
Algoritmizálás

Horváth Gyula
Szegedi Tudományegyetem

Természettudományi és Informatikai Kar
horvath@inf.u-szeged.hu

5. Mohó algoritmusok

A mohó stratégia elemi
1. Fogalmazzuk meg az optimalizációs feladatot úgy, hogy választások sorozatával építjük fel a megoldást.

2. Mutassuk meg, hogy mindig van olyan megoldása az eredeti feladatnak, amely a mohó választással kezdődik. Ezt mohó
választási tulajdonságnak nevezzük.

3. Bizonyítsuk be, hogy a mohó választással olyan redukált problémát kapunk, amelynek optimális megoldásához hozzávéve
a mohó választást, az eredeti probléma megoldását kapjuk. Ezt optimális részprobléma tulajdonságnak nevezzük.

Általában sokféle mohó választás kínálkozik, de nem mindegyik mohó választás eredményez optimális megoldást, ezért fontos,
hogy bebizonyítsuk, hogy az adott mohó választás tényleg optimumot eredményez.

5.1. Feladat: Fénykép probléma
Egy rendezvényre n vendéget hívtak meg. Minden vendég előre jelezte, hogy mettől meddig lesz jelen. A szervezők fényképeken
akarják megörökíteni a rendezvényen résztvevőket. Azt tervezik, hogy kiválasztanak k időpontot és minden kiválasztott időpont-
ban az akkor éppen jelenlevőkről csoportképet készítenek. Az a céljuk, hogy a lehető legkevesebb képet kelljen készíteni, de
mindenki rajta legyen legalább egy képen.
Írjunk olyan programot, amely kiszámítja, hogy legkevesebb hány fényképet kell készíteni, és megadja azokat az időpontokat is
amikor csoportképet kell készíteni!

Bemenet
A fenykep.be szöveges állomány első sorában a vendégek n száma van (1≤ n≤ 3000). A következő n sor mindegyike két egész
számot tartalmaz egy szóközzel elválasztva, egy vendég e érkezési és t távozási időpontját (1≤ e < t ≤ 1000). Ha egy fényképet
az x időpontban készítik és e≤ x < t, akkor azon a fényképen rajta lesz az e időben érkező és t időben távozó vendég.

Kimenet
A fenykep.ki szöveges állomány első sorába a készítendő fényképek k számát kell írni! A második sor pontosan k egész számot
tartalmazzon egy-egy szóközzel elválasztva, azon időpontokat (tetszőleges sorrendben), amikor a csoportképeket készíteni kell.

Példa bemenet és kimenet
bemenet

6
2 4
1 4
2 7
7 13
5 10
3 9

kimenet

2
3 9

1

Megoldás
Tehát a bemenet intervallumok egy

I = {[e1, t1), . . . , [e,tn)}

halmaza, a kimenet pedig olyan minimális elemszámú

M = { f1, . . . , fk}

számhalmaz, hogy minden i-re i = 1, . . . ,n van olyan f ∈M, hogy ei ≤ f < ti .
Vegyük észre, hogy ha két intervallum jobb-végpontja megegyezik, ti = t j akkor amelyik bal-végpontja kisebb,ei < e j az elhagy-
ható, hiszen ha f ∈ [e j, t j), akkor f ∈ [ei, ti).
A megoldás elemzése.
Tegyük fel, hogy az intervallumok jobb-végpontjuk szerint növekvően rendezettek, tehát ti < ti+1, i = 1, . . . ,n− 1 és az M
megoldáshalmazra f1 < .. . < fk.

Mohó választás.
Válasszuk a megoldáshalmaz első elemének t1−1-et.
Megmutatjuk, hogy az optimális megoldásban f1 helyett állhat a mohó választás, tehát t1−1. Először is f1 < t1, mert különben
az 1. intervallumba nem esne egy pontja sem az optimális megoldásnak. Továbbá, minden olyan intervallum, amelyben benne
van f1, benne van t1−1 is, hiszen ha ei ≤ f1 < ti.
Redukált részprobléma.

t1−1f1

1. ábra. Mohó választás és probléma redukálás.

