hogy egy nem üres Si, j részprobléma minden megoldása tartalmaz
valamely ak eseményt, és minden optimális megoldás tartalmazza az Si,k és Sk, j részproblémák optimális megoldását. Tehát felé-
píthetünk egy maximális elemszámú, kölcsönösen kompatibilis eseményeket tartalmazó megoldását az Si, j részproblémának úgy,
hogy két részproblémára bontjuk (a Si,k és Sk, j részproblémák maximális elemszámú megoldás megkeresésével), a megkeressük
két részprobléma maximális elemszámú, kölcsönösen kompatibilis események tartalmazó Ai,k és Ak, j megoldását, aztán az alábbi
formában megalkotjuk a kölcsönösen kompatibilis eseményekből álló Ai, j maximális elemszámú megoldást.

Ai, j = Ai,k∪{ak}∪Ak, j . (2)

Az eredeti probléma optimális megoldását S0,n+1 megoldása adja.

Rekurzív megoldás

A dinamikus programozási megoldás kifejlesztésének második lépéseként rekurzív módon definiáljuk az optimális megoldás érté-
két. Az esemény-kiválasztási probléma esetén legyen c[i, j] az Si, j részprobléma maximális elemszámú, kölcsönösen kompatibilis
eseményeket tartalmazó részhalmaz elemszáma. Az tudjuk, hogy c[i, j] = 0, ha Si, j = /0, és c[i, j] = 0, ha i > j .

Tekintsünk egy Si, j nem üres részhalmazt. Amint láttuk, ha ak benne van az Si, j egy maximális elemszámú, kölcsönösen kom-
patibilis eseményeket tartalmazó részhalmazában, akkor az Si,k és Sk, j részproblémák egy maximális elemszámú, kölcsönösen
kompatibilis eseményeket tartalmazó részhalmazait használhatjuk. A 2. egyenlőséget felhasználva kapjuk a következő rekurzív
összefüggést.

c[i, j] = c[i,k]+c[k, j]+1.

Ez a rekurzív egyenlet feltételezi, hogy ismerjük a k értéket, de ez nem így van. Összesen j − i−1 lehetséges értéket vehet fel
k, nevezetesen k = i + 1, . . . , j −1. Mivel Si, j a maximális elemszámú részhalmaza valamelyik k-ra előáll, ezért ellenőrizzük az
összes lehetséges értékre, hogy a legjobbat kiválasszuk. Tehát c[i, j] teljes rekurzív alakja a következő lesz.

c[i, j] =


0 haSi, j = /0
max
i<k< j
ak∈Si, j

{c[i,k]+c[k, j]+1} haSi, j 6= /0 . (3)

1Az Si, j halmazra néha azt mondjuk, hogy részprobléma és nem események halmaza. A szövegkörnyezetből mindig világos lesz, hogy ha Si, j -re hivatkozunk,
akkor mint események halmazát értjük, avagy egy részproblémát, amelynek a bemenete ez a halmaz.
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A dinamikus programozási megoldás átalakítása mohó megoldássá

Ezen a ponton egyszerű gyakorlati feladat lehetne táblázatkitöltős, dinamikus programozási algoritmus megírása a 3. rekurziós
képlet alapján. Valóban, a

7.1. tétel. Tekintsünk egy Si, j nem üres részproblémát, és legyen am a legkisebb befejezési idejű esemény Si, j -ben.

fm = min{ fk : ak ∈ Si, j}.

Ekkor

1. am eleme Si, j valamely maximális elemszámú, kölcsönösen kompatibilis eseményekből álló részhalmazának.

2. Az Si,m részprobléma üres, tehát am választásával legfeljebb az Sm, j nem üres.

Bizonyítás. Először a második részt bizonyítjuk, mert az egyszerűbb. Tegyük fem, hogy Si,m nem üres, tehát van olyan ak esemény,
hogy fi ≤ sk < fk ≤ sm < fm. Mivel ak eleme Si, j -nek, és befejezési ideje kisebb, mint am-é, ami ellentmond am választásának.
Tehát azt kaptuk, hogy Si,m üres.

Az első rész bizonyításához tegyük fel, hogy Ai, j egy maximális elemszámú, kölcsönösen kompatibilis eseményekből álló
részhalmaza Si, j -nek, és tekintsük Si, j elemeinek a befejezési idejük szerinti monoton nem-csökkenő felsorolását. Legyen ak
az első ebben a felsorolásban. Ha ak = am, akkor készen vagyunk, mert megmutattuk, hogy am eleme Si, j valamely maximális
elemszámú, kölcsönösen kompatibilis eseményeket tartalmazó részhalmazának. Ha ak 6= am, akkor tekintsük az A′i, j = Ai, j −
{ak} ∪ {am} részhalmazt. Az A′i, j -beli események diszjunktak, mert Ai, j elemei diszjunktak, és ak az legkorábban befejeződő

esemény Ai, j -ben, továbbá fm≤ fk. Mivel A′i, j ugyanannyi eseményt tartalmaz, mint Ai, j , ezért A′i, j is egy maximális elemszámú,

kölcsönösen kompatibilis eseményeket tartalmazó részhalmaza Si, j -nek, amely tartalmazza am-et. �

Miért fontos az 1. tétel? Emlékeztetünk a dinamikus programozásra, amely szerint az optimális részproblémák szerkezetét
az befolyásolja, hogy hány részproblémától függ az eredeti probléma, és hány választást kell végezni, hogy meghatározzuk,
melyik részproblémát kell felhasználni. A dinamikus programozási megoldásunkban két részproblémát használunk az optimális
megoldáshoz, és j-i-1 választást kell tenni az Si, j részprobléma megoldásához. Az 1. tétel jelentősen csökkenti mindkét értéket.
Csak egy részprobléma kell az optimális megoldáshoz (a másik biztosan üres), és Si, j megoldása során csak egy választást kell
nézni, ami az Si, j legkorábban befejeződő eseménye. Szerencsére könnyen meg tudjuk határozni ezt az eseményt.

