Moho algoritmusok

Optimalizalasi probléma megoldasara szolgalé algoritmus gyakran olyan Iépések sorozatabdl all, ahol minden Iépésben adott
halmazbdl valaszthatunk. Sok optimalizalasi probléma esetén a dinamikus programozasi megoldas tul sok esetet vizsgal annak
érdekében, hogy az optimalis valasztast meghatarozza. Ennél egyszer(ibb, hatékonyabb algoritmus is létezik. A moho algoritmus
mindig az adott Iépéshen optimalisnak latsz6 valasztast teszi. Vagyis, a lokdlis optimumot valasztja abban a reményben, hogy ez
globalis optimumhoz fog majd vezetni. Olyan optimalizalasi problémakkal foglalkozunk, amelyek megoldhatok moho algoritmussal.

Mohé algoritmus nem mindig ad optimalis megoldast, azonban sok probléma megoldhaté mohé algoritmussal. El6szér egy
olyan egyszer(, de nem trivialis problémat vizsgalunk, az esemény-kivalasztas problémajat, amelyre a mohé algoritmus hatékony
megoldast ad. A mohé algoritmushoz Ugy jutunk, hogy el6szor dinamikus programozasi megoldast adunk, aztdn megmutatjuk,
hogy a mohé véalasztas mindig optimalis megoldast eredményez. Ezutan attekintjik a moho stratégia elemeit, ami moh6 algorit-
musok helyességének kozvetlenebb bizonyitasat teszi lehetévé.

Egy esemény-kivalasztasi probléma

Az elsd probléma, amit vizsgalunk kézos er6forrast igényld, egymassal versengd események ltemezése, azzal a céllal, hogy
kivalasszunk egy maximdlis elemszam, kdlcsondsen kompatibilis eseményekbdl all6 eseményhalmazt. Tegyik fel, hogy adott
események egy S={aj,ay,...,a} nelemd halmaza, amelyek egy kozos eréforrast, példaul egy eléadétermet kivannak hasz-
nalni, amit egy idében csak egyik hasznalhat. Minden a eseményhez adott az S kezd & id Gpont és az f; befejez 6 id Gpont
ahol 5 < fi. Ha az a eseményt kivalasztjuk, akkor ez az esemény az [s;, fj) félig nyitott idGintervallumot foglalja le. Az & és g
események kompatibilisek , ha az [s, ;) és [sj, fj) intervallumok nem fedik egymast (azaz & és a; kompatibilisek, ha 5 > f;
vagy Sj > fj). Az esemény-kivalasztasi probléma azt jelenti, hogy kivalasztand6 koélcséndsen kompatibilis eseményeknek egy
legnagyobb elemszamu halmaza. Példaul tekintsiik azt az S eseményhalmazt, amelynek elemeit a befejezési idejik szerint nem-

csokkend sorrendbe rendeztink.
i‘1234567891011

s|1 3 0 5 3 5 6 8 8 2 12

fila 5 6 7 8 9 10 11 12 13 14
(Hamarosan latni fogjuk, hogy miért célszer(igy rendezni az eseményeket.) Az {a3,ag,a11} részhalmaz kélcséndsen kompatibilis
eseményeket tartalmaz. Azonban nem maximalis, mert az {aj,a4,8g,a11} részhalmaz nagyobb elemszami. A {a;,as,as,a11}
részhalmaz ténylegesen a legb6évebb kdlcsondsen kompatibilis események halmaza, és egy masik ilyen legnagyobb elemszamu
részhalmaz az {ap,as,89,a11} halmaz.

Ezt a feladatot tobb Iépésben oldjuk meg. Dinamikus programozasi megoldassal kezdiink, amelyben két részprobléma optima-
lis megoldasat kombinaljuk, hogy az eredeti probléma optimalis megoldasat kapjuk. Sok valasztasi lehetéséget tekintiink, amikor
meghatarozzuk, hogy mely részproblémakbdl épil fel az optimalis megoldas. Aztan megallapitjuk, hogy csak egy valasztast kell
nézni — a moho valasztast — és amikor a mohdé valasztast tessziik, akkor az egyik részprobléma Ures, tehat csak egy nemires
részprobléma marad. Erre az észrevételre alapozva egy rekurziv mohé algoritmust fejlesztjik ki az esemény-kivalasztasi feladat
megoldasara. Azzal tesszik teljessé a mohd algoritmus kifejlesztését, hogy a rekurziv algoritmust talakitjuk iterativ algoritmussé.
Lépéseknek a sorozata, amelyeken keresztiilmegyilink ebben az alfejezetben egy kicsit bonyolultabb anndl, mint amit altalaban
alkalmazunk moh algoritmusok kifejlesztésénél, de jél szemlélteti a dinamikus programozas és a mohd algoritmus viszonyat.

Az esemény-kivalasztasi probléma optimalis részproblémak szerkezete

Mint mar mondtuk, esemény-kivalasztasi feladat dinamikus programozasi megoldasaval indulunk. Mint a dinamikus programpzas
esetén, az elsd lépésiink az, hogy megtaldljuk az optimalis szerkezetet, és felépitsiik a feladat optimalis megoldast a részproblémak
optimalis megoldasaibdl.

A dinamikus programozasnal mar lattuk, hogy részproblémak alkalmas terét kell definialnunk. Kezdjik azzal, hogy definialjuk
a kovetkez6 halmazokat.

Sj={a&eS: fi<sx< fk<si},

tehat § j azokat az Sheli eseményeket tartalmazza, amelyek a befejez6dése utan kezd6dhetnek, és befejezédnek a; kezdete
elétt. Valjaban § j azokat az eseményeket tartalmazza, amelyek kompatibilisek mind a;-vel, mind aj-vel, és szintén kompatibilisek
az dsszes olyan eseménnyel, amely nem késgbb fejez6dik be, mint amikor g; befejezodik, és azokkal, amelyek a;j kezdeténél nem
korabban kezd6dnek. A teljes probléma kezeléséhez egészitsiik ki az eseményhalmazt az agp és an1 eseményekkel, ahol fg =0,
Shi1 = . Ekkor S= Syny1, €s a részproblémak indexeinek tartomanya: 0 <i, j <n+1.

Még tovabb sz(ikithetjik i és] tartomanyat a kovetkezéképpen. Tegyk fel, hogy az események a befejezésiik szerint monoton
nem-csokkend sorrendbe rendezettek.
fo<fi<fa< - < fy < fngn 1)

Azt Allitiuk, hogy S j = 0, valahanyszor j <i. Miért? Tegylk fel, hogy van olyan & € § j esemény, hogy i > |, azaz &
hatrabb van a sorrendben, mint a;j. Ekkor azt kapnank, hogy fi < s < fx <55 < fj. Tehat fj < fj lenne, ami ellentmond azon
feltevésiinknek, hogy @; hatrabb van a sorrendben, mint aj. Azt kaptuk, hogy feltételezve, hogy az események a befejezésik
szerint monoton nem-cstkkend sorrendbe rendezettek, az S,j, 0<i < j < n+1részproblémak kozil kell maximalis elemszamd,
kolcsondsen kompatibilis eseményhalmazt kivalasztani, tudva, hogy minden mas § j halmaz tres.

Az esemény-kivalasztasi probléma részprobléma szerkezetének meghatarozasahoz tekintsiink egy nem tres § j részproblé-
mat, 1 és tegyiik fel, hogy valamely ay eleme a megoldasnak, azaz fj < g < fx < Sj. Az ax eseményt hasznalva ket részproblémat
kaphatunk, § k-t (amely azon események halmaza, amelyek a; befejezése utan kezd6dnek, és befejezédnek ay kezdete el6tt) és
& j-t (amely azon események halmaza, amelyek ax befejezése utan kezdédnek, és befejezédnek aj kezdete el6tt). Nyilvanvalo,
hogy S és & j részhalmaza az §,j eseményhalmaznak. § j megoldasat megkapjuk, ha az § x és S j megoldasanak egyesite-
séhez hozzavessziik az ax eseményt. Tehat az § j megoldasanak elemszamat kapjuk, ha az § x megoldasanak elemszaméahoz
hozzéadjuk S j megoldasanak elemszamat és még egyet (ax miatt).

