Algoritmizalas

Horvdth Gyula
Szegedi Tudomédnyegyetem
Természettudomdanyi és Informatikai Kar
horvath@inf.u-szeged.hu

5. Moh¢ algoritmusok

A moho stratégia elemi
1. Fogalmazzuk meg az optimalizécids feladatot igy, hogy vélasztidsok sorozatdval épitjiik fel a megoldast.

2. Mutassuk meg, hogy mindig van olyan megolddsa az eredeti feladatnak, amely a moh¢ vélasztdssal kezdédik. Ezt mohé
vélasztasi tulajdonsdgnak nevezziik.

3. Bizonyitsuk be, hogy a mohé vélasztissal olyan redukalt problémat kapunk, amelynek optimalis megolddsdhoz hozzavéve
a moho vélasztast, az eredeti probléma megoldasat kapjuk. Ezt optimalis részprobléma tulajdonsagnak nevezziik.

Altalaban sokféle mohé vilasztds kinalkozik, de nem mindegyik mohé vilasztis eredményez optimalis megoldast, ezért fontos,
hogy bebizonyitsuk, hogy az adott moh¢ vélasztis tényleg optimumot eredményez.

5.1. Feladat: Fénykép probléma

Egy rendezvényre n vendéget hivtak meg. Minden vendég elore jelezte, hogy mett6l meddig lesz jelen. A szervezok fényképeken
akarjdk megorokiteni a rendezvényen résztvevlket. Azt tervezik, hogy kivéalasztanak k id6pontot és minden kivalasztott id6pont-
ban az akkor éppen jelenlevSkrdl csoportképet készitenek. Az a céljuk, hogy a lehetd legkevesebb képet kelljen késziteni, de
mindenki rajta legyen legaldbb egy képen.

[rjunk olyan programot, amely kiszamitja, hogy legkevesebb hany fényképet kell késziteni, és megadja azokat az idGpontokat is
amikor csoportképet kell késziteni!

Bemenet

A fenykep.be szoveges dllomdny elsd sordban a vendégek n szdma van (1 <n <3000). A kovetkezd n sor mindegyike két egész
szdmot tartalmaz egy sz6kozzel elvélasztva, egy vendég e érkezési és 1 tdvozdsi idGpontjat (1 < e < ¢ < 1000). Ha egy fényképet
az x id6pontban készitik és e < x < ¢, akkor azon a fényképen rajta lesz az e id6ben érkezd és ¢ id6ben tdvozé vendég.

Kimenet

A fenykep.ki szoveges dllomdny els6 sordba a készitendd fényképek k szamat kell irni! A masodik sor pontosan k egész szamot
tartalmazzon egy-egy szokozzel elvélasztva, azon id6pontokat (tetszSleges sorrendben), amikor a csoportképeket késziteni kell.
Példa bemenet és kimenet

bemenet kimenet

13
10

w U1 DN =N oY
~J

[c IR I e NNV I U N

— e e e
s W= O\

16
17
18
19
20

Megoldas

Tehat a bemenet intervallumok egy

I= {[elvtl)v”'a[e,tn)}

halmaza, a kimenet pedig olyan minimalis elemszdmu

M:{fla"')fk}

szdmhalmaz, hogy minden i-rei =1,...,n vanolyan f € M, hogy e¢; < f <t; .

Vegyiik észre, hogy ha két intervallum jobb-végpontja megegyezik, t; = ¢; akkor amelyik bal-végpontja kisebb,e; < e; az elhagy-
hat6, hiszen ha f € [e;,t;), akkor f € [e;,1;).

A megoldas elemzése.

Tegyiik fel, hogy az intervallumok jobb-végpontjuk szerint novekvSen rendezettek, tehat t; < tiy1, i=1,....n—1és az M
megolddshalmazra f; < ... < f;.

Moho valasztas.

Valasszuk a megoldashalmaz els6 elemének #; — 1-et.

Megmutatjuk, hogy az optimalis megolddsban f; helyett dllhat a moh¢ valasztds, tehat #; — 1. El6szor is f; < #1, mert kiilonben
az 1. intervallumba nem esne egy pontja sem az optimdlis megolddsnak. Tovabba, minden olyan intervallum, amelyben benne
van fi, benne van t; — 1 is, hiszen ha e; < f] <t;.

Redukalt részprobléma.

L

1. dbra. Mohd vélasztds és probléma redukalas.