Azon túl, hogy csökkentette a részproblémák és a választások számát, az 1. tétel más előnnyel is jár. Minden részproblémát
felülről-lefelé haladó módon meg tudunk oldani, ellentétben a tipikus dinamikus programozási módszerrel, ahol alulról-felfelé kell
haladni. Az Si, j részprobléma megoldását úgy kapjuk, vesszük Si, j legkorábban befejeződő am eseményét, és hozzávesszük az
Sm, j részprobléma egy optimális megoldásához. Mivel tudjuk, hogy am választásával Sm, j optimális megoldása biztosan része Si, j

egy optimális megoldásának, ezért nem kell megoldani Sm, j -t, Si, j megoldása előtt. Si, j -t úgy oldhatjuk meg, hogy kiválasztjuk a
legkorábban befejeződő am eseményt Si, j -ből, és aztán megoldjuk Sm, j -t.

Jegyezzük meg azt is, hogy van séma a megoldandó részproblémákra. Az eredeti probléma az S= S0,n+1. Tegyük fel, hogy
az am1 eseményt választottuk, amely a legkorábban befejeződő eseménye S0,n+1-nek. (Mivel az események befejezési idejük
szerint monoton nem-csökkenő sorrendbe rendezettek, és f0 = 0, így m1 = 1.) A következő részproblémánk Sm1,n+1 lesz. Tegyük
fel, hogy am2-t választottuk Sm1,n+1-ből, amely a legkorábban befejeződő eseménye. (Nem feltétlenül teljesül, hogy m2 = 2.)
A következő részproblémánk Sm2,n+1 lesz. Ezt folytatva látjuk, hogy minden részproblémánk Smi ,n+1 alakú lesz, valamely mi

esemény-sorszámra. Más szóval, minden részproblémát a legkésőbb befejeződő esemény, és egy másik esemény sorszáma
határoz meg, ahol az utóbbi részproblémáról-részproblémára változik.

A választandó eseményre is van sémánk. Mivel mindig Smi ,n+1 -nek a legkorábban befejeződő eseményét választjuk, így a
részproblémákhoz kiválasztott események sorozata a befejezési idő szerint szigorúan monoton növekvő lesz. Továbbá, minden
eseményt csak egyszer kell vizsgálni, a befejezési idejük szerint monoton nem-csökkenő sorrendben.

Egy részprobléma megoldásához mindig azt az am eseményt választjuk ki, amely a legkorábban befejeződik, és legálisan
beosztható. Tehát a választás

”
mohó” abban az értelemben, hogy intuitíve a legnagyobb lehetőséget hagyja a fennmaradt

események beosztására. Tehát az a mohó választás, amely maximalizálja a beosztásra fennmaradt időt.

Rekurzív mohó algoritmus

Miután láttuk, hogyan adhatunk dinamikus programozási megoldás, amely felülről-lefelé haladó módszer, itt az ideje, hogy megad-
junk egy tisztán mohó, alulról felfelé haladó módszerű algoritmust. A REKURZÍV-ESEMÉNY-KIVÁLASZTÓ eljárás közvetlenül kapható
rekurzív megoldása a problémának. Ennek bemenő paraméterei az események kezdő és befejező időpontjait tartalmazó s és f
tömb, továbbá a megoldandó Si,n+1 részproblémát meghatározó i és n sorszám. (Az n paraméter az utolsó an esemény indexe,
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és nem az n+1 fiktív esemény, amely szintén eleme a részproblémának.) Az eljárás Si,n+1 egy maximális elemszámú, kölcsönö-
sen kompatibilis eseményeket tartalmazó részhalmazát adja eredményül. Feltételezzük, hogy az n bemeneti esemény befejezési
idő szerint monoton nem-csökkenő sorrendbe rendezett az 1. képletnek megfelelően. Ha a rendezettség nem teljesülne, akkor
O(nlogn) időben rendezhetjük őket. A kiindulási probléma megoldását a REKURZÍV-ESEMÉNY-KIVÁLASZTÓ(s, f ,0,n) eljáráshívás
adja.

REKURÍV-ESEMÉNY-KIVÁLASZTÓ(s, f , i,n)

1 m← i +1
2 while m≤ n és sm < fi B Si,n+1 első válsztható eseményét keressük
3 do m←m+1
4 if m< j
5 then return {am}∪ REKURÍV-ESEMÉNY-KIVÁLASZTÓ(s, f ,m,n)
6 then return /0

Az 1. ábra mutatja az algoritmus által végzett műveleteket. A REKURÍV-ESEMÉNY-KIVÁLASZTÓ(s, f ,m,n) egy adott meghí-
vásakor a 2-3. sorokban a while ciklus megkeresi az Si,n+1 első választható eseményét. A ciklus sorban az ai+1,ai+2, . . . ,an

eseményeket vizsgálja, amíg meg nem találja az első olyan am eseményt, amely kompatibilis ai -vel, azaz sm≥ fi teljesül. Ha a
ciklus úgy ér véget, hogy talált ilyen eseményt, akkor az eljáráshívással befejeződik az 5. sorban végrehajtott return utasítással,
ami visszaadja az {am} és a REKURÍV-ESEMÉNY-KIVÁLASZTÓ(s, f ,m,n) rekurzív hívás által visszaadott halmazok egyesítését. Az
utóbbi halmaz az Sm,n+1 részprobléma megoldása. A ciklus úgy is terminálhat, hogy a m> n feltétel teljesül, amikor is nincs olyan
esemény, amely kompatibilis lenne si -vel. Ebben az esetben Si,n+1 = /0, és az eljárás az /0 értéket adja vissza a 6. sorban.

Feltéve, hogy az események befejezési idejük szerint monoton nem-csökkenően rendezettek, a REKURÍV-ESEMÉNY-KIVÁLASZTÓ(s, f ,0,n)
eljáráshívás futási ideje Θ(n). Ezt a következőképpen láthatjuk be. A rekurzív hívásokban minden eseményt pontosan egyszer
vizsgálunk a while ciklus feltételvizsgálatakor a 2. sorban. Pontosabban, az ak eseményt az utolsó olyan hívás vizsgálja, amelyre
i < k.

Iteratív mohó algoritmus

A rekurzív eljárásunkat egyszerűen átalakíthatjuk iteratív algoritmussá. A REKURÍV-ESEMÉNY-KIVÁLASZTÓ eljárás majdnem jobb-
rekurzív (lásd a 7-4. feladatot), önmagát hívó rekurzív hívással végződik, amit követ egy egyesítés művelet. Jobb-rekurzív eljárás
átalakítása iteratívvá általában egyszerű feladat, valójában több programozási nyelv fordítóprogramja ezt automatikusan elvégzi.
Amint látjuk, a REKURÍV-ESEMÉNY-KIVÁLASZTÓ eljárás minden Si,n+1 részproblémára működik, tehát azokra, amelyek a legnagyobb
befejezésű eseményeket tartalmazzák.