Az optimalis részproblémak szerkezet a kdvetkez6 lesz. Tegyiik fel, hogy A; j egy optiméalis megoldasa az § j részproblémanak
és ax € Ajj. Ekkor az A x megoldas optiméalis megoldasa kell legyen az § i részproblémanak, és az Ay j megoldas optimalis
megoldasa kell legyen az S j részproblémanak. A szokasos kivagas-beillesztés modszer alkalmazhaté a bizonyitashoz. Ha lenne
olyan Ai/.k megoldasa S x-nak, amely t6bb eseményt tartalmazna, mint A x, akkor A; j-ben Ak helyett A{ -t véve § j-nek egy
olyan megoldasat kapnank, amely tébb eseményt tartalmazna, mint A j. Mivel feltettiik, hogy A; j optimalis, ezért ellentmondasra
jutottunk. Hasonléan, ha lenne olyan A{q megoldasa S j-nek, amely tobb eseményt tartalmazna, mint Ay j, akkor A; j-ben Ay
helyett A{q-t véve § j-nek egy olyan megoldasat kapnank, amely tébb eseményt tartalmazna, mint A j.

Most az optimalis részproblémak szerkezet felhasznalasaval megmutatjuk, hogy az eredeti probléma optimalis megoldasa fe-
lépithet6 a részproblémak optimélis megoldasaibdl. Lattuk, hogy egy nem udres § j részprobléma minden megoldasa tartalmaz
valamely ax eseményt, és minden optimalis megoldas tartalmazza az § és S j részproblémak optimalis megoldasat. Tehat felé-
pithetiink egy maximalis elemszamu, kdlcsondsen kompatibilis eseményeket tartalmazé megoldasat az § j részproblémanak agy,
hogy két részproblémara bontjuk (a § k és S j részproblémak maximalis elemszami megoldas megkeresésével), a megkeressiik
két részprobléma maximalis elemszamu, kolcsondsen kompatibilis események tartalmazo A; k és Ay j megoldasat, aztan az alabbi
formaban megalkotjuk a kdlcsdndsen kompatibilis eseményekbdl allé A; j maximalis elemszamu megoldast.

A=A kU{ac UA. 2

Az eredeti probléma optimalis megoldasat S n+1 megoldasa adja.

Rekurziv megoldas

A dinamikus programozéasi megoldas kifejlesztésének méasodik Iépéseként rekurziv médon definidljuk az optimalis megoldas érté-
két. Az esemény-kivalasztasi probléma esetén legyen c[i, j| az §,j részprobléma maximalis elemszama, kélcsondsen kompatibilis
eseményeket tartalmazé részhalmaz elemszama. Az tudjuk, hogy cli, j] =0,ha § j =0, és cfi, j] =0, hai > j.

Tekintslink egy S j nem ures részhalmazt. Amint lattuk, ha ax benne van az § j egy maximalis elemszamd, kélcséndsen kom-
patibilis eseményeket tartalmaz6 részhalmazaban, akkor az § ik és S j részproblémak egy maximalis elemszamu, kélcsénosen
kompatibilis eseményeket tartalmazé részhalmazait hasznalhatjuk. A 2. egyenléséget felhasznalva kapjuk a kovetkez6 rekurziv
Osszefliggést.

cli, j] = cli,k +clk, j] + 1.

Ez a rekurziv egyenlet feltételezi, hogy ismerjik a k értéket, de ez nem gy van. Osszesen j —i — 1 lehetséges értéket vehet fel
k, nevezetesen K=1i+1,...,] — 1. Mivel §j a maximélis elemszami részhalmaza valamelyik k-ra el6all, ezért ellenérizziik az
osszes lehetséges értékre, hogy a legjobbat kivalasszuk. Tehat cli, j] teljes rekurziv alakja a kévetkezg lesz.

0 haSJ =0
cli,j] = irp&g{c[i,k} +clk, j]+1} ha§;#0. 3)
AES |

1Az S.,j halmazra néha azt mondjuk, hogy részprobléma és nem események halmaza. A szévegkornyezetbdl mindig vilagos lesz, hogy ha § j-re hivatkozunk,
akkor mint események halmazat értjiik, avagy egy részproblémat, amelynek a bemenete ez a halmaz.

A dinamikus programozasi megoldas atalakitasa moh6 megoldasséa

Ezen a ponton egyszerii gyakorlati feladat lehetne tablazatkitoltés, dinamikus programozasi algoritmus megirasa a 3. rekurzioés
képlet alapjan. Valoban, a

7.1. tétel. Tekintsiink egy § j nem Ures részproblémat, és legyen am a legkisebb befejezési ideji esemény § j-ben.
fm=min{fc:a e S}
Ekkor
1. ay eleme § j valamely maximalis elemszamu, kélcséndsen kompatibilis eseményekbél allé részhalmazanak.
2. Az § mrészprobléma (res, tehat an, valasztasaval legfeljebb az Sy, j nem ires.

Bizonyitas. El&szor a masodik részt bizonyitjuk, mert az egyszeriibb. Tegyiik fem, hogy § m nem tres, tehat van olyan a, esemény,
hogy fi < s < fk < sm < fm. Mivel & eleme S j-nek, és befejezési ideje kisebb, mint an-€, ami ellentmond ay, valasztasanak.

Tehat azt kaptuk, hogy § m Ures.

Az els6 rész bizonyitasahoz tegyik fel, hogy Aj j egy maximalis elemszamu, kélcsdndsen kompatibilis eseményekbdl allo
részhalmaza § j-nek, és tekintsiik § j elemeinek a befejezési idejiik szerinti monoton nem-csokkend felsorolasat. Legyen ay
az els6 ebben a felsorolasban. Ha ax = am, akkor készen vagyunk, mert megmutattuk, hogy am eleme § j valamely maximalis

elemszamu, kolcsonosen kompatibilis eseményeket tartalmazé részhalmazanak. Ha ax # amn, akkor tekintsik az AI’J =A—
{ax} U {am} részhalmazt. Az Ai’,j-beli események diszjunktak, mert A; j elemei diszjunktak, és ax az legkorabban befejez6d6
esemény A j-ben, tovabba fr, < fi. Mivel AII] ugyanannyi eseményt tartalmaz, mint A; j, ezért A,’J is egy maximalis elemszamu,
kélcsondsen kompatibilis eseményeket tartalmazé részhalmaza § j-nek, amely tartalmazza am-et. |

Miért fontos az 1. tétel? Emlékeztetiink a dinamikus programozasra, amely szerint az optimalis részproblémak szerkezetét
az befolyasolja, hogy hany részproblémétdl fligg az eredeti probléma, és hany vélasztast kell végezni, hogy meghatarozzuk,
melyik részproblémat kell felhasznalni. A dinamikus programozasi megoldasunkban két részproblémat hasznalunk az optimalis
megoldashoz, és j-i-1 valasztast kell tenni az § j részprobléma megoldasahoz. Az 1. tétel jelent6sen csokkenti mindkét értéket.
Csak egy részprobléma kell az optiméalis megoldashoz (a masik biztosan lres), és § j megoldasa soran csak egy vélasztast kell
nézni, ami az § j legkorabban befejez6d6 eseménye. Szerencsére kénnyen meg tudjuk hatarozni ezt az eseményt.