Töröljünk I-ből mindan olyan intervallumot, amelyben benne van a t1 − 1 mohó választás: I′ = I − {[ei, ti) : ei < t1}. Az
M′ = { f2, . . . , fk} ponthalmaz megoldása lesz az I′ problémának. I′ optimális is, mert ha lenne kevesebb pontot tartalmazó
megoldása I′-nek, akkor hozzávéve t1− 1-et, vagy f1-et, a kiindulási I probléma kisebb elemszámú megoldását kapnánk, mint
|M|.
Megvalósítás

1 Program Fenykep ;
2 (Λ Bemenet : Interva l lumok { [e1 , t1] , . . . , [en , tn] } halmaza .
3 Kimenet : Legkevesebb elemszámú olyan M halmaz , hogy minden
4 in t erva l lumba e s i k M−nek l e g a l á b b egy eleme . Λ)
5 c o n s t
6 MaxN=3000; { az in terva l lumok max . száma }
7 MinE=1;
8 MaxT=1000;
9 var

10 N :Word; { az in terva l lumok száma }
11 I n t : array [1 . . MaxT] of Word; { az in terva l lumok : [I n t [t] , t) , ha I n t [t] >0 }
12 k :Word; { a megoldás elemszáma }
13 M: array [1 . . MaxN] of Word; { a megoldás halmaz }
14 i , x : I n t e g e r ;
15 Ut o l so : I n t e g e r ;

16 Procedure Beolvas ;
17 { Global :N, I n t }
18 var
19 Bef : Text ;
20 i , e , t :Word;

2

21 begin
22 f o r i :=1 to MaxT do I n t [i] : = 0 ;
23 Assign (Bef , ’ fenykep . be ’) ; Reset (Bef) ;
24 ReadLn (Bef ,N) ;
25 f o r i :=1 to N do begin
26 ReadLn (Bef , e , t) ;
27 i f e> I n t [t] then I n t [t] : = e ;
28 end ;
29 Close (Bef) ;
30 end { Beolvas } ;

31 Procedure KiIr ;
32 { Global : k , M }
33 var
34 Kif : Text ;
35 i :Word;
36 begin
37 Assign (KiF , ’ fenykep . k i ’) ; Rewrite (KiF) ;
38 WriteLn (Kif ,K) ;
39
40 f o r i :=1 to k do
41 Write (Kif ,M[i] , ’ ’) ;
42
43 WriteLn (Kif) ;
44
45 Close (KiF) ;
46 end { KiIr } ;

47 begin { Program }
48 Beolvas ;
49
50 Ut o l so : = 0 ; { az u t o l s ó b e v á l a s z t o t t pont }
51 k : = 0 ; { a b e v a l á s z t o t t pontok száma }
52 f o r x :=1 to MaxT do
53 i f (I n t [x] >0) and (Utolso < I n t [x]) then begin
54 Ut o l so := x−1;
55 Inc (k) ;
56 M[k] : = Uto l s o ;
57 end ;
58 { f o r i } ;
59
60 KiIr ;
61 end .

5.2. Feladat: Egységnyi végrehajtású munkák ütemezése
Mekk Elek ezermester népszerű vállalkozó, sokan keresik fel megrendelésekkel. Minden munkája pontosan egy napig tart és
egyszerre csak egy munkán tud dolgozni. Minden megrendelés határidős, és amit elvállal, azt határidőre el kell végeznie. Minden
elvégzett munka után meghatározott haszon jár. A mester a következő évre beérkezett megrendelések közül ki akar választani egy
olyan részhalmazt, amely a lehető legtöbb hasznot eredményezi.
Készítsünk programot a következő évi megrendelések egy lehető legnagyobb elemszámú részhalmazának a kiválasztására és
ütemezésére annak érdekében, hogy a mester a kiválasztott munkákat határidőre el tudja végezni, és az összhaszon a lehető
legnagyobb legyen. A programnak egy ilyen ütemezést kell eredményül adnia.

Bemenet
Az utemez.be állomány első sora a megrendelések n számát (1 ≤ n ≤ 10000) tartalmazza. A következő n sor mindegyikében
két pozitív egész szám van egy-egy szóközzel elválasztva, az adott megrendelés h határideje (1≤ h≤ 365), és a munka után járó

3

p haszon. Tehát az i-edik munkát az állomány i + 1-edik sora írja le.

Kimenet
Az utemez.ki állomány első sorában a kiválasztott munkák k száma legyen. A következő k sor mindegyikébe két számot kell
írni egy-egy szóközzel elválasztva. Az első szám a kiválasztott munka száma legyen, a második pedig annak a napnak a sorszáma,
amelyiken az adott munkát el kell végezni. Ha több megoldás is van, közülük egy tetszőlegeset kell kiírni az állományba!