A MOHÓ-ESEMÉNY-KIVÁLASZTÓ eljárás egy iteratív változata a REKURÍV-ESEMÉNY-KIVÁLASZTÓ eljárásnak. Ez ismét feltételezi,
hogy a bemeneti események befejezési idejük szerint monoton nem-csökkenő sorrendbe rendezettek. Az eljárás az A változóban
gyűjti össze a kiválasztott eseményeket, és ezt adja eredményül a végén.

MOHÓ-ESEMÉNY-KIVÁLASZTÓ(s, f )

1 n← hossz[s]
2 A←{a1}
3 i← 1
4 for m← 2 to n
5 do if sm≥ fi
6 then A← A∪{am}
7 i←m
8 return A

Az eljárás a következőképpen működik. Az i változó tartalmazza az A-ba legutoljára beválasztott esemény indexét, aminek az
ai esemény felel meg a rekurzív változatban. Mivel az eseményeket befejezési idejük szerinti monoton nem-csökkenő sorrendben
vizsgáljuk, ezért fi mindig a legnagyobb befejezési idejű esemény az A halmazban. Tehát

fi = max{ fk : ak ∈ A} . (4)
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
time

2 3 5

3 0 6

4 5 7

5 3 8

6 5 9

7 6 10

8 8 11

9 8 12

10 2 13

11 12 14

1 1 4

i si fi

a1

a2

a1

a3

a1

a4

a1 a4

a5

a1 a4

a6

a1 a4

a7

a1 a4

a8

a1 a4 a8

a9

a1 a4 a8

a10

a1 a4 a8

a11

a1 a4 a8 a11

1. ábra. A REKURZÍV-ESEMÉNY-KIVÁLASZTÓ algoritmus működése a korábban megadott 11 eseményre. Egy rekurzív hívás során
vizsgált események két horizontális vonal között láthatóak. A fiktív a0 esemény befejezési ideje 0, az első REKURÍV-ESEMÉNY-
KIVÁLASZTÓ(s, f ,0,11) eljáráshíváskor az a1 esemény választódik ki. A már korábban kiválasztott események satírozottak, az
éppen vizsgált esemény pedig fehér. Ha egy esemény kezdő időpontja előbb van, mint a legutoljára beválasztott esemény befejező
időpontja (a közöttük meghúzott nyíl balra mutat), akkor azt elvetjük. Egyébként (ha a nyíl egyenesen felfelé, vagy jobbra mutat)
beválasztjuk. Az utolsó REKURÍV-ESEMÉNY-KIVÁLASZTÓ(s, f ,11,11) rekurzív hívás a /0 értékkel tér vissza. Az eredményül kapjuk
a kiválasztott események {a1,a4,a8,a11} halmazát.
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Az 2-3. sorban kiválasztjuk az a1 eseményt, előkészítve ezzel az A halmazt, hogy egyedül az a1 eseményt tartalmazza, az i
változó pedig ezen esemény sorszámát veszi fel kezdetben. A for ciklus a 4-7. sorokban megkeresi a legkorábban befejeződő
eseményt az Si,n+1 halmazban. A ciklus egymás után vizsgálja az am eseményeket, és hozzáadja az A halmazhoz, ha kompatibilis
az összes A-beli eseménnyel. Annak ellenőrzése, hogy am kompatibilis az összes A-ban lévő eseménnyel, a 4. egyenlőség
miatt elegendő azt ellenőrizni (5. sor), hogy az sm kezdő időpont nem korábbi, mint az A-ba legutoljára beválasztott esemény fi
befejező időpontja. Ha az am esemény kompatibilis, akkor a 6-7. sorokban hozzávesszük am-et A-hoz, és i felveszi az m értéket.
A MOHÓ-ESEMÉNY-KIVÁLASZTÓ(s, f ) eljáráshívás pontosan azt a halmazt adja, mint a REKURZÍV-ESEMÉNY-KIVÁLASZTÓ(s, f ,0,n)
hívás.

A MOHÓ-ESEMÉNY-KIVÁLASZTÓ algoritmus, csakúgy, mint a REKURZÍV-ESEMÉNY-KIVÁLASZTÓ Θ(n) időben megoldja n beme-
neti eseményre a feladatot, feltéve, hogy az események kezdetben a befejezési idejük szerint monoton nem-csökkenő sorrendben
vannak.

A mohó stratégia elemei

A mohó algoritmus úgy alkotja meg a probléma optimális megoldását, hogy választások sorozatát hajtja végre. Az algoritmus során
minden döntési pontban azt az esetet választja, amely az adott pillanatban optimálisnak látszik. Ez a heurisztikus stratégia nem
mindig ad optimális megoldást, azonban néha igen, mint azt láttuk az esemény-kiválasztási probléma esetén. Ebben a szakaszban
a mohó stratégia néhány általános tulajdonságát fogjuk megvizsgálni.

Az a módszer, amit követtünk mohó algoritmus kifejlesztésére, egy kicsit bonyolultabb az általános esetnél. A következő
lépések sorozatán mentünk keresztül.

1. A probléma optimális szerkezetének meghatározása.

2. Rekurzív megoldás kifejlesztése.

3. Annak bizonyítása, hogy minden rekurzív lépésben az egyik optimális választás a mohó választás. Tehát mindig biztonságos
a mohó választás.

4. Annak igazolása, hogy a mohó választás olyan részproblémákat eredményez, amelyek közül legfeljebb az egyik nem üres.

5. A mohó stratégiát megvalósító rekurzív algoritmus kifejlesztése.

6. A rekurzív algoritmus átalakítása iteratív algoritmussá.

Ezen lépéseken keresztülhaladva láttuk a mohó algoritmus dinamikus programozási alátámasztását. A gyakorlatban azonban
általában egyszerűsítjük a fenti lépéseket mohó algoritmus tervezésekor. A részproblémák kifejlesztésekor arra figyelünk, hogy
a mohó választás egyetlen részproblémát eredményezzen, amelynek optimális megoldását kell megadni. Például az esemény-
kiválasztási feladatnál először olyan Si, j részproblémákat határoztunk meg, ahol i és j is változó érték lehetett. Ezután rájöttünk,
hogy ha mindig mohó választást végzünk, akkor redukálhatjuk a részproblémákat Si,n+1 alakúakra.