Toroljiink /-bdl mindan olyan intervallumot, amelyben benne van a f; — 1 mohé6 vélasztds: I' =1—{[e;,t;) : e; <11}. Az
M' = {fs,..., fx} ponthalmaz megolddsa lesz az I’ problémdnak. I’ optimalis is, mert ha lenne kevesebb pontot tartalmaz6
megoldésa I’-nek, akkor hozzdvéve t; — 1-et, vagy fi-et, a kiinduldsi I probléma Kisebb elemszamud megoldésdt kapnank, mint
|M]|.

Megvalésitas

Program Fenykep;

(A Bemenet : Intervallumok {[el,tl],...,[en,tn]} halmaza.
Kimenet: Legkevesebb elemszamu olyan M halmaz, hogy minden
intervallumba esik M-nek legalabb egy eleme. A)
const
MaxN=3000; { az intervallumok max. szama }
MinE=1;
MaxT=1000;
var
N :Word ; { az intervallumok szama }
Int c:array[1l..MaxT] of Word;{ az intervallumok: [Int[t],t), ha Int[t]>0 }
k:Word; { a megoldas elemszama}

M:array[1..MaxN] of Word; { a megoldas halmaz}
i,x:Integer;
Utolso:Integer;

Procedure Beolvas;
{Global:N, Int}
var
Bef: Text;
i,e,t:Word;

21
22
23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

begin
for i:=1 to MaxT do Int[i]:=0;
Assign (Bef, ’fenykep.be’); Reset(Bef);
ReadLn (Bef ,N);
for i:=1 to N do begin
ReadLn(Bef,e,t);
if e>Int[t] then Int[t]:=e;

end ;
Close (Bef);
end H

Procedure Kilr;

var
Kif: Text;
i:Word;

begin
Assign (KiF, ’fenykep .ki’); Rewrite (KiF);
WriteLn (Kif ,K);

for i:=1 to k do
Write (Kif M[i],°.’);

WriteLn (Kif);

Close (KiF);
end ;

begin
Beolvas;

Utolso :=0;
k:=0;
for x:=1 to MaxT do
if (Int[x]>0)and(Utolso<Int[x]) then begin
Utolso:=x—1;
Inc(k);
M[k]:=Utolso;
end ;

Kilr;
end.

5.2. Feladat: Egységnyi végrehajtasi munkak iitemezése

Mekk Elek ezermester népszerid véllalkozd, sokan keresik fel megrendelésekkel. Minden munkdja pontosan egy napig tart és
egyszerre csak egy munkdn tud dolgozni. Minden megrendelés hataridSs, és amit elvallal, azt hataridére el kell végeznie. Minden
elvégzett munka utdn meghatarozott haszon jar. A mester a kovetkezd évre beérkezett megrendelések koziil ki akar valasztani egy
olyan részhalmazt, amely a lehetd legtobb hasznot eredményezi.

Készitsiink programot a kovetkezd évi megrendelések egy lehetd legnagyobb elemszamu részhalmazéanak a kivéalasztasara és
titemezésére annak érdekében, hogy a mester a kivdlasztott munkdkat hatdridére el tudja végezni, és az Osszhaszon a lehetd
legnagyobb legyen. A programnak egy ilyen iitemezést kell eredményiil adnia.

Bemenet

Az utemez.be édllomdny elsd sora a megrendelések n szdmdt (1 < n < 10000) tartalmazza. A kovetkez8 n sor mindegyikében
két pozitiv egész szdm van egy-egy szokozzel elvdlasztva, az adott megrendelés 4 hatdrideje (1 < h < 365), és a munka utén jar6

p haszon. Tehat az i-edik munkat az dllomany i 4 1-edik sora irja le.

Kimenet

Az utemez.ki dllomdny els6 sordban a kivalasztott munkdk k szdma legyen. A kovetkezd k sor mindegyikébe két szamot kell
irni egy-egy szokozzel elvdlasztva. Az els6 szam a kivalasztott munka szdma legyen, a masodik pedig annak a napnak a sorszdma,
amelyiken az adott munkat el kell végezni. Ha tobb megoldas is van, koziilikk egy tetszSlegeset kell kifrni az dlloméanyba!