Példa bemenet és kimenet
bemenet

6
3 7
2 4
7 2
4 6
2 4
1 3

kimenet

5
5 1
1 3
2 2
4 4
3 7

Megoldás
Próbáljuk meg a megoldást olyan formában megfogalmazni, hogy lépésenként választást végzünk, minden lépésben egy munkát
ütemezünk be egy olyan napra, amely a választott munka határidejénél nem nagyobb. A választást befolyásolja, hogy melyek a
még szabad napok és milyen munkákat nem választottunk még. Legyen S a még szabad napok halmaza és M a még beosztásra
váró munkák halmaza. Tehát egy ütemezési (rész)probléma az (S,M) párral adható meg általánosan.
Megoldás elemzése.

5.1. lemma. Legyen M ⊆ {1, . . . ,n} a munkáknak egy részhalmaza. Az M-beli munkáknak akkor és csak akkor van határidőt nem
sértő beosztása, ha M elemeinek határidő szerint nemcsökkenő felsorolása határidőt nem sértő.

Bizonyítás. Ha az M-beli munkáknak van határidőt nem sértő beosztása, akkor van olyan is, amikor a beosztás folyamatos, tehát
a beosztás megadható M elemeinek egy felsorolásával. M elemeinek egy 〈m1, . . . ,mk〉 felsorolása akkor határidőt nem sértő, ha
minden i-re, i = 1, . . . ,k teljesül az i ≤ hmi egyenlőtlenség. Ha a felsorolásra nem teljesül, hogy határidő szerint nemcsökkenő,
akkor van olyan i index, hogy hmi > hmi+1 . A i-edik és i + 1-edik munkát megcserélve továbbra is határidőt nem sértő beosztást
kapunk, mert i < i + 1≤ hmi+1 < hmi .
Fordítva nyilvánvaló. �

Mohó választási tulajdonság.
Válasszuk a legnagyobb hasznú munkát. Ha van olyan szabad nap, amely nem nagyobb, mint a munka határideje, akkor üte-

2. ábra.

mezzük be a munkát a legnagyobb ilyen szabad napra. Ha nincs ilyen nap, akkor a munkát csak töröljük a beosztandó munkák
halmazából. Bebizonyítjuk, hogy bármely (S,M) részprobléma esetén van olyan optimális megoldás, amely tartalmazza a mohó
választást. Legyen

{(m1,d1), . . . ,(mk,dk)}

egy optimális megoldása az (S,M) részproblémának. Tehát az mi munka a di napra van ütemezve, így di ≤ H[mi], és a di értékek
páronként különbözőek. Feltehetjük, hogy a munkák hasznuk szerint nemnövekvően vannak felsorolva, azaz

P[m1]≥ P[m2]≥ ·· · ≥ P[mk].

Legyen m∗ a mohó választás, azaz m∗ a legnagyobb hasznú munka, amelyre d∗ a legnagyobb olyan nap, amely még szabad és
d∗ ≤ H[m∗]. Tehát P[m∗] ≥ P[mi],(i = 1, . . . ,k). Ha az optimális megoldásban valamelyik munka a d∗ napra van beosztva, azaz
d∗ = di, akkor mi helyettesíthető m∗-al, úgy, hogy az összhaszon nem csökken, mivel P[m∗] ≥ P[mi]. Ha nem lenne egyetlen
munka sem beosztva a d∗ napra, akkor m∗ hozzá-vételével jobb megoldást kapnánk, mint az optimális, ami ellentmondás. Tehát
feltehető, hogy az optimális megoldásban m1 a mohó választás és d1 = d∗.

4

Optimális részproblémák tulajdonság.
Legyen (m∗,d∗) mohó választása az (S,M) részproblémának. Ekkor a mohó választás eredményeként az (S′,M′) részprobléma
keletkezik, ahol S′ = S−{d∗}, és M′ = M−{m∗}. Azt kell megmutatni, hogy (S′,M′) egy optimális megoldásához hozzávéve
a mohó választást, az eredeti (S,M) probléma egy optimális megoldását kapjuk. Az nyilvánvaló, hogy az (m2,d2), . . . ,(mk,dk)
beosztás egy (nem feltétlenül optimális) megoldása az (S′,M′) problémának. Tehát (S′,M′) optimális megoldásához tartozó
összhaszon legalább ∑

k
i=2 P[mi]. Ha (S′,M′) optimális megoldása ennél több összhasznot eredményezne, akkor a mohó választás

hozzá-vételével az eredeti (S,M) probléma jobb megoldását kapnánk, mint az optimális. Ezzel bebizonyítottuk, hogy (S′,M′) egy
optimális megoldásához hozzávéve a mohó választást, az eredeti (S,M) probléma egy optimális megoldását kapjuk.
Megvalósítás.