Másképpen kifejezve, az optimális részproblémák szerkezetét a mohó választás figyelembevételével alakíthattuk ki. Tehát
elhagyhattuk a második indexet, és az Si = {ak ∈ S : fi ≤ sk} alakú részproblémákhoz jutottunk. Ezután bebizonyíthattuk, hogy
a mohó választás (az első befejeződő am esemény Si -ben), kombinálva Sm egy optimális megoldásával, az eredeti Si probléma
optimális megoldását adja. Általánosabban, mohó algoritmus tervezését az alábbi lépések végrehajtásával végezzük.

1. Fogalmazzuk meg az optimalizációs feladatot úgy, hogy minden egyes választás hatására egy megoldandó részprobléma
keletkezzék.

2. Bizonyítsuk be, hogy mindig van olyan optimális megoldása az eredeti problémának, amely tartalmazza a mohó választást,
tehát a mohó választás mindig biztonságos.

3. Mutassuk meg, hogy a mohó választással olyan részprobléma keletkezik, amelynek egy optimális megoldásához hozzávéve
a mohó választást, az eredeti probléma egy optimális megoldását kapjuk.

Ezt a közvetlenebb módszert alkalmazzuk a fejezet hátralévő részében. Mindazonáltal, minden mohó algoritmushoz majdnem
mindig van bonyolultabb dinamikus programozási megoldás.

Meg tudjuk-e mondani, hogy adott optimaliációs feladatnak van-e mohó algoritmusú megoldása? Erre nem tudunk általános
választ adni, de a mohó-választási tulajdonság és az optimális részproblémák tulajdonság két kulcsfontosságú összetevő. Ha meg
tudjuk mutatni, hogy a feladat rendelkezik e két tulajdonsággal, nagy eséllyel ki tudunk fejleszteni mohó algoritmusú megoldást.
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Mohó-választási tulajdonság

Az első alkotóelem a mohó-választási tulajdonság : globális optimális megoldás elérhető lokális optimum (mohó) választásával.
Más szóval, amikor arról döntünk, hogy melyik választást tegyük, azt választjuk, amelyik az adott pillanatban a legjobbnak tűnik,
nem törődve a részproblémák megoldásaival. Ez az a pont, ahol a mohó stratégia különbözik a dinamikus programozástól. Di-
namikus programozás esetén minden lépésben választást hajtunk végre, de a választás függhet a részproblémák megoldásától.
Következésképpen, a dinamikus programozási módszerrel a problémát alulról-felfelé haladó módon oldjuk meg, egyszerűbbtől
összetettebb részproblémák felé haladva. A mohó algoritmus során az adott pillanatban legjobbnak tűnő választást hajtjuk végre,
bármi is legyen az, és azután oldjuk meg a választás hatására fellépő részproblémát. A mohó algoritmus során végrehajtott válasz-
tás függhet az addig elvégzett választásoktól, de nem függhet későbbi választásoktól, vagy részproblémák megoldásától. Tehát
ellentétben a dinamikus programozással, amely a részproblémákat alulról-felfelé haladva oldja meg, a mohó stratégia általában
felülről-lefelé halad, egymás után végrehajtva mohó választásokat, amellyel a problémát sorra kisebb méretűre redukálja.

Természetesen bizonyítanunk kell, hogy a lépésenkénti mohó választásokkal globálisan optimális megoldáshoz jutunk, és ez
az ami leleményességet igényel. Tipikusan, mint az 1. tétel esetén, a bizonyítás részproblémák globális optimális megoldását
vizsgálja. Megmutatja, hogy az optimális megoldás módosítható úgy, hogy az a mohó választást tartalmazza, és hogy ez a
választás redukálja a problémát hasonló, de kisebb méretű részproblémára.

A mohó-választási tulajdonság gyakran hatékonyságot eredményez a részprobléma választásával. Például az esemény-
kiválasztási feladatnál, feltételezve, hogy az események befejezési idejük szerint mononton nem-csökkenő sorrendbe rendezettek,
minden eseményt csak egyszer kell vizsgálni. Gyakran az a helyzet, hogy a bemeneti adatokat alkalmasan előfeldolgozva, vagy
alkalmas adatszerkezetet használva (ami gyakran prioritási sor), a mohó választás gyorsan elvégezhető, és ezáltal hatékony algo-
ritmust kapunk.

Optimális részproblémák tulajdonság

Egy probléma teljesíti az optimális részproblémák tulajdonságot , ha az optimális megoldás felépíthető a részproblémák optimá-
lis megoldásából. Ez az alkotóelem kulcsfontosságú mind a dinamikus programozás, mind a mohó stratégia alkalmazhatóságának
megállapításánál. Az optimális részproblémákra példaként emlékeztetünk arra, ahogy megmutattuk, hogy ha Si, j egy optimális
megoldása tartalmazza az ak eseményt, akkor az szükségképpen tartalmazza Si,k és Sk, j egy optimális megoldását. Ezen opti-
mális szerkezet alapján, ha tudjuk, hogy melyik ak eseményt kell választani, akkor Si, j egy optimális megoldása megalkotható ak,
továbbá Si,k és Sk, j egy optimális megoldásából. Az optimális részproblémák ezen tulajdonságát észrevéve meg tudtuk adni a 3.
rekurzív egyenletet, ami az optimális megoldás értékét adja meg.

Általában sokkal közvetlenebb alkalmazását használjuk az optimális részproblémák tulajdonságnak mohó algoritmus kifejlesz-
tése során. Mint már említettük, szerencsénk van, amikor feltételezzük, hogy az eredeti probléma mohó választása megfelelő
részproblémát eredményez. Csak azt kell belátni, hogy a részprobléma optimális megoldása, kombinálva a már elvégzett mohó
választással, az eredeti probléma optimális megoldását adja. Ez a séma implicit módon használ részproblémák szerinti indukciót
annak bizonyítására, hogy minden lépésben mohó választást végezve optimális megoldást kapunk.

Mohó stratégia vagy dinamikus programozás

Mivel az optimális részproblémák tulajdonságot kihasználjuk mind a mohó, mind a dinamikus programozási stratégiáknál, előfor-
dulhat, hogy dinamikus programozási megoldást próbálunk adni akkor, amikor mohó megoldás is célravezető lenne, és fordítva,
tévesen mohó megoldással próbálkozunk akkor, amikor valójában dinamikus programozási módszert kellene alkalmazni. A finom
különbségek illusztrálására tekintsük a következő klasszikus optimalizálási probléma két változatát.