Példa bemenet és kimenet

bemenet kimenet
6 5

37 51

2 4 13

72 2 2

4 6 4 4

2 4 37

13

Megoldas

Prébéaljuk meg a megoldést olyan formdban megfogalmazni, hogy 1épésenként valasztast végziink, minden 1épésben egy munkat
itemeziink be egy olyan napra, amely a valasztott munka hataridejénél nem nagyobb. A vélasztast befolyasolja, hogy melyek a
még szabad napok és milyen munkdkat nem vélasztottunk még. Legyen S a még szabad napok halmaza és M a még beosztdsra
véaré munkdk halmaza. Tehét egy iitemezési (rész)probléma az (S, M) parral adhaté meg éltaldnosan.

Megoldas elemzése.

5.1.lemma. Legyen M C {1,...,n} a munkdknak egy részhalmaza. Az M-beli munkdknak akkor és csak akkor van hatdriddt nem
sértd beosztdsa, ha M elemeinek hatdridd szerint nemcsokkend felsoroldsa hatdriddt nem sértd.

Bizonyitas. Ha az M-beli munkaknak van hatarid6t nem sért6 beosztasa, akkor van olyan is, amikor a beosztas folyamatos, tehat

a beosztds megadhaté M elemeinek egy felsoroldsdval. M elemeinek egy (my,...,my) felsoroldsa akkor hatdrid6t nem sértd, ha
minden i-re, i = 1,...,k teljesiil az i < h,,, egyenlStlenség. Ha a felsoroldsra nem teljesiil, hogy hatdrid6 szerint nemcsokkend,

akkor van olyan i index, hogy Ay > Ay, . A i-edik €s i+ 1-edik munkdt megcserélve tovabbra is hatdrid6t nem sértd beosztdst
kapunk, merti <i+1 <l < Ay

Forditva nyilvanvalo. u
Mohé valasztasi tulajdonsag.

Vilasszuk a legnagyobb haszni munkat. Ha van olyan szabad nap, amely nem nagyobb, mint a munka hatarideje, akkor iite-

Bl B BN N Bh

2. abra.

mezziik be a munkat a legnagyobb ilyen szabad napra. Ha nincs ilyen nap, akkor a munkat csak toroljiik a beosztandé munkdk
halmazdbdl. Bebizonyitjuk, hogy barmely (S, M) részprobléma esetén van olyan optimélis megoldds, amely tartalmazza a mohé
véalasztast. Legyen

{(my,dv),..., (m,dy)}

egy optimdlis megolddsa az (S, M) részproblémdnak. Tehdt az m; munka a d; napra van iitemezve, igy d; < H[m]|, és a d; értékek
paronként kiilonbozdek. Feltehetjiik, hogy a munkék hasznuk szerint nemnovekvéen vannak felsorolva, azaz

P[my] > Plmy] > --- > P[my].

Legyen m* a moh¢ valasztas, azaz m* a legnagyobb hasznd munka, amelyre d* a legnagyobb olyan nap, amely még szabad és
d* < H[m"*]. Tehat P[m*] > P[m;],(i = 1,...,k). Ha az optimélis megolddsban valamelyik munka a d* napra van beosztva, azaz
d* = d;, akkor m; helyettesithet6 m,-al, igy, hogy az 6sszhaszon nem csokken, mivel P[m*] > P[m;]. Ha nem lenne egyetlen
munka sem beosztva a d, napra, akkor m, hozza-vételével jobb megoldast kapnank, mint az optimalis, ami ellentmondds. Tehat
feltehetd, hogy az optimdlis megolddsban m; a moho valasztés és d| = d*.

[c BN e NV I O R

DO = = = = e e e e = e
O O 0NNk W= OO

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

Optimalis részproblémak tulajdonsag.

Legyen (m*,d*) mohé valasztdsa az (S, M) részproblémanak. Ekkor a moh¢ vélasztas eredményeként az (S',M’) részprobléma
keletkezik, ahol §' = S — {d*}, és M' = M — {m*}. Azt kell megmutatni, hogy (S',M’) egy optimdlis megoldédséhoz hozzavéve
a moho vélasztdst, az eredeti (S,M) probléma egy optimélis megoldésat kapjuk. Az nyilvdnvald, hogy az (mp,ds),. .., (mk,dy)
beosztds egy (nem feltétleniil optimalis) megolddsa az (S',M’) problémdnak. Tehat (S',M’) optimélis megoldédséhoz tartozd
0sszhaszon legaldbb Zﬁ‘zz Pm;]. Ha (8, M’) optimalis megoldésa ennél tobb dsszhasznot eredményezne, akkor a mohé6 valasztés
hozza-vételével az eredeti (S, M) probléma jobb megolddsat kapnadnk, mint az optimalis. Ezzel bebizonyitottuk, hogy (S',M") egy
optimalis megoldasdhoz hozzdvéve a moh¢ vdlasztdst, az eredeti (S, M) probléma egy optimélis megoldésat kapjuk.
Megvalositas.