Azon tul, hogy csokkentette a részproblémak és a valasztasok szamat, az 1. tétel mas elénnyel is jar. Minden részproblémat
feltlrél-lefelé haladé médon meg tudunk oldani, ellentétben a tipikus dinamikus programozasi médszerrel, ahol alulrél-felfelé kell
haladni. Az § j részprobléma megoldasat Ggy kapjuk, vesszilk § j legkorabban befejez6d6 am eseményét, és hozzavesszik az
Sn,j részprobléma egy optimalis megoldasahoz. Mivel tudjuk, hogy an, vélasztasaval Sy j optiméalis megoldasa biztosan része §
egy optimélis megoldasanak, ezért nem kell megoldani Sy j-t, § j megoldasa el6tt. § j -t gy oldhatjuk meg, hogy kivalasztjuk a
legkorabban befejez6d6 am eseményt § j-bdl, és aztan megoldjuk Sy j -t.

Jegyezzilk meg azt is, hogy van séma a megoldand6 részproblémékra. Az eredeti probléma az S= Sny1. Tegyik fel, hogy
az am, eseményt valasztottuk, amely a legkorabban befejez6d6 eseménye Sni1-nek. (Mivel az események befejezési idejik
szerint monoton nem-csokkend sorrendbe rendezettek, és fo =0, igy m; = 1.) A kovetkezd részproblémank Sy, n+1 lesz. Tegyik
fel, hogy am,-t valasztottuk Sy, ni+1-b6l, amely a legkorabban befejez6d6 eseménye. (Nem feltétlendl teljesul, hogy mp = 2.)
A kovetkezd részproblémank Sy, ni1 lesz. Ezt folytatva latjuk, hogy minden részproblémank Sy ny1 alakd lesz, valamely my
esemény-sorszamra. Mas széval, minden részproblémat a legkésébb befejez6dé esemény, és egy masik esemény sorszama
hataroz meg, ahol az ut6bbi részproblémaroél-részproblémara véltozik.

A vélasztand6 eseményre is van sémank. Mivel mindig Sy nt1 -nek a legkorabban befejez6d6 eseményét valasztjuk, igy a
részproblémakhoz kivalasztott események sorozata a befejezési id6 szerint szigorGan monoton névekvd lesz. Tovabba, minden
eseményt csak egyszer kell vizsgalni, a befejezési idejiuk szerint monoton nem-csodkkend sorrendben.

Egy részprobléma megoldasahoz mindig azt az a;,, eseményt valasztjuk ki, amely a legkorabban befejezédik, és legalisan

beoszthat6. Tehat a valasztas)mohd” abban az értelemben, hogy intuitive a legnagyobb lehet6séget hagyja a fennmaradt
események beosztasara. Tehat az a moho valasztas, amely maximalizalja a beosztasra fennmaradt id6t.

Rekurziv mohé algoritmus

Miutan lattuk, hogyan adhatunk dinamikus programozasi megoldas, amely feltlrél-lefelé haladé médszer, itt az ideje, hogy megad-
junk egy tisztan mohd, alulrél felfelé haladé moédszer(algoritmust. A REKURZIV-ESEMENY-KIVALASZTO eljaras kdzvetlenil kaphaté
rekurziv megoldasa a problémanak. Ennek bemend paraméterei az események kezd6 és befejezé id6pontjait tartalmazé s és f
tdmb, tovabba a megoldandd S ny1 részproblémat meghatérozé i és n sorszdm. (Az n paraméter az utolsé a, esemény indexe,

és nem az N+ 1 fiktiv esemény, amely szintén eleme a részprobléméanak.) Az eljaras S 1 egy maximalis elemszama, kdlcséno-
sen kompatibilis eseményeket tartalmazé részhalmazéat adja eredményiil. Feltételezzilk, hogy az n bemeneti esemény befejezési
id6 szerint monoton nem-csokkené sorrendbe rendezett az 1. képletnek megfeleléen. Ha a rendezettség nem teljesiilne, akkor

O(nlogn) id6ben rendezhetjik Gket. A kiindulasi probléma megoldasat a REKURZIV-ESEMENY-KIVALASZTO(S, f,0,n) eljarashivas
adja.

REKURIV-ESEMENY-KIVALASZTO(S, f,i,n)

1 m—i+1

2 while m<néssy< fj > § nt1 elsé valszthaté eseményét keressik
3 dom«—m+1

4ifm<j

5 thenreturn {am}U REKURIV-ESEMENY-KIVALASZTO(S, f,m,n)

6 thenreturn O

Az 1. abra mutatja az algoritmus altal végzett mliveleteket. A REKURIV-ESEMENY-KIVALASZTO(S, f,m,n) egy adott meghi-
vasakor a 2-3. sorokban a while ciklus megkeresi az § 1 els6 valaszthaté eseményét. A ciklus sorban az &11,8i42,...,8n
eseményeket vizsgalja, amig meg nem talélja az els6 olyan a,, eseményt, amely kompatibilis a;-vel, azaz sy, > fj teljestl. Ha a
ciklus gy ér véget, hogy talalt ilyen eseményt, akkor az eljarashivassal befejez6dik az 5. sorban végrehajtott return utasitassal,
ami visszaadja az {am} és a REKURIV-ESEMENY-KIVALASZTO(S, f,m, n) rekurziv hivas altal visszaadott halmazok egyesitését. Az
utobbi halmaz az Sy n1 részprobléma megoldasa. A ciklus Ggy is terminalhat, hogy a m > n feltétel teljesil, amikor is nincs olyan
esemény, amely kompatibilis lenne S-vel. Ebben az esetben S .1 = 0, és az eljaras az 0 értéket adja vissza a 6. sorban.
Feltéve, hogy az események befejezési idejiik szerint monoton nem-csékkenden rendezettek, a REKURIV-ESEMENY-KIVALASZTO(S, f,0,n)
eljarashivas futasi ideje ©(n). Ezt a kovetkezdképpen lathatjuk be. A rekurziv hivasokban minden eseményt pontosan egyszer

vizsgalunk a while ciklus feltételvizsgalatakor a 2. sorban. Pontosabban, az ax eseményt az utolsé olyan hivas vizsgélja, amelyre
i <k

Iterativ mohé algoritmus

A rekurziv eljdrdsunkat egyszerlien atalakithatjuk iterativ algoritmussa. A REKURIV-ESEMENY-KIVALASZTO eljards majdnem jobb-
rekurziv (lasd a 7-4. feladatot), 6nmagat hivé rekurziv hivassal végzddik, amit kbvet egy egyesités miivelet. Jobb-rekurziv eljaras
atalakitasa iterativva altalaban egyszeri feladat, val6jaban tobb programozési nyelv forditoprogramja ezt automatikusan elvégzi.
Amint latjuk, a REKURIV-ESEMENY-KIVALASZTO eljaras minden § n 1 részproblémara mikadik, tehat azokra, amelyek a legnagyobb
befejezésli eseményeket tartalmazzak.

A MOHO-ESEMENY-KIVALASZTO eljaras egy iterativ valtozata a REKURIV-ESEMENY-KIVALASZTO eljarasnak. Ez ismét feltételezi,
hogy a bemeneti események befejezési idejiik szerint monoton nem-cstékkené sorrendbe rendezettek. Az eljaras az A valtozoéban
gy(jti 6ssze a kivalasztott eseményeket, és ezt adja eredményil a végén.