A 0-1 hátizsák feladat a következőt jelenti. Adott n darab tárgy, az i-edik tárgy használati értéke vi , a súlya pedig wi , ahol vi

és wi egész számok. Kiválasztandó a tárgyaknak olyan részhalmaza, amelyek használati értékének összege a lehető legnagyobb,
de a súlyuk összege nem nagyobb, mint a hátizsák W kapacitása, amely egész szám. Mely tárgyakat rakjuk a hátizsákba? (Ezt
a problémát azért nevezzük 0-1 hátizsák feladatnak, mert minden tárgyat vagy beválasztunk, vagy elhagyunk, nem tehetjük meg,
hogy egy tárgy töredékét, vagy többszörösét választjuk.)

A töredékes hátizsák feladat csak abban különbözik az előzőtől, hogy a tárgyak töredéke is választható, nem kell 0-1 bináris
választást tenni. Úgy tekinthetjük, hogy 0-1 hátizsák feladat esetén a tárgyak arany tömbök, míg a töredékes hátizsák feladatnál
aranyporból meríthetünk.

Mindkét hátizsák feladat teljesíti az optimális részproblémák tulajdonságot. A 0-1 feladat esetén tekintsünk egy olyan választást,
amely a legnagyobb használati értéket adja, de a tárgyak összsúlya nem haladja meg a W értéket. Ha kivesszük a j-edik tárgyak a
hátizsákból, akkor a bennmaradt tárgyak használati értéke a legnagyobb lesz azon feltétel mellett, hogy az összsúly nem nagyobb,
mint W−w j , és n−1 tárgyból választhatunk, kizárva az eredeti tárgyak közül a j-ediket. A töredékes hátizsák feladatnál ha egy
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optimális választásból kiveszünk a j tárgyból w mennyiséget, akkor a megmaradt választás optimális lesz arra az esetre, amikor
legfeljebb W−w összsúlyt érhetünk el és a j-edik tárgyból legfeljebb w j −w mennyiséget választhatunk.

Bár a két feladat hasonló, a töredékes hátizsák feladat megoldható mohó stratégiával, a 0-1 feladat azonban nem. A töredékes
feladat megoldásához előbb számítsuk ki minden tárgyra a vi/wi használati érték per súly hányadost. A mohó stratégiát követve
először a legnagyobb hányadosú tárgyból választunk amennyit csak lehet. Ha elfogyott, de még nem telt meg a hátizsák, akkor a
következő legnagyobb hányadosú tárgyból választunk amennyit csak lehet, és így tovább, amíg a hátizsák meg nem telik. Mivel
a tárgyakat az érték per súly hányados szerint kell rendeznie, a mohó algoritmus futási ideje O(n lgn) lesz. Annak bemutatására,
hogy a mohó stratégia nem működik a 0-1 hátizsák feladatra, tekintsük a 2(a) ábrán látható esetet. Három tárgyunk van, és a
hátizsák mérete 50 egységnyi. Az 1. tárgy súlya 10, használati értéke 60, a 2. tárgy súlya 20, használati értéke 100, a 3. tárgy
súlya 30, használati értéke pedig 120 egység. Tehát az 1. tárgy érték per súly hányadosa 6, a 2. tárgyé 2, a 3. tárgyé pedig 4. Így
a mohó stratégia először az 1. tárgyat választaná. Azonban a 2(b) ábrán látható elemzés szerint az optimális megoldásban a 2.
és a 3. tárgy szerepel, kihagyva az 1. tárgyat. Mindkét választás, amelyben az 1. tárgy szerepel nem optimális.
A megfelelő töredékes feladatra azonban a mohó stratégia, amely először az 1. tárgyat választja, optimális megoldást ad, mint
azt a 2(c) ábra mutatja. A 0-1 feladat esetén az 1. tárgy választása nem vezet optimális megoldáshoz, mert ezután nem tudjuk
telerakni a hátizsákot, és az üresen maradt rész csökkenti a hátizsák lehetséges érték per súly hányadost. A 0-1 feladatnál amikor
egy tárgy beválasztásáról döntünk, akkor előbb össze kell hasonlítani annak a két részproblémának a megoldását, amely a tárgy
beválasztásával, illetve kihagyásával adódik. Az így megfogalmazott probléma sok, egymást átfedő részproblémát eredményez,
ami a dinamikus programozást fémjelzi. Valóban, a 0-1 feladat megoldható dinamikus programozással.

8. Huffman-kód

A Huffman-kód széles körben használt és nagyon hatékony módszer adatállományok tömörítésére. Az elérhető megtakarítás
20%-tól 90%-ig terjedhet, a tömörítendő adatállomány sajátosságainak függvényében. A kódolandó adatállományt karaktersoro-
zatnak tekintjük. A Huffman féle mohó algoritmus egy táblázatot használ az egyes karakterek előfordulási gyakoriságára, hogy
meghatározza, hogyan lehet a karaktereket optimálisan ábrázolni bináris jelsorozattal.

Tegyük fel, hogy egy 100 000 karaktert tartalmazó adatállományt akarunk tömörítetten tárolni. Tudjuk, hogy az egyes karakterek
előfordulási gyakorisága megfelel a 3. ábrán látható táblázatnak. Vagyis, hat különböző karakter fordul elő az állományban, és az
a karakter 45 000-szer fordul elő az állományban.

Sokféleképpen ábrázolható egy ilyen típusú információ halmaz. Mi bináris karakterkód (vagy röviden kód ) tervezésének
problémáját vizsgáljuk, amikor is minden karaktert egy bináris jelsorozattal ábrázolunk. Ha fix hosszú kódot használunk, akkor
3 bitre van szükség a hatféle karakter kódolására: a = 000,b = 001, . . . , f = 101. Ez a módszer 300 000 bitet igényel a teljes
állomány kódolására. Csinálhatjuk jobban is? A változó hosszú kód alkalmazása tekintélyes megtakarítást eredményez, ha
gyakori karaktereknek rövid, ritkán előforduló karaktereknek hosszabb kódszavat feleltetünk meg. A 3. ábra egy ilyen kódolást
mutat: itt az egybites 0 kód az a karaktert ábrázolja, a négybites 1100kód pedig az f karakter kódja. Ez a kódolás

(45·1+13·3+12·3+16·3+9·4+5·4) ·1000= 224000

bitet igényel az állomány tárolására, ami hozzávetőleg 25% megtakarítást eredményez. Valójában ez optimális kódolást jelent,
mint majd látni fogjuk.