{ Globalis programelemek az EgyUtemez eljarashoz

const
MaxN = ??? ;{ a munkidk max. szama }
MaxH = ??? ;{ a max. hatarido }
type

Index = 1..MaxN;
Hatarido = array [Index] Of Integer;
Beosztas = array [1..MaxN] Of 0..MaxH;
Haszon = array [Index] Of Word;
}
procedure EgyUtemez(Const H : Hatarido;
Const P : Haszon;
N : Word;
var K : Word;
var MaxP: Word;
var B : Beosztas);
{Bemenet: Feltessziik, hogy a munkidk a hasznuk szerint nemnoévekvoen
rendezettek: P[i]>=P[i+1],i=1..N-1
Kimenet: B[i]=j>0 esetén az i. munkit a j. napra iitemezziik,
ha az i. munkat nem valaszjuk , akkor B[i]=0 }

var
i,j : Integer;
Szabad : array[1l..MaxH] of boolean;{a még szabad napok nyilvantartasara}
begin{ EgyUtemez }
M:=0; MaxP:=0;
for i := 1 to MaxH do

Szabad[i]:=True; {kezdetben minden nap szabad}
for i:=1 to N do {nincs beosztott munka}
Bl[i]:=0;
for i:=1 to N do begin
j = Hl[il;
while (j>0) and (not Szabad[j]) do
Dec(j);
if j > 0 then begin {van szabad nap i. hataridejéig}
Bl[i]:=j; {bevalasztjuk az utolsé szabad napra}
Szabad[j]:=False; {a valasztas bejegyzése}
Inc (K);
MaxP:=MaxP+P[i];
end;{if}

end{for i};
end{ EgyUtemez};
Az algoritmus futdsi ideje a legrosszabb esetben a munkdk szdma szorozva a napok szdmdval. A mohd vilasztds nem mindig

fejezhetd ki olyan egyszeriien, hogy egy halmazbdl adott rendezés szerint a legkisebb elemet kell valasztani. Erre mutat példat a
kovetkez6 feladat és annak megoldésa.

5.3. Feladat: Darabolas

Adott egy fémrid, amelyet megadott szdmu és hosszisdgu darabokra kell felvdgni. A darabok hosszat milliméterben kifejezett
értékek adjak meg. Olyan vagégéppel kell a feladatot megoldani, amely egyszerre csak egy vagast tud végezni. A vagasok
tetsz6leges sorrendben elvégezhetéek. Egy vagas koltsége megegyezik annak a darabnak a hosszaval, amit éppen (két darabra)
vagunk. A célunk optimalizdlni a miiveletsor teljes koltséget.

Készitsiink programot, amely kiszamitja a vagasi miiveletsor optimdlis 0sszkoltségét és megad egy olyan vagasi sorrendet, amely
optimdlis koltséget eredményez.

Bemenet

A be.txt darabol szoveges dllomdny els6 sora egy egész szdmot tartalmaz, a darabok n szdmat (0 < n < 1000). A mésodik sor n
darab pozitiv egész szamot tartalmaz egy-egy szokozzel elvédlasztva, a darabok hosszat. A masodik sorban szerepld szimok nem
nagyobbak, mint 1000.

Kimenet

A be.txt darabol szoveges dllomdny elsd sordba egyetlen szamot, a vagasi miveletsor optimalis 0sszkoltségét kell frni! A
tovabbi n — 1 sor mindegyikébe két egész szamot kell irni, egy szokozzel elvalasztva. Az els6 szdm legyen az adott Iépésben ket-
tévagott rid hossza, a masodik szdm pedig az egyik keletkez darab hossza. Minden sor csak olyan hosszisagu darab kettévagasat
tartalmazhatja, amelybdl a kordbbi Iépések sordn tobb keletkezett, mint az azéta elvégzett 1épések altal felhasznéltak szama.

Példa bemenet és kimenet
bemenet kimenet

5 55

252710 26 10
16 7
9 4
4 2

26

10 16

3. dbra. A példa megolddsanak dbrazoldsa bindris faval.