MOHO-ESEMENY-KIVALASZTO(S, f)

1 n« hossz|[s|
2 A—{a}
3i<1

4 for m«<— 2ton
5 doif sy > fi

6 then A «— AU {an}
7 i—m
8 return A

Az eljaras a kovetkezoképpen miikodik. Az i valtozé tartalmazza az A-ba legutoljara bevalasztott esemény indexét, aminek az
a; esemény felel meg a rekurziv valtozatban. Mivel az eseményeket befejezési idejik szerinti monoton nem-csdkkend sorrendben
vizsgaljuk, ezért f; mindig a legnagyobb befejezési idejli esemény az A halmazban. Tehat

fi = max{fy : a € A} . 4)

4 5 7
5 3 8
6 5 9
7 6 10
8 8 11
9 8 12
| 4 N S a3 ——
— a
0 2 13 ‘ = ‘
| a | e 5
112 14 : L L ‘ + " ‘ + L
| i) | [a | | ag
[a | e | ag] a1
: : time
0 1 2 3 4 5 6 7 8 9 10 11 12 13 1

1. dbra. A REKURZIV-ESEMENY-KIVALASZTO algoritmus miikddése a korabban megadott 11 eseményre. Egy rekurziv hivas soran
vizsgalt események két horizontalis vonal kozétt lathatdéak. A fiktiv ag esemény befejezési ideje 0, az els§ REKURIV-ESEMENY-
KIVALASZTO(S, f,0,11) eljarashivaskor az a; esemény valasztodik ki. A mar korabban kivalasztott események satirozottak, az
éppen vizsgalt esemény pedig fehér. Ha egy esemény kezdd id6pontja elébb van, mint a legutoljara bevalasztott esemény befejez6
idépontja (a kozottik meghudzott nyil balra mutat), akkor azt elvetjik. Egyébként (ha a nyil egyenesen felfelé, vagy jobbra mutat)
bevalasztjuk. Az utolsé REKURIV-ESEMENY-KIVALASZTO(S, T, 11 11) rekurziv hivas a 0 értékkel tér vissza. Az eredményil kapjuk
a kivalasztott események {ai, a4, ag,a11} halmazat.

Az 2-3. sorban kivalasztjuk az a; eseményt, el6készitve ezzel az A halmazt, hogy egyedil az a; eseményt tartalmazza, az i
valtoz6 pedig ezen esemény sorszamat veszi fel kezdetben. A for ciklus a 4-7. sorokban megkeresi a legkorabban befejez6dé
eseményt az § ny1 halmazban. A ciklus egymas utan vizsgalja az am eseményeket, és hozzaadja az A halmazhoz, ha kompatibilis
az 6sszes A-beli eseménnyel. Annak ellenérzése, hogy am kompatibilis az 6sszes A-ban 1évé eseménnyel, a 4. egyenl6ség
miatt elegendd azt ellendrizni (5. sor), hogy az Sy kezd6 idépont nem korabbi, mint az A-ba legutoljara bevalasztott esemény f;
befejez6 idGpontja. Ha az am esemény kompatibilis, akkor a 6-7. sorokban hozzavessziik am-et A-hoz, és i felveszi az m értéket.
A MOHO-ESEMENY-KIVALASZTO(S, f) eljarashivas pontosan azt a halmazt adja, mint a REKURZiV-ESEMENY-KIVALASZTO(S, f,0,n)
hivas.

A MOHO-ESEMENY-KIVALASZTO algoritmus, csakdgy, mint a REKURZIV-ESEMENY-KIVALASZTO ©(N) id6ben megoldja n beme-
neti eseményre a feladatot, feltéve, hogy az események kezdetben a befejezési idejik szerint monoton nem-csékkend sorrendben
vannak.

A moho stratégia elemei

A mohd algoritmus gy alkotja meg a probléma optimalis megoldasat, hogy valasztasok sorozatat hajtja végre. Az algoritmus soran
minden dontési pontban azt az esetet valasztja, amely az adott pillanatban optimalisnak latszik. Ez a heurisztikus stratégia nem
mindig ad optimalis megoldast, azonban néha igen, mint azt lattuk az esemény-kivalasztasi probléma esetén. Ebben a szakaszban
a moho stratégia néhany altalanos tulajdonsagat fogjuk megvizsgalni.

Az a modszer, amit kévettiink moh¢ algoritmus kifejlesztésére, egy kicsit bonyolultabb az altalanos esetnél. A kovetkezé
Iépések sorozatan mentiink keresztiil.

1. A probléma optimalis szerkezetének meghatarozasa.
2. Rekurziv megoldas kifejlesztése.

3. Annak bizonyitasa, hogy minden rekurziv Iépésben az egyik optimalis valasztas a moho valasztas. Tehat mindig biztonsagos
a moho valasztas.

4. Annak igazolasa, hogy a moho vélasztas olyan részprobléméakat eredményez, amelyek kozil legfeljebb az egyik nem Ures.
5. A moho stratégiat megvaldsité rekurziv algoritmus kifejlesztése.
6. A rekurziv algoritmus atalakitasa iterativ algoritmussa.

Ezen Iépéseken keresztiilhaladva lattuk a moho algoritmus dinamikus programozasi alatamasztasat. A gyakorlatban azonban
altalaban egyszerdsitjik a fenti Iépéseket moho algoritmus tervezésekor. A részproblémak kifejlesztésekor arra figyeliink, hogy
a moho vélasztas egyetlen részproblémat eredményezzen, amelynek optimalis megoldasat kell megadni. Példaul az esemény-
kivalasztasi feladatnal elészor olyan S j részproblémékat hataroztunk meg, ahol i és j is valtozo6 érték lehetett. Ezutan rajottiink,
hogy ha mindig moho valasztast végziink, akkor redukéalhatjuk a részproblémakat § n, 1 alakdakra.

Masképpen kifejezve, az optimalis részproblémak szerkezetét a moho valasztas figyelembevételével alakithattuk ki. Tehat
elhagyhattuk a masodik indexet, és az § = {ax € S: fj < ¢} alak részproblémakhoz jutottunk. Ezutan bebizonyithattuk, hogy
a moho vélasztas (az elsé befejez6d6 a;,, esemény S§-ben), kombinalva Sy, egy optimalis megoldasaval, az eredeti § probléma
optimalis megoldasat adja. Altalanosabban, moho algoritmus tervezését az alabbi lépések végrehajtasaval végezziik.

1. Fogalmazzuk meg az optimalizaciés feladatot gy, hogy minden egyes véalasztas hatasara egy megoldandé részprobléma
keletkezzék.

2. Bizonyitsuk be, hogy mindig van olyan optimalis megoldasa az eredeti probléménak, amely tartalmazza a moho valasztéast,
tehat a mohd vélasztds mindig biztonsagos.

3. Mutassuk meg, hogy a mohé vélasztassal olyan részprobléma keletkezik, amelynek egy optiméalis megoldasiahoz hozzavéve
a mohé valasztast, az eredeti probléma egy optimalis megoldéasat kapjuk.

Ezt a kozvetlenebb médszert alkalmazzuk a fejezet hatralévé részében. Mindazonaltal, minden mohé algoritmushoz majdnem
mindig van bonyolultabb dinamikus programozéasi megoldas.

Meg tudjuk-e mondani, hogy adott optimaliaciés feladatnak van-e mohé algoritmusud megoldasa? Erre nem tudunk altalanos
vélaszt adni, de a mohé-véalasztasi tulajdonsag és az optimalis részproblémak tulajdonsag két kulcsfontossagu 6sszetevl. Ha meg
tudjuk mutatni, hogy a feladat rendelkezik e két tulajdonséaggal, nagy eséllyel ki tudunk fejleszteni moho algoritmust megoldast.