1 { G l o b a l i s programelemek az EgyUtemez e l j a r a s h o z :
2 c o n s t
3 MaxN = ??? ; { a munkák max . száma }
4 MaxH = ??? ; { a max . h a t á r i d ő }
5 type
6 Index = 1 . . MaxN;
7 Hatarido = array [Index] Of I n t e g e r ;
8 B e o s z t a s = array [1 . . MaxN] Of 0 . . MaxH;
9 Haszon = array [Index] Of Word;

10 }
11 procedure EgyUtemez (Const H : Hatarido ;
12 Const P : Haszon ;
13 N : Word;
14 var K : Word;
15 var MaxP: Word;
16 var B : B e o s z t a s) ;
17 { Bemenet : F e l t e s s z ü k , hogy a munkák a hasznuk s z e r i n t nemnövekvően
18 r e n d e z e t t e k : P [i] >=P [i +1] , i = 1 . .N−1
19 Kimenet : B[i]= j >0 e s e t é n az i . munkát a j . napra ütemezzük ,
20 ha az i . munkát nem válasz juk , akkor B[i]=0 }

21 var
22 i , j : I n t e g e r ;
23 Szabad : array [1 . . MaxH] of boolean ; { a még szabad napok n y i l v á n t a r t á s á r a }
24 begin { EgyUtemez }
25 M: = 0 ; MaxP: = 0 ;
26 f o r i := 1 to MaxH do
27 Szabad [i] : = True ; { kezdetben minden nap szabad }
28 f o r i :=1 to N do { n i n c s b e o s z t o t t munka}
29 B[i] : = 0 ;
30 f o r i :=1 to N do begin
31 j := H[i] ;
32 whi le (j >0) and (not Szabad [j]) do
33 Dec (j) ;
34 i f j > 0 then begin { van szabad nap i . h a t á r i d e j é i g }
35 B[i] : = j ; { b e v á l a s z t j u k az u t o l s ó szabad napra }
36 Szabad [j] : = F a l s e ; { a v á l a s z t á s b e j e g y z é s e }
37 Inc (K) ;
38 MaxP:=MaxP+P [i] ;
39 end ; { i f }
40 end { f o r i } ;
41 end { EgyUtemez } ;

Az algoritmus futási ideje a legrosszabb esetben a munkák száma szorozva a napok számával. A mohó választás nem mindig
fejezhető ki olyan egyszerűen, hogy egy halmazból adott rendezés szerint a legkisebb elemet kell választani. Erre mutat példát a
következő feladat és annak megoldása.

5

5.3. Feladat: Darabolás
Adott egy fémrúd, amelyet megadott számú és hosszúságú darabokra kell felvágni. A darabok hosszát milliméterben kifejezett
értékek adják meg. Olyan vágógéppel kell a feladatot megoldani, amely egyszerre csak egy vágást tud végezni. A vágások
tetszőleges sorrendben elvégezhetőek. Egy vágás költsége megegyezik annak a darabnak a hosszával, amit éppen (két darabra)
vágunk. A célunk optimalizálni a műveletsor teljes költséget.
Készítsünk programot, amely kiszámítja a vágási műveletsor optimális összköltségét és megad egy olyan vágási sorrendet, amely
optimális költséget eredményez.

Bemenet
A be.txt darabol szöveges állomány első sora egy egész számot tartalmaz, a darabok n számát (0 < n≤ 1000). A második sor n
darab pozitív egész számot tartalmaz egy-egy szóközzel elválasztva, a darabok hosszát. A második sorban szereplő számok nem
nagyobbak, mint 1000.

Kimenet
A be.txt darabol szöveges állomány első sorába egyetlen számot, a vágási műveletsor optimális összköltségét kell írni! A
további n−1 sor mindegyikébe két egész számot kell írni, egy szóközzel elválasztva. Az első szám legyen az adott lépésben ket-
tévágott rúd hossza, a második szám pedig az egyik keletkező darab hossza. Minden sor csak olyan hosszúságú darab kettévágását
tartalmazhatja, amelyből a korábbi lépések során több keletkezett, mint az azóta elvégzett lépések által felhasználtak száma.

Példa bemenet és kimenet
bemenet

5
2 5 2 7 10

kimenet

55
26 10
16 7
9 4
4 2

10

7

5

9

16

26

2 2

4

3. ábra. A példa megoldásának ábrázolása bináris fával.

Elemezzük az optimális megoldás szerkezetét. Vegyük észre, hogy minden darabolás, így az optimális is leírható egy bináris
fával. A fa levelei tartalmazzák a bemenetként kapott darabok hosszait, és minden belső pontja annak a darabnak a hosszát,
amelyből vágással a két fiú-pontban lévő darab keletkezett, azaz a két fiának az összegét. Példánk esetén a fa a következőképpen
néz ki.