Elemezziik az optimdlis megoldés szerkezetét. Vegyiik észre, hogy minden darabolds, igy az optimdlis is lefrhat6 egy bindris
faval. A fa levelei tartalmazzdk a bemenetként kapott darabok hosszait, és minden belsd pontja annak a darabnak a hosszit,
amelybdl vagassal a két fii-pontban 1év6 darab keletkezett, azaz a két fidnak az 6sszegét. Példank esetén a fa a kovetkez&képpen
néz ki.

A darabolés 0sszkoltsége is kifejezhetd a faval, nevezetesen, az 6sszkoltség éppen a fa belsé (nem levél) pontjaiban taldlhat6
szamok 6sszege. Forditva is igaz, minden ilyen fa egy darabolast ir le. A fa koltségén a fa belsd pontjaiban 1év szamok 6sszegét
értjiik. Tehat keressiik az optimdlis megoldast, mint egy daraboldsi fat, tehdt azt, amelynek a koltsége minimadlis. A daraboldsi
fa koltsége kifejezhet6 a kovetkezoképpen. Legyenek d,...,d, a vigand6 darabok hosszai és legyen m; a d; darabot tartalmazo
levélpont mélysége (a fa gyokerétdl vett tavolsdga) a faban. Ezekkel a jelolésekkel a fa koltsége:

n
Zmi *d,'
i=1

[c BN e NV I O R

DO = = = = e = e e =
OO0 N Pk W= OO

21

22
23
24
25
26
27
28
29

Az optimdlis fara a kovetkez6 két 4llitas teljesiil.

5.2. lemma. A két legkisebb értéket tartalmazo levélpont mélysége a legnagyobb, és testvérek.
Bizonyitds. Ha az dllitds nem teljesiilne, akkor a két legmélyebb testvér levélpontot felcserélve a két legkisebb értéket tartalmazo
levéllel, kisebb koltségii fdt kapndnk. [|

5.3. lemma. Legyen d, és d, a két legkisebb darab. Ha az optimdlis faban toroljiik a d,-t és d,-t tartalmazo levélpontot, akkor
olyan fdt kapunk, amely optimdlis arra a bemenetre, amely d,, és d, helyett a d,, + d, darabot tartalmazza.
Bizonyitds. A két levél torlésével kapott fa nyilvdn daraboldsi fa lesz a modositott bemenetre, amelynek koltsége

n
Y mixd;—(d,+d,)
i=1

Legyen F egy optimdlis daraboldsi fa a modositott bemenetre és legyen a koltsége K. Ha a d,,+d, darabot tartalmazo levélponthoz
hozzdvessziik bal fitiként a d,, értéket tartalmazo, jobb filiként pedig a d, értéket tartalmazo uj levelet, akkor egy olyan fdt kapunk,
amely daraboldsi fa lesz az eredeti bemenetre, koltsége pedig K +d, +d,. Ez azonban nem lehet kisebb, mint az optimdlis
daraboldsi fa koltsége az eredeti bemenetre, tehdt

n
Y mixd; <K+ (d,+d,)

i=1

N

n
Zmi*di—(du+dv)§K§ mi*di_(dlt+dV)
i=1 ‘

i=1

Ami az dllitds bizonyitdsdt jelenti. [|

Most mar megfogalmazhatjuk a mohé stratégidnkat. Epitsiik fel a darabolasi ft tgy, hogy 1épésenként a két legkisebb értéket
tartalmazé pontot egy Uj pont két fidva tessziik, és az dj pontba a két fiiban 1év6 érték 6sszegét irjuk. Az 1. Allitas igazolja a
mohé valasztasi tulajdonsdgot, a 2. Allitds pedig az optimalis részproblémdk tulajdonsdgot, tehét korrekt algoritmust kapunk.
Megvalositas. A mohé valasztas megvaldsitasara prioritdsi sort alkalmazunk.

procedure Darabol(var D:Darabok;
N:Word;;
var F:Fa;
var Kolts :Word);
var X,y,z,i:Word;
begin
for i:=1 to N do begin
SorBa(i);
F[i].bal:=0;F[i]. jobb:
end H
for i:=1 to N-1 do begin
x:=SorBol;
y:=SorBol;
z:=i+N;
D[z]:=D[x]+D[y];
SorBa(z);
F[z].bal:=x;
F[z].jobb:=y;
Kolts:=Kolts+D[z];
end H
end H

1]
<

procedure Kilr;
var KiF: Text;
Procedure Bejar (p:Word);
begin
if F[p].bal=0 then exit;
WriteLn (KiF, D[p]:1,’ .’ ,D[F[p].bal]:1);
if F[p].bal<>0 then Bejar(F[p].bal);