Moho-vélasztasi tulajdonsag

Az els6 alkotéelem a mohoé-valasztasi tulajdonsag : globalis optimalis megoldas elérhetd lokalis optimum (mohd) valasztasaval.
Més szdéval, amikor arrél dontiink, hogy melyik valasztast tegylk, azt valasztjuk, amelyik az adott pillanatban a legjobbnak t(inik,
nem tor6dve a részprobléméak megoldasaival. Ez az a pont, ahol a moho stratégia kulonbozik a dinamikus programozastol. Di-
namikus programozas esetén minden Iépésben valasztast hajtunk végre, de a valasztas fligghet a részproblémak megoldasatol.
Kovetkezésképpen, a dinamikus programozasi médszerrel a problémat alulrél-felfelé haladé moédon oldjuk meg, egyszeribbtél
Osszetettebb részproblémak felé haladva. A moh6 algoritmus soran az adott pillanatban legjobbnak t(in6 valasztast hajtjuk végre,
barmi is legyen az, és azutan oldjuk meg a valasztas hatasara fellépd részproblémat. A mohd algoritmus soran végrehajtott valasz-
tas figghet az addig elvégzett valasztasoktdl, de nem fligghet késdbbi valasztasoktdl, vagy részproblémak megoldasatél. Tehat
ellentétben a dinamikus programozassal, amely a részproblémakat alulrél-felfelé haladva oldja meg, a mohd stratégia altalaban
felulrél-lefelé halad, egymas utan végrehajtva moho valasztasokat, amellyel a problémat sorra kisebb méretiire redukalja.

Természetesen bizonyitanunk kell, hogy a Iépésenkénti mohd valasztasokkal globalisan optimélis megoldashoz jutunk, és ez
az ami leleményességet igényel. Tipikusan, mint az 1. tétel esetén, a bizonyitas részproblémék globalis optimalis megoldasét
vizsgélja. Megmutatja, hogy az optimalis megoldas moédosithaté Ggy, hogy az a mohé valasztast tartalmazza, és hogy ez a
véalasztas redukalja a problémat hasonlé, de kisebb méret(i részproblémara.

A moho-valasztasi tulajdonsag gyakran hatékonysagot eredményez a részprobléma véalasztasaval. Példaul az esemény-
kivalasztasi feladatnal, feltételezve, hogy az események befejezési idejik szerint mononton nem-csdkkend sorrendbe rendezettek,
minden eseményt csak egyszer kell vizsgalni. Gyakran az a helyzet, hogy a bemeneti adatokat alkalmasan el6feldolgozva, vagy
alkalmas adatszerkezetet hasznéalva (ami gyakran prioritasi sor), a mohé valasztas gyorsan elvégezhetd, és ezaltal hatékony algo-
ritmust kapunk.

Optimalis részproblémék tulajdonsag

Egy probléma teljesiti az optimalis részproblémak tulajdonsagot , ha az optimalis megoldas felépithet6 a részproblémak optima-
lis megoldasabdl. Ez az alkotéelem kulcsfontossagu mind a dinamikus programozas, mind a mohé stratégia alkalmazhatésaganak
megéllapitasanal. Az optimalis részproblémakra példaként emlékeztetiink arra, ahogy megmutattuk, hogy ha § j egy optimalis
megoldasa tartalmazza az ax eseményt, akkor az szilkségképpen tartalmazza Sk és S j egy optimélis megoldasat. Ezen opti-
maélis szerkezet alapjan, ha tudjuk, hogy melyik ax eseményt kell valasztani, akkor § j egy optiméalis megoldasa megalkothat6 a,
tovabba § k és & j egy optimalis megoldasabol. Az optimalis részprobléméak ezen tulajdonsagat észrevéve meg tudtuk adni a 3.
rekurziv egyenletet, ami az optimalis megoldas értékét adja meg.

Altalaban sokkal kézvetlenebb alkalmazasat hasznaljuk az optimalis részproblémak tulajdonsagnak mohé algoritmus kifejlesz-
tése soran. Mint mar emlitettik, szerencsénk van, amikor feltételezziik, hogy az eredeti probléma mohé véalasztasa megfeleld
részproblémat eredményez. Csak azt kell belatni, hogy a részprobléma optimalis megoldasa, kombinalva a mar elvégzett mohdé
vélasztassal, az eredeti probléma optimalis megoldaséat adja. Ez a séma implicit médon hasznal részproblémak szerinti indukciot
annak bizonyitasara, hogy minden lépésben mohé valasztast végezve optimélis megoldast kapunk.

Moh¢ stratégia vagy dinamikus programozas

Mivel az optimalis részproblémak tulajdonségot kihasznaljuk mind a mohé, mind a dinamikus programozasi stratégiaknal, el6for-
dulhat, hogy dinamikus programozasi megoldast prébalunk adni akkor, amikor moh6 megoldas is célravezetd lenne, és forditva,
tévesen mohé megoldassal prébalkozunk akkor, amikor valéjaban dinamikus programozasi médszert kellene alkalmazni. A finom
kilonbségek illusztralasara tekintsiik a kdvetkezd klasszikus optimalizalasi probléma két valtozatat.

A 0-1 hatizsak feladat a kovetkez6t jelenti. Adott n darab targy, az i-edik targy hasznalati értéke v, a sulya pedig w;, ahol Vv
és W; egész szamok. Kivalasztandd a targyaknak olyan részhalmaza, amelyek hasznalati értékének 6sszege a lehetd legnagyobb,
de a sulyuk 6sszege nem nagyobb, mint a hatizsak W kapacitasa, amely egész szam. Mely targyakat rakjuk a hatizsakba? (Ezt
a problémat azért nevezzik 0-1 hatizsak feladatnak, mert minden targyat vagy bevalasztunk, vagy elhagyunk, nem tehetjik meg,
hogy egy targy toredékét, vagy tdbbszordsét valasztjuk.)

A toredékes hatizsak feladat csak abban kiilonbozik az el6z6t6l, hogy a targyak téredéke is valaszthatd, nem kell 0-1 binaris
vélasztast tenni. Ugy tekinthetjiik, hogy 0-1 hatizsak feladat esetén a targyak arany témbok, mig a téredékes hatizsak feladatnal
aranyporbdl merithetiink.

Mindkét hatizsak feladat teljesiti az optimalis részproblémak tulajdonségot. A 0-1 feladat esetén tekintsiink egy olyan valasztast,
amely a legnagyobb hasznalati értéket adja, de a targyak dsszstlya nem haladja meg a W értéket. Ha kivessziik a j-edik targyak a
hatizsakbol, akkor a bennmaradt targyak hasznalati értéke a legnagyobb lesz azon feltétel mellett, hogy az ésszsuly nem nagyobb,
mint W —wj, és n— 1 targybdl valaszthatunk, kizarva az eredeti targyak kozil a j-ediket. A toredékes hatizsak feladatnal ha egy

optimalis valasztasbdl kivesziink a j targybdl w mennyiséget, akkor a megmaradt valasztas optimalis lesz arra az esetre, amikor
legfeliebb W — w 6sszsulyt érhetiink el és a j-edik targybdl legfeliebb wj — w mennyiséget valaszthatunk.