8.1. Prefix-kódok

A továbbiakban csak olyan kódszavakat tekintünk, amelyekre igaz, hogy egyik sem kezdőszelete a másiknak. Az ilyen kódolást
prefix-kódnak nevezzük. 2 Megmutatható (bár mi ezt nem tesszük meg), hogy karakterkóddal elérhető optimális adattömörítés
mindig megadható prefix-kóddal is, így az általánosság megszorítása nélkül elegendő prefix-kódokat tekinteni.

A prefix-kódok előnyösek, mert egyszerűsítik a kódolást (tömörítést) és a dekódolást. A kódolás minden bináris karakterkódra
egyszerű: csak egymás után kell írni az egyes karakterek bináris kódját. Például a 3. ábrán adott változó hosszú karakterkód
esetén az abc három karaktert tartalmazó állomány kódja 0 · 101· 100= 0101100, ahol a

”
·” pont az egymásután írás művelet

(konkatenáció) jele.
A dekódolás is meglehetősen egyszerű prefix-kód esetén. Mivel nincs olyan kódszó, amely kezdőszelete lenne egy másiknak,

így egyértelmű, hogy a kódolt állomány melyik kódszóval kezdődik. Egyszerűen megállapítjuk, hogy a kódolt állomány melyik
kódszóval kezdődik, aztán helyettesítjük ezt azzal a karakterrel, amelynek ez a kódja, és ezt az eljárást addig végezzük, amíg a
kódolt állományon végig nem értünk. A példánkat tekintve, a 001011101jelsorozat egyértelműen bontható fel a 0 ·0 ·101·1101
kódszavak sorozatára, tehát a dekódolás az aabesorozatot eredményezi.

2A
”
prefix-mentes” elnevezés helyesebb lenne, de a

”
prefix-kód” általánosan használt az irodalomban.
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$100

item 2
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$120

item 3
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(a)
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$120
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= $220
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+

$60

$100

= $240

$80

+

(c)
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20

10

30

10
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20
30

2. ábra. A mohó stratégia nem működik a 0-1 hátizsák feladatra. (a) Az ábrán szereplő három tárgy olyan részhalmazát kell
kiválasztani, amely súlyainak összege nem nagyobb, mint 50. (b) Az optimális megoldás a 2 és 3 tárgyakat tartalmazza. Minden
olyan megoldás, amely tartalmazza a 1 tárgyat, annak ellenére, hogy ennek a legnagyobb az érték per súly hányadosa, nem lesz
optimális. (c) A töredékes hátizsák feladat esetén az a stratégia, amely szerint a legnagyobb érték per súly szerint választunk,
optimális megoldást ad.
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a b c d e f
Gyakoriság (ezrekben) 45 13 12 16 9 5
Fix hosszú kódszó 000 001 010 011 100 101
Változó hosszú kódszó 0 101 100 111 1101 1100

3. ábra. Karakter kódolási probléma. Az adatállomány 100 000 karakterből áll, és csak az a– f karakterek fordulnak elő az
állományban a feltüntetett gyakoriságokkal. Ha minden karaktert 3 bites kódszóval kódolunk, akkor 300 000 bitre van szükség. Az
ábrán látható változó hosszú kódszavakat használva az állományt 224 000 bittel kódolhatjuk.

A dekódolási eljáráshoz szükség van a prefix-kód olyan alkalmas ábrázolására, amely lehetővé teszi, hogy a kódszót könnyen
azonosítani tudjuk. Az olyan bináris fa, amelynek levelei a kódolandó karakterek, egy ilyen alkalmas ábrázolás. Ekkor egy karakter
kódját a fa gyökerétől az adott karakterig vezető út ábrázolja, a 0 azt jelenti, hogy balra megyünk, az 1 pedig, hogy jobbra megyünk
az úton a fában. A 4. ábra a példánkban szereplő két kódot ábrázolja. Vegyük észre, hogy ezek a fák nem bináris keresőfák,
a levelek nem rendezetten találhatók, a belső csúcsok pedig nem tartalmaznak karakter kulcsokat. Egy adatállomány optimális
kódját mindig teljes bináris fa ábrázolja, tehát olyan fa, amelyben minden nem levél csúcsnak két gyereke van. A példánkban
szereplő fix hosszú kód nem optimális, mert a 4. ábrán látható fája nem teljes bináris fa: van olyan kódszó, amely 10 -lal kezdődik,
de nincs olyan, amely 11 -gyel kezdődne. Mivel a továbbiakban szorítkozhatunk teljes bináris fákra, azt mondhatjuk, hogy ha C az
az ábácé, amelynek elemei a kódolandó karakterek, akkor az optimális prefix-kód fájának pontosan |C| levele és pontosan |C|−1
belső csúcsa van.

Ha adott egy prefix-kód T fája, akkor egyszerű kiszámítani, hogy az adatállomány kódolásához hány bit szükséges. A C ábécé
minden c karakterére jelölje f (c) a c karakter előfordulási gyakoriságát az állományban, dT(c) pedig jelölje a c-t tartalmazó levél
mélységét a T fában. Vegyük észre, hogy dT(c) megegyezik a c karakter kódjának hosszával. A kódoláshoz szükséges bitek
száma ekkor

B(T) = ∑
c∈C

f (c)dT(c) (5)

és ezt az értéket a T fa költségének nevezzük.

8.2. Huffman-kód szerkesztése

Huffman találta ki azt a mohó algoritmust, amely optimális prefix-kódot készít, amit Huffman-kódnak
nevezünk. A 2. szakasz megállapításait figyelembe véve az algoritmus helyességének bizonyítása a mohó-választási és az

optimális részproblémák tulajdonságon alapszik. Ahelyett, hogy a kód kifejlesztése előtt bebizonyítanánk e két tulajdonság teljesü-
lését, először a kódot adjuk meg. Ezt azért tesszük, hogy világosan lássuk, az algoritmus hogyan használja a mohó választást.

A következő, pszeudokód formájában adott algoritmusban feltételezzük, hogy C a karakterek n elemű halmaza, és minden
c∈C karakterhez adott annak f [c] gyakorisága. Az algoritmus alulról-felfelé haladva építi fel azt a T fát, amely az optimális kód
fája. Az algoritmus úgy indul, hogy kezdetben |C| számú csúcs van, amelyek mindegyike levél, majd |C|−1 számú

”
összevonás”

végrehajtásával alakítja ki a végső fát. Az f -szerint kulcsolt Q prioritási sort használjuk az összevonandó két legkisebb gya-
koriságú elem azonosítására. Két elem összevonásának eredménye egy új elem, amelynek gyakorisága a két összevont elem
gyakoriságának összege.