A darabolás összköltsége is kifejezhető a fával, nevezetesen, az összköltség éppen a fa belső (nem levél) pontjaiban található
számok összege. Fordítva is igaz, minden ilyen fa egy darabolást ír le. A fa költségén a fa belső pontjaiban lévő számok összegét
értjük. Tehát keressük az optimális megoldást, mint egy darabolási fát, tehát azt, amelynek a költsége minimális. A darabolási
fa költsége kifejezhető a következőképpen. Legyenek d1, . . . ,dn a vágandó darabok hosszai és legyen mi a di darabot tartalmazó
levélpont mélysége (a fa gyökerétől vett távolsága) a fában. Ezekkel a jelölésekkel a fa költsége:

n

∑
i=1

mi ∗di

6

Az optimális fára a következő két állítás teljesül.

5.2. lemma. A két legkisebb értéket tartalmazó levélpont mélysége a legnagyobb, és testvérek.
Bizonyítás. Ha az állítás nem teljesülne, akkor a két legmélyebb testvér levélpontot felcserélve a két legkisebb értéket tartalmazó
levéllel, kisebb költségű fát kapnánk. �

5.3. lemma. Legyen du és dv a két legkisebb darab. Ha az optimális fában töröljük a du-t és dv-t tartalmazó levélpontot, akkor
olyan fát kapunk, amely optimális arra a bemenetre, amely du és dv helyett a du + dv darabot tartalmazza.
Bizonyítás. A két levél törlésével kapott fa nyilván darabolási fa lesz a módosított bemenetre, amelynek költsége

n

∑
i=1

mi ∗di− (du + dv)

Legyen F egy optimális darabolási fa a módosított bemenetre és legyen a költsége K. Ha a du +dv darabot tartalmazó levélponthoz
hozzávesszük bal fiúként a du értéket tartalmazó, jobb fiúként pedig a dv értéket tartalmazó új levelet, akkor egy olyan fát kapunk,
amely darabolási fa lesz az eredeti bemenetre, költsége pedig K + du + dv. Ez azonban nem lehet kisebb, mint az optimális
darabolási fa költsége az eredeti bemenetre, tehát

n

∑
i=1

mi ∗di ≤ K +(du + dv)

n

∑
i=1

mi ∗di− (du + dv)≤ K ≤
n

∑
i=1

mi ∗di− (du + dv)

Ami az állítás bizonyítását jelenti. �

Most már megfogalmazhatjuk a mohó stratégiánkat. Építsük fel a darabolási fát úgy, hogy lépésenként a két legkisebb értéket
tartalmazó pontot egy új pont két fiává tesszük, és az új pontba a két fiúban lévő érték összegét írjuk. Az 1. Állítás igazolja a
mohó választási tulajdonságot, a 2. Állítás pedig az optimális részproblémák tulajdonságot, tehát korrekt algoritmust kapunk.
Megvalósítás. A mohó választás megvalósítására prioritási sort alkalmazunk.

1 procedure Darabol (var D: Darabok ;
2 N:Word;
3 var F : Fa ;
4 var Kol t s :Word) ;
5 var x , y , z , i :Word;
6 begin { Darabol }
7 f o r i :=1 to N do begin { i n i c i a l i z á l á s }
8 SorBa (i) ;
9 F [i] . ba l : = 0 ; F [i] . jobb : = 0 ;

10 end { f o r i } ;
11 f o r i :=1 to N−1 do begin { }
12 x := SorBol ; { k i v e s s z ü k a p r i s o r i t á s i s o r b ó l }
13 y := SorBol ; { a két l e g k i s e b b e lemet }
14 z := i +N; { új pont l é t e s í t é s e }
15 D[z] : =D[x]+D[y] ; { az új pont é r t é k e }
16 SorBa (z) ; { berakjuk a sorba az új fa−pontot }
17 F [z] . ba l := x ; { az új pont két f i a x és y }
18 F [z] . jobb := y ;
19 Kol t s := Kol t s +D[z] ;
20 end { f o r i } ;
21 end { Darabol } ;

22 {A f e l a d a t b a n megkövete l t k imenete t a fa b e j á r á s á v a l á l l í t j u k e l ő . }
23 procedure KiIr ;
24 var KiF : Text ;
25 Procedure Bejar (p :Word) ;
26 begin { Bejar }
27 i f F [p] . ba l =0 then e x i t ;
28 WriteLn (KiF , D[p] : 1 , ’ ’ ,D[F [p] . ba l] : 1) ;
29 i f F [p] . bal <>0 then Bejar (F [p] . ba l) ;

7