Bar a két feladat hasonlo, a téredékes hatizsak feladat megoldhat6 moho stratégiaval, a 0-1 feladat azonban nem. A téredékes

feladat megoldasahoz el6bb szamitsuk ki minden targyra a vi /w; hasznalati érték per suly hanyadost. A moho stratégiat kovetve
el6szor a legnagyobb hanyadosu targybdl valasztunk amennyit csak lehet. Ha elfogyott, de még nem telt meg a hatizsak, akkor a
kovetkez6 legnagyobb hanyadosu targybdl valasztunk amennyit csak lehet, és igy tovabb, amig a hatizsak meg nem telik. Mivel
a targyakat az érték per stly hanyados szerint kell rendeznie, a mohd algoritmus futasi ideje O(nlgn) lesz. Annak bemutatasara,
hogy a mohd stratégia nem m(ikédik a 0-1 hatizsak feladatra, tekintsiik a 2(a) abran lathaté esetet. Harom targyunk van, és a
héatizsak mérete 50 egységnyi. Az 1. targy sulya 10, hasznalati értéke 60, a 2. targy sulya 20, hasznalati értéke 100, a 3. targy
stlya 30, hasznélati értéke pedig 120 egység. Tehat az 1. targy érték per sily hanyadosa 6, a 2. targyé 2, a 3. targyé pedig 4. igy
a moho stratégia el6szor az 1. targyat valasztana. Azonban a 2(b) abran lathaté elemzés szerint az optimdlis megoldasban a 2.
és a 3. targy szerepel, kihagyva az 1. targyat. Mindkét valasztas, amelyben az 1. targy szerepel nem optimalis.
A megfelel6 toredékes feladatra azonban a moho stratégia, amely el6szér az 1. targyat valasztja, optimdlis megoldast ad, mint
azt a 2(c) abra mutatja. A 0-1 feladat esetén az 1. targy valasztasa nem vezet optimdlis megoldashoz, mert ezutan nem tudjuk
telerakni a hatizsakot, és az Giresen maradt rész csékkenti a hatizsak lehetséges érték per suly hanyadost. A 0-1 feladatnal amikor
egy targy bevalasztasarol dontiink, akkor el6bb 6ssze kell hasonlitani annak a két részproblémanak a megoldasat, amely a targy
bevalasztasaval, illetve kihagyasaval adédik. Az igy megfogalmazott probléma sok, egymast atfedé részproblémat eredményez,
ami a dinamikus programozast fémjelzi. Val6ban, a 0-1 feladat megoldhat6 dinamikus programozassal.

8. Huffman-kéd

A Huffman-kéd széles korben hasznalt és nagyon hatékony médszer adatallomanyok tomoritésére. Az elérhet§ megtakaritas
20%-t6l 90%-ig terjedhet, a témoritendé adatallomany sajatossagainak fliggvényében. A kdédolandé adatallomanyt karaktersoro-
zatnak tekintjuk. A Huffman féle moho algoritmus egy tablazatot hasznal az egyes karakterek el6fordulasi gyakorisagara, hogy
meghatarozza, hogyan lehet a karaktereket optimalisan dbrazolni binaris jelsorozattal.

Tegyuk fel, hogy egy 100 000 karaktert tartalmazé adatallomanyt akarunk tdmdéritetten tarolni. Tudjuk, hogy az egyes karakterek
el6fordulasi gyakorisaga megfelel a 3. dbran lathaté tablazatnak. Vagyis, hat kilénb6z6 karakter fordul elé az allomanyban, és az
a karakter 45 000-szer fordul el6 az allomanyban.

Sokféleképpen abrazolhatd egy ilyen tipusu informacié halmaz. Mi binaris karakterkdd (vagy roviden kéd) tervezésének
probléméjéat vizsgaljuk, amikor is minden karaktert egy binéris jelsorozattal abrazolunk. Ha fix hosszu kédot hasznalunk, akkor
3 bitre van sziikség a hatféle karakter kodolasara: a = 000,b = 001,...,f =101 Ez a mddszer 300 000 bitet igényel a teljes
alloméany kodolasara. Csinalhatjuk jobban is? A valtozé hosszu kéd alkalmazéasa tekintélyes megtakaritast eredményez, ha
gyakori karaktereknek rovid, ritkan el6fordulé karaktereknek hosszabb kddszavat feleltetiink meg. A 3. &bra egy ilyen kédolast
mutat: itt az egybites O kdd az a karaktert dbrazolja, a négybites 1100kdd pedig az f karakter kodja. Ez a kédolas

(45-14+13-3+12-3416-3+9-4+5-4)-1000= 224000

bitet igényel az allomany tarolasara, ami hozzavetbleg 25% megtakaritast eredményez. Valéjaban ez optimalis kédolast jelent,
mint majd latni fogjuk.

8.1. Prefix-kddok

A tovabbiakban csak olyan kddszavakat tekintiink, amelyekre igaz, hogy egyik sem kezddszelete a masiknak. Az ilyen kédolast
prefix-kédnak nevezziik. 2 Megmutathatd (bar mi ezt nem tesszilk meg), hogy karakterkéddal elérhetd optimalis adattdmorités
mindig megadhat6 prefix-koddal is, igy az altalanossag megszoritasa nélkiil elegend6 prefix-kédokat tekinteni.

A prefix-kédok elénydsek, mert egyszer(sitik a kédolast (témdoritést) és a dekédolast. A kédolas minden binaris karakterkodra
egyszer(i: csak egymas utan kell irni az egyes karakterek binaris kodjat. Példaul a 3. abran adott valtozd hosszu karakterkod
esetén az abc harom karaktert tartalmazé allomany kédja 0-101- 100= 0101100 ahol a ,-” pont az egymasutan irds mvelet
(konkatenacio) jele.

A dekddolés is meglehet6sen egyszeri prefix-kdd esetén. Mivel nincs olyan kddszd, amely kezddszelete lenne egy masiknak,
igy egyértelmi, hogy a kodolt allomany melyik kodszéval kezd6dik. Egyszer(ien megallapitjuk, hogy a kodolt allomany melyik
kodszoval kezdbdik, aztan helyettesitjiik ezt azzal a karakterrel, amelynek ez a kédja, és ezt az eljarast addig végezziik, amig a
kédolt allomanyon végig nem értlink. A példankat tekintve, a 00101110Jelsorozat egyértelmien bonthat6 fel a 0-0-101-1101
kdédszavak sorozatara, tehat a dekddolas az aabesorozatot eredményezi.

2A prefix-mentes” elnevezés helyesebb lenne, de a ,prefix-k6d” ltalanosan hasznalt az irodalomban.

— 30| $80

item 3 30 s120

item 2 50 . 30] $120
— 20[$100 20[$100
item 1 30 . + + +
20 20[s100 | — —
10f s60 10| s$60 10| s$60
$60 $100 $120 knapsack =$220 =$160 =$180 =$240
(a) (b) ©)

2. dbra. A moho¢ stratégia nem mikédik a 0-1 hatizsak feladatra. (a) Az &bran szereplé harom targy olyan részhalmazat kell
kivalasztani, amely sulyainak 6sszege nem nagyobb, mint 50. (b) Az optimalis megoldas a 2 és 3 targyakat tartalmazza. Minden
olyan megoldas, amely tartalmazza a 1 targyat, annak ellenére, hogy ennek a legnagyobb az érték per suly hanyadosa, nem lesz
optimalis. (c) A téredékes hatizsak feladat esetén az a stratégia, amely szerint a legnagyobb érték per suly szerint valasztunk,
optimalis megoldast ad.

a b c d e f
Gyakorisag (ezrekben) 45 13 12 16 9 5
Fix hossz(kédszo 000 001 010 011 100 101
Véltoz6 hosszu kédszé 0 101 100 111 1101 1100

3. dbra. Karakter kodolasi probléma. Az adatallomany 100 000 karakterbdl all, és csak az a—f karakterek fordulnak el az
allomanyban a feltlintetett gyakorisagokkal. Ha minden karaktert 3 bites kédszéval kédolunk, akkor 300 000 bitre van sziikség. Az
abran lathato véaltoz6 hosszu kddszavakat hasznélva az &llomanyt 224 000 bittel kddolhatjuk.