HUFFMAN(C)

1 n← |C|
2 Q←C
3 for i← 1 to n−1
4 do új z csúcs létesítése
5 bal[z]← x← KIVESZ-MIN(Q)
6 jobb[z]← y← KIVESZ-MIN(Q)
7 f [z]← f [x]+ f [y]
8 BESZÚR(Q,z)
9 return KIVESZ-MIN(Q)
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a:45 b:13 c:12 d:16 e:9 f:5

58 28 14

86 14

100

0 1 0 1 0 1

0 1 0

0 1

e:9f:5

14

0 1

c:12 b:13

25

0 1
d:16

30

0 1

55
0 1

a:45

100
0 1

(a) (b)

4. ábra. 3. ábrán adott kódolásokhoz tartozó bináris fák. Minden levél címkeként tartalmazza a a kódolandó karaktert és annak
előfordulási gyakoriságát. A belső csúcsok az adott gyökerű részfában található gyakoriságok összegét tartalmazzák. (a) A fix
hosszú kódhoz tartozó fa; a = 000, . . . , f = 101. (b) Az optimális prefix-kódhoz tartozó fa; a = 0,b = 101, . . . , f = 1100.
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Az algoritmus megvalósítása

Program HuffmanKod;
Uses Prisor;
Const Maxn=???;
Type

Gyakori= Array[0..2*Maxn-1] Of Word;
Fa= Array[1..2*Maxn-1] Of Integer;

Function Kis(VAr X,Y: Elemtip): Boolean;
Begin
Kis:= P[X] <= P[Y]

End;

Procedure Huffman(Var P: Gyakori; n:Word; Var T: Fa);
Var S: PriSor;
i,x,y,z: Word;

Begin
Letesit(S, Kis);
For i:= 1 To n Do

Sorba(S,i);
z:= n; T[2*n-1]:=0;
For i:= 1 To n-1 Do

Begin
Sorbol(S,x); Sorbol(S,y);
Inc(pont);
T[x]:= -z; {x apja: z, és z bal fia x}
T[y]:= z; {y apja: z, és z jobb fia y}
P[z]:= P[x]+ P[y];
Sorba(S,z);

End;
End;

Procedure KiIr(Var T:Fa; i:Word);
Begin

If T[i]<>0 Then
Begin
KiIr(T,Abs(T[i]));
If T[i]<0 Then Write(0:1)

Else Write(1:1);
End;

End;

Var
P: Gyakori;
T:Fa; n,i:Word;

Begin
ReadLn(n);
For i:= 1 To n Do Read(P[i]);
Huffman(P,n,T);
For i:= 1 To n Do Begin
KiIr(T,i); writeln;

End
End.

A példánkban szereplő adatokra a Huffman algoritmus a 5. ábrán látható módon működik. Mivel hat kódolandó karakter van,

12



a sor mérete kezdetben n = 6 és 5 összevonási lépés szükséges a fa felépítéséhez. A végén kapott fa megfelel az optimális
prefix-kódnak. Minden karakter kódja a gyökértől a megfelelő levélig vezető úton lévő élek címkéinek sorozata.

Az algoritmusban a 2. sor inicializálja a Q prioritási sort a C-beli karakterekkel. A 3-8. sorokban adott ciklus ismétlődően
kiválasztja a Q sorból az x és y két legkisebb gyakoriságú csúcsot és beteszi a sorba azt a zúj csúcsot, amely x és y összevonását
ábrázolja. A z új csúcs gyakorisága x és y gyakoriságának összege lesz, amit a 7. sorban számítunk ki. A z csúcs bal gyereke x,
jobb gyereke pedig az y csúcs lesz. (Itt a sorrend nem lényeges, bármely csúcs bal és jobb gyereke felcserélhető, különböző, de
azonos költségű fát eredményezve.) n−1 számú összevonás végrehajtása után a sorban egy csúcs marad (a kódfa gyökere), az
algoritmus a 9. sor végrehajtásával ezt adja eredményül.

A Huffman algoritmus időigényének elemzésénél feltételezzük, hogy a felhasznált prioritási sor absztrakt adattípust úgy való-
sítjuk meg, hogy a SORBOL és SORBA műveletek futási ideje O(lgn). A 3-8. sorokban adott ciklus pontosan (n−1) -szer hajtódik
végre, és mivel a prioritási sor minden művelete O(lgn) időt igényel, a ciklus teljes futási ideje O(n lgn). Tehát a HUFFMAN

algoritmus futási ideje O(n lgn) minden n karaktert tartalmazó C halmazra.

A Huffmann algoritmus helyessége

A HUFFMAN mohó algoritmus helyességének igazolásához megmutatjuk, hogy az optimális prefix-kód meghatározása teljesíti
a mohó-választási és az optimális részproblémák tulajdonságokat. A következő lemma azt bizonyítja, hogy a mohó-választási
tulajdonság teljesül.

8.1. lemma. Legyen C tetszőleges karakter halmaz, és legyen f [c] a c∈C karakter gyakorisága. Legyen x és y a két legkisebb
gyakoriságú karakter C -ben. Ekkor létezik olyan optimális prefix-kód, amely esetén az x-hez és y-hoz tartozó kódszó hossza
megegyezik, és a két kódszó csak az utolsó bitben különbözik.

Bizonyítás. A bizonyítás alapötlete az, hogy vegyünk egy optimális prefix-kódot ábrázoló T fát és módosítsuk úgy, hogy a fában x
és y a két legmélyebben lévő testvércsúcs legyen. Ha ezt meg tudjuk tenni, akkor a hozzájuk tartozó kódszavak valóban azonos
hosszúságúak lesznek és csak az utolsó bitben különböznek.