A dekddolasi eljarashoz sziikség van a prefix-kdd olyan alkalmas abrazolasara, amely lehet6vé teszi, hogy a kédszét konnyen
azonositani tudjuk. Az olyan binaris fa, amelynek levelei a kddolando karakterek, egy ilyen alkalmas abrazolas. Ekkor egy karakter
kédjat a fa gyokerétél az adott karakterig vezetd Gt abrazolja, a 0 azt jelenti, hogy balra megyiink, az 1 pedig, hogy jobbra megyiink
az uton a faban. A 4. abra a példankban szerepld két kédot abrazolja. Vegyik észre, hogy ezek a fak nem binaris kereséfak,
a levelek nem rendezetten talalhatok, a belsd csicsok pedig nem tartalmaznak karakter kulcsokat. Egy adatalloméany optimalis
kodjat mindig teljes binaris fa abrazolja, tehat olyan fa, amelyben minden nem levél csicsnak két gyereke van. A példankban
szerepl6 fix hossza kdd nem optimalis, mert a 4. abran lathato faja nem teljes binaris fa: van olyan kédszo, amely 10 -lal kezd&dik,
de nincs olyan, amely 11 -gyel kezd6dne. Mivel a tovabbiakban szoritkozhatunk teljes binaris fakra, azt mondhatjuk, hogy ha C az
az &bacé, amelynek elemei a kddolandé karakterek, akkor az optimalis prefix-kdd fajanak pontosan |C| levele és pontosan |C| — 1
belsd cstcsa van.

Ha adott egy prefix-kod T faja, akkor egyszer(kiszamitani, hogy az adatallomany kédolasahoz hany bit sziikséges. A C abécé
minden c karakterére jeldlje f(c) a ¢ karakter el6fordulasi gyakorisagat az allomanyban, dr(c) pedig jelélje a c-t tartalmazo levél
mélységét a T faban. Vegyik észre, hogy dr(C) megegyezik a C karakter kddjanak hosszaval. A kddolashoz szikséges bitek
szadma ekkor

B(T) = ECf(C)dT(C) ()

és ezt az értéket a T fa koltségének nevezzik.

8.2. Huffman-koéd szerkesztése

Huffman talalta ki azt a moh6 algoritmust, amely optimalis prefix-kédot készit, amit Huffman-kédnak

neveziink. A 2. szakasz megallapitasait figyelembe véve az algoritmus helyességének bizonyitdsa a mohdé-valasztasi és az
optimalis részproblémak tulajdonsagon alapszik. Ahelyett, hogy a kdd kifejlesztése el6tt bebizonyitanank e két tulajdonsag teljesi-
Iését, el6szor a kédot adjuk meg. Ezt azért tessziik, hogy vilagosan lassuk, az algoritmus hogyan hasznalja a moho valasztast.

A kovetkez6, pszeudokdd formajaban adott algoritmusban feltételezziik, hogy C a karakterek n elem(i halmaza, és minden
¢ € C karakterhez adott annak f|[c] gyakorisaga. Az algoritmus alulrél-felfelé haladva épiti fel azt a T fat, amely az optimdlis kod
faja. Az algoritmus Ugy indul, hogy kezdetben |C| szamu csucs van, amelyek mindegyike levél, majd |C| — 1 szamu ,6sszevonas”
végrehajtasaval alakitja ki a végsé fat. Az f-szerint kulcsolt Q prioritasi sort hasznaljuk az 6sszevonandd két legkisebb gya-
korisagu elem azonositasara. Két elem dsszevonasanak eredménye egy Uj elem, amelynek gyakorisaga a két 6sszevont elem
gyakorisaganak osszege.

HuFFMAN(C)

1 n—|C|

2 Q<C

3fori—1ton—1

4 do U] Z csucs létesitése

5 bal[Z] «— x «+ Kivesz-MIN(Q)
6 jobb[Z] — y «— KivEsz-MIN(Q)
AR | RS (Y

8 BESzUR(Q,2)

9 return KIVESz-MIN(Q)

10

[a:45] [0:13] [c:12] [c:16] [e:9] [£:5]

(2) (b)

11

Az algoritmus megvalésitasa

Program HuffmanKod;
Uses Prisor;
Const Maxn=?77?;
Type
Gyakori= Array[0..2*Maxn-1] Of Word;
Fa= Array[l..2*Maxn-1] Of Integer;

Function Kis (VAr X,Y: Elemtip): Boolean;
Begin
Kis:= P[X] <= P[Y]
End;

Procedure Huffman(Var P: Gyakori; n:Word; Var T: Fa);
Var S: PriSor;
i,%,y,2z: Word;
Begin
Letesit (S, Kis);
For i:= 1 To n Do
Sorba(S,1);
z:=n; T[2*n-1]:=0;
For i:= 1 To n-1 Do

Begin
Sorbol (S,x); Sorbol(S,vy);
Inc(pont);
T[(x]:= -z; {x apja: z, és z bal fia x}

Tlyl:= z; {y apja: z, és z jobb fia y}
Plz]:= P[x]+ Plyl;
Sorba (S, z);
End;
End;

Procedure KilIr (Var T:Fa; i:Word);
Begin
If T[1]<>0 Then
Begin
KiIr(T,Abs(T[1]));
If T[i]<0 Then Write(0:1)
Else Write(l:1);
End;
End;

Var
P: Gyakori;
T:Fa; n,i:Word;
Begin
ReadLn (n);
For i:= 1 To n Do Read(P[i]);
Huffman (P,n,T);
For i:= 1 To n Do Begin
KiIr(T,1i); writeln;
End
End.

A példankban szerepl6é adatokra a Huffman algoritmus a 5. abran lathaté médon mikodik. Mivel hat kédoland6 karakter van,

12

a sor mérete kezdetben n = 6 és 5 dsszevonasi lépés szilkséges a fa felépitéséhez. A végén kapott fa megfelel az optimalis
prefix-kédnak. Minden karakter kédja a gyokértdl a megfelel6 levélig vezetd Gton 1évé élek cimkéinek sorozata.

Az algoritmusban a 2. sor inicializalja a Q prioritasi sort a C-beli karakterekkel. A 3-8. sorokban adott ciklus ismétl6déen
kivalasztja a Q sorbdl az x és y két legkisebb gyakorisagu cslicsot és beteszi a sorba azt a z (jj cstcsot, amely X és y 9sszevonasat
abrazolja. A zUj csucs gyakorisaga X és Yy gyakorisaganak 6sszege lesz, amit a 7. sorban szamitunk ki. A z csucs bal gyereke X,
jobb gyereke pedig az y csucs lesz. (Itt a sorrend nem lényeges, barmely csucs bal és jobb gyereke felcserélhetd, kilénbdz6, de
azonos koltség(fat eredményezve.) n— 1 szamu 6sszevonas végrehajtasa utan a sorban egy cslics marad (a kédfa gyokere), az
algoritmus a 9. sor végrehajtasaval ezt adja eredményiil.

A Huffman algoritmus idéigényének elemzésénél feltételezziik, hogy a felhasznalt prioritasi sor absztrakt adattipust agy valé-
sitjuk meg, hogy a SORBOL és SORBA miiveletek futasi ideje O(Ign). A 3-8. sorokban adott ciklus pontosan (n— 1) -szer hajtdik
végre, és mivel a prioritasi sor minden mivelete O(Ign) id&t igényel, a ciklus teljes futasi ideje O(nlgn). Tehat a HUFFMAN
algoritmus futasi ideje O(n Ign) minden n karaktert tartalmazé C halmazra.

A Huffmann algoritmus helyessége

A HUFFMAN mohd algoritmus helyességének igazolasahoz megmutatjuk, hogy az optimalis prefix-kdd meghatarozasa teljesiti
a moho-valasztasi és az optimdlis részproblémak tulajdonsagokat. A kdvetkezd lemma azt bizonyitja, hogy a moho-valasztasi
tulajdonsag teljesdl.

8.1. lemma. Legyen C tetszbleges karakter halmaz, és legyen f[c] a ¢ € C karakter gyakorisaga. Legyen X és Yy a két legkisebb
gyakorisagu karakter C -ben. Ekkor létezik olyan optimalis prefix-kéd, amely esetén az x-hez és y-hoz tartozé kédszé hossza
megegyezik, és a két kddszé csak az utolsé bitben kilonbozik.

Bizonyitas. A bizonyitas alapoétlete az, hogy vegytink egy optimalis prefix-kédot dbrazold T fat és médositsuk tgy, hogy a faban X
és y a két legmélyebben 1év6 testvércsucs legyen. Ha ezt meg tudjuk tenni, akkor a hozzajuk tartoz6 kédszavak valéban azonos
hosszlsaguak lesznek és csak az utolsé bitben kilonbéznek.

Legyen a és b a T faban a két legmélyebb testvércsucs. Az altaldnossag megszoritasa nélkil feltehetjik, hogy f[a] < f[b]
és f[x] < f[y]. Mivel f[x] < f[y] a két legkisebb gyakorisag, valamint f[a] < f[b] tetsz6leges gyakorisagok, igy azt kapjuk, hogy
f[x] < f[a] és f]y] < f[b]. A 6. abran lathaté modon felcseréljiik a T faban a és x helyét, ezzel kapjuk a T’ fat, majd ebbél a fabol,
felcserélve a b és y cstcsok helyét, kapjuk a T” fat. A (3.) egyenlet szerinta T és a T’ fak koltségének kilénbsége

B(T)-B(T) = th c)dr(c Zcf c)dp(c

= f[Xdr(x) + f[aldr(a) — f[x]dr (x) — f[aldr(a)
= fXdr(x) + f[aldr(a) — f{x|dr (a) — f[a]dr (x)
= (fla—f{)(dr(a) —dr(x)

> 0.

Az egyenl6tlenség azért teljestl, mert f[a] — f[X] és dy(a) — dr(X) nem-negativ. Pontosabban, f[a] — f[X] nem-negativ, mert
X egy legkisebb gyakorisagl karakter, és dr(a) — dr(X) azért nem-negativ, mert a maximalis mélységl a T faban. Hasonléan
bizonyithat6, hogy b és y felcserélése esetén sem névekszik a koltség, igy B(T') — B(T”) nem-negativ. Tehat B(T"”) < B(T),
és mivel T optimalis igy B(T) < B(T”), tehat B(T”) = B(T). Tehat T” olyan optimdlis fa, amelyben X és y maximalis mélységu
testvércsucsok, amibdl a lemma allitasa kovetkezik. [|

Az 1. lemmabdl kdvetkezik, hogy az optimalis fa felépitése, az altalanossag megszoritasa nélkil, kezdhet6 a moho valasztas-
sal, azaz a két legkisebb gyakorisagu karakter 6sszevonasaval. Miért tekinthetd ez mohd valasztasnak? Azért, mert tekinthetjik a
két 6sszevont elem gyakorisaganak 6sszegét egy 0sszevonas koltségeként. A HUFFMAN algoritmus az dsszes lehetséges lépések
kodzil mindig azt valasztja, amelyik a legkisebb mértékben jarul hozza a koltséghez.

A kovetkez8 lemma azt mutatja, hogy az optimalis prefix-kod konstrukcioja teljesiti az optimalis részproblémak tulajdonsagot.

8.2. lemma. Legyen C tetszdleges abécé, és minden ¢ € C karakter gyakorisaga f[c|. Legyen X és y a két legkisebb gyakorisagu
karakter C-ben. Tekintsiik azt a C' abécét, amelyet C-b&l gy kapunk, hogy eltavolitjuk az X és y karaktert, majd hozzaadunk
egy Uj z karaktert, tehat C' = C — {x,y}uU{z}. Az f gyakorisagok C'-re megegyeznek a C-beli gyakorisagokkal, kivéve z esetét,
amelyre f[z] = f[X]+ f[y]. Legyen T’ olyan fa, amely optimalis prefix-kodjat abrazolja a C' abécének. Ekkor az a T fa, amelyet ugy
kapunk, hogy a zlevélcstcshoz hozzakapcsoljuk gyerek cstcsként x-et és y-t, olyan fa lesz, amely a C dbécé optimalis perix-kodjat
abrazolja.

13

w [£5] [=9] [e12 (603 [a19) (2] o B EE @
0, 1
(5] [e9]

© @ @5 @ @
0, 1 0, 1 0, 1
[e9]

5. dbra. A Huffman algoritmus Iépései a 3. abran szerepl6 gyakorisagokra. Minden részabra tartalmazza a sor aktudlis tartalmat
gyakorisag szerint ndvekvéen. Minden Iépésben a két legkisebb gyakorisagu cslicsot kapcsoljuk 6ssze. A leveleket téglalapok
jelolik, feltintetve benniik a karaktert és annak gyakorisagat. A belsd csucsokat kor jeloli, amelyekben a csucs két gyereke
gyakorisaganak dsszege van. Minden él, amely egy bels6 cslcsot annak bal fidval kot 6ssze a 0 cimkét, illetve ha a jobb fiaval
koti 6ssze akkor az 1 cimkét viseli. Minden karakter kédszava az a jelsorozat, amelyet (gy kapunk, hogy a gyokértdl a karaktert
tartalmazé levélig vezetd Uton az élek cimkéit egymas utan irjuk. (a) A kezdeti allapot n= 6 csuccsal. (b) - (e) A kozbulsé allapotok.
(f) A fa az eljaras végén.

14

6. dbra. Az 1. lemma bizonyitasanak kulcslépése. Az optimalis prefix-kod T fajaban b és ¢ a két legmélyebb testvércsics. Az
X és y az a két levél csucs, amelyet a Huffman algoritmus elsének von dssze. Ezek barhol lehetnek a faban. A b és X cstcsok
felcserélésével kapjuk a T’ fat. Ezutan a c és y cslcsokat felcserélve adodik a T” fa. Mivel egyik lépés hatasara sem novekszik a
fa koltsége, a kapott T” fa is optimalis lesz.

15

Bizonyitas. ElGszor megmutatjuk, hogy a T fa B(T) koltsége kifejezhets a T’ fa B(T') koltségével a 5. egyenlet alapjan. Minden
ce C—{x,y} esetén dr(c) = dr/(c), igy f[c]dr(c) = f[c|dr(C). Mivel dr(X) = dr (y) = dr/(2) + 1, igy azt kapjuk, hogy

fXdr () + fyldr(y) = (fFX+fy)(dr(2)+1)
f[Zdr(2) + (f1x] + fly)),

amibél az kévetkezik, hogy
B(T) =B(T)+ f[x] + f[y].

Indirekt médon bizonyitunk. Tegyiik fel, hogy T nem optimalis prefix-kodfa a C abécére. Ekkor létezik olyan T kddfa C-re, hogy
B(T"”) < B(T). Az altalanossag megszoritasa nélkiil (a 2. lemma alapjan) feltehetjiik, hogy X és y testvérek. Legyen T" az a fa,
amelyet T”-b6l gy kapunk, hogy eltavolitjuk az x és y cslicsokat, és ezek kozos z szill6jének gyakorisaga az f[Z) = f[x] + f[y]
érték lesz. Ekkor

B(T") = B(T")—f[—f]y
< B(M—-fiX-fly
= B(T'),
ami ellentmond annak, hogy T’ a C' 4bécé optimalis prefix-kodjat abrazolja. Tehat T sziikségképpen a C abécé optimalis prefix-
kodjat abrazolja. [|

8.3. tétel. A HUFFMAN eljaras optimalis prefix-kédot allit eld.

Bizonyitads. Az éllitas kozvetlenil kdvetkezik a 1. és a 2. lemmakbdl. |

16