Legyen a és b a T fában a két legmélyebb testvércsúcs. Az általánosság megszorítása nélkül feltehetjük, hogy f [a] ≤ f [b]
és f [x] ≤ f [y]. Mivel f [x] ≤ f [y] a két legkisebb gyakoriság, valamint f [a] ≤ f [b] tetszőleges gyakoriságok, így azt kapjuk, hogy
f [x]≤ f [a] és f [y]≤ f [b]. A 6. ábrán látható módon felcseréljük a T fában a és x helyét, ezzel kapjuk a T ′ fát, majd ebből a fából,
felcserélve a b és y csúcsok helyét, kapjuk a T ′′ fát. A (3.) egyenlet szerint a T és a T ′ fák költségének különbsége

B(T)−B(T ′) = ∑
c∈C

f (c)dT(c)−∑
c∈C

f (c)dT ′(c)

= f [x]dT(x)+ f [a]dT(a)− f [x]dT ′(x)− f [a]dT ′(a)

= f [x]dT(x)+ f [a]dT(a)− f [x]dT(a)− f [a]dT(x)

= ( f [a]− f [x])(dT(a)−dT(x))

≥ 0.

Az egyenlőtlenség azért teljesül, mert f [a]− f [x] és dT(a)− dT(x) nem-negatív. Pontosabban, f [a]− f [x] nem-negatív, mert
x egy legkisebb gyakoriságú karakter, és dT(a)− dT(x) azért nem-negatív, mert a maximális mélységű a T fában. Hasonlóan
bizonyítható, hogy b és y felcserélése esetén sem növekszik a költség, így B(T ′)−B(T ′′) nem-negatív. Tehát B(T ′′) ≤ B(T),
és mivel T optimális így B(T) ≤ B(T ′′), tehát B(T ′′) = B(T). Tehát T ′′ olyan optimális fa, amelyben x és y maximális mélységű
testvércsúcsok, amiből a lemma állítása következik. �

Az 1. lemmából következik, hogy az optimális fa felépítése, az általánosság megszorítása nélkül, kezdhető a mohó választás-
sal, azaz a két legkisebb gyakoriságú karakter összevonásával. Miért tekinthető ez mohó választásnak? Azért, mert tekinthetjük a
két összevont elem gyakoriságának összegét egy összevonás költségeként. A HUFFMAN algoritmus az összes lehetséges lépések
közül mindig azt választja, amelyik a legkisebb mértékben járul hozzá a költséghez.

A következő lemma azt mutatja, hogy az optimális prefix-kód konstrukciója teljesíti az optimális részproblémák tulajdonságot.

8.2. lemma. Legyen C tetszőleges ábécé, és minden c∈C karakter gyakorisága f [c]. Legyen x és y a két legkisebb gyakoriságú
karakter C-ben. Tekintsük azt a C′ ábécét, amelyet C-ből úgy kapunk, hogy eltávolítjuk az x és y karaktert, majd hozzáadunk
egy új z karaktert, tehát C′ = C−{x,y}∪{z}. Az f gyakoriságok C′-re megegyeznek a C-beli gyakoriságokkal, kivéve z esetét,
amelyre f [z] = f [x]+ f [y]. Legyen T ′ olyan fa, amely optimális prefix-kódját ábrázolja a C′ ábécének. Ekkor az a T fa, amelyet úgy
kapunk, hogy a z levélcsúcshoz hozzákapcsoljuk gyerek csúcsként x-et és y-t, olyan fa lesz, amely a C ábécé optimális perix-kódját
ábrázolja.
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5. ábra. A Huffman algoritmus lépései a 3. ábrán szereplő gyakoriságokra. Minden részábra tartalmazza a sor aktuális tartalmát
gyakoriság szerint növekvően. Minden lépésben a két legkisebb gyakoriságú csúcsot kapcsoljuk össze. A leveleket téglalapok
jelölik, feltüntetve bennük a karaktert és annak gyakoriságát. A belső csúcsokat kör jelöli, amelyekben a csúcs két gyereke
gyakoriságának összege van. Minden él, amely egy belső csúcsot annak bal fiával köt össze a 0 címkét, illetve ha a jobb fiával
köti össze akkor az 1 címkét viseli. Minden karakter kódszava az a jelsorozat, amelyet úgy kapunk, hogy a gyökértől a karaktert
tartalmazó levélig vezető úton az élek címkéit egymás után írjuk. (a) A kezdeti állapot n= 6 csúccsal. (b) - (e) A közbülső állapotok.
(f) A fa az eljárás végén.
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6. ábra. Az 1. lemma bizonyításának kulcslépése. Az optimális prefix-kód T fájában b és c a két legmélyebb testvércsúcs. Az
x és y az a két levél csúcs, amelyet a Huffman algoritmus elsőnek von össze. Ezek bárhol lehetnek a fában. A b és x csúcsok
felcserélésével kapjuk a T ′ fát. Ezután a c és y csúcsokat felcserélve adódik a T ′′ fa. Mivel egyik lépés hatására sem növekszik a
fa költsége, a kapott T ′′ fa is optimális lesz.
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Bizonyítás. Először megmutatjuk, hogy a T fa B(T) költsége kifejezhető a T ′ fa B(T ′) költségével a 5. egyenlet alapján. Minden
c∈C−{x,y} esetén dT(c) = dT ′(c), így f [c]dT(c) = f [c]dT ′(c). Mivel dT(x) = dT(y) = dT ′(z)+1, így azt kapjuk, hogy

f [x]dT(x)+ f [y]dT(y) = ( f [x]+ f [y])(dT ′(z)+1)

= f [z]dT ′(z)+( f [x]+ f [y]),

amiből az következik, hogy

B(T) = B(T ′)+ f [x]+ f [y].

Indirekt módon bizonyítunk. Tegyük fel, hogy T nem optimális prefix-kódfa a C ábécére. Ekkor létezik olyan T ′′ kódfa C-re, hogy
B(T ′′) < B(T). Az általánosság megszorítása nélkül (a 2. lemma alapján) feltehetjük, hogy x és y testvérek. Legyen T ′′′ az a fa,
amelyet T ′′-ből úgy kapunk, hogy eltávolítjuk az x és y csúcsokat, és ezek közös z szülőjének gyakorisága az f [z] = f [x]+ f [y]
érték lesz. Ekkor

B(T ′′′) = B(T ′′)− f [x]− f [y]

< B(T)− f [x]− f [y]

= B(T ′),

ami ellentmond annak, hogy T ′ a C′ ábécé optimális prefix-kódját ábrázolja. Tehát T szükségképpen a C ábécé optimális prefix-
kódját ábrázolja. �

8.3. tétel. A HUFFMAN eljárás optimális prefix-kódot állít elő.

Bizonyítás. Az állítás közvetlenül következik a 1. és a 2. lemmákból. �
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