8. Moho algoritmusok

Optimalizalasi probléma megoldasara szolgalé algoritmus gyakran olyan Iépések sorozatabdl all, ahol minden Iépésben adott
halmazbdl valaszthatunk. Sok optimalizalasi probléma esetén a dinamikus programozasi megoldas tul sok esetet vizsgal annak
érdekében, hogy az optimalis valasztast meghatarozza. Ennél egyszer(ibb, hatékonyabb algoritmus is létezik. A moho algoritmus
mindig az adott Iépéshen optimalisnak latsz6 valasztast teszi. Vagyis, a lokdlis optimumot valasztja abban a reményben, hogy ez
globalis optimumhoz fog majd vezetni. Olyan optimalizalasi problémakkal foglalkozunk, amelyek megoldhatok moho algoritmussal.

Mohé algoritmus nem mindig ad optimalis megoldast, azonban sok probléma megoldhaté mohé algoritmussal. El6szér egy
olyan egyszer(, de nem trivialis problémat vizsgalunk, az esemény-kivalasztas problémajat, amelyre a mohé algoritmus hatékony
megoldast ad. A mohé algoritmushoz Ugy jutunk, hogy el6szor dinamikus programozasi megoldast adunk, aztdn megmutatjuk,
hogy a mohé véalasztas mindig optimalis megoldast eredményez. Ezutan attekintjik a moho stratégia elemeit, ami moh6 algorit-
musok helyességének kozvetlenebb bizonyitasat teszi lehetévé.

8.1. Egy esemény-kivalasztasi probléma

Az elsd probléma, amit vizsgalunk kézos er6forrast igényld, egymassal versengd események ltemezése, azzal a céllal, hogy
kivalasszunk egy maximdlis elemszam, kdlcsondsen kompatibilis eseményekbdl all6 eseményhalmazt. Tegyik fel, hogy adott
események egy S={aj,ay,...,a} nelemd halmaza, amelyek egy kozos eréforrast, példaul egy eléadétermet kivannak hasz-
nalni, amit egy idében csak egyik hasznalhat. Minden a eseményhez adott az S kezd & id Gpont és az f; befejez 6 id Gpont
ahol 5 < fi. Ha az a eseményt kivalasztjuk, akkor ez az esemény az [s;, fj) félig nyitott idGintervallumot foglalja le. Az & és g
események kompatibilisek , ha az [s, ;) és [sj, fj) intervallumok nem fedik egymast (azaz & és a; kompatibilisek, ha 5 > f;
vagy Sj > fj). Az esemény-kivalasztasi probléma azt jelenti, hogy kivalasztand6 koélcséndsen kompatibilis eseményeknek egy
legnagyobb elemszamu halmaza. Példaul tekintsiik azt az S eseményhalmazt, amelynek elemeit a befejezési idejik szerint nem-

csokkend sorrendbe rendeztink.
i‘1234567891011

s|1 3 0 5 3 5 6 8 8 2 12

ffla 5 6 7 8 9 10 11 12 13 14
(Hamarosan latni fogjuk, hogy miért célszer(igy rendezni az eseményeket.) Az ({as,ag,a11} részhalmaz kdlcsondsen kompatibi-
lis eseményeket tartalmaz. Azonban nem maximalis, mert az {&y, a4, 8, 811} részhalmaz nagyobb elemszamu. A {a;,a4,8g, 211}
részhalmaz ténylegesen a legbévebb kdlcsondsen kompatibilis események halmaza, és egy masik ilyen legnagyobb elemszamu
részhalmaz az {ay,as,a9,a811} halmaz.

Ezt a feladatot tobb Iépésben oldjuk meg. Dinamikus programozasi megoldassal kezdiink, amelyben két részprobléma optima-
lis megoldaséat kombinaljuk, hogy az eredeti probléma optimalis megoldasat kapjuk. Sok valasztasi lehet6séget tekintlink, amikor
meghatarozzuk, hogy mely részproblémakbol épiil fel az optimalis megoldas. Aztan megallapitjuk, hogy csak egy valasztast kell
nézni — a mohé valasztast — és amikor a moh6 valasztast tessziik, akkor az egyik részprobléma Ures, tehat csak egy nem-ires
részprobléma marad. Erre az észrevételre alapozva egy rekurziv mohé algoritmust fejlesztjik ki az esemény-kivalasztasi feladat
megoldasara. Azzal tesszik teljessé a mohd algoritmus kifejlesztését, hogy a rekurziv algoritmust atalakitjuk iterativ algoritmussa.
Lépéseknek a sorozata, amelyeken keresztilmegyink ebben az alfejezetben egy kicsit bonyolultabb annél, mint amit altalaban
alkalmazunk mohé algoritmusok kifejlesztésénél, de jél szemlélteti a dinamikus programozas és a mohd algoritmus viszonyat.

Az esemény-kivalasztasi probléma optimalis részproblémak szerkezete

Mint mar mondtuk, esemény-kivalasztasi feladat dinamikus programozasi megoldasaval indulunk. Mint a 15. fejezetben, az els6
Iépésiink az, hogy megtalaljuk az optimalis szerkezetet, és felépitsik a feladat optimalis megoldast a részproblémak optimalis
megoldasaibdl.

A dinamikus programozasnal mar lattuk, hogy részproblémak alkalmas terét kell definialnunk. Kezdjiik azzal, hogy definialjuk
a kovetkezd halmazokat.

Sj={aeS: fi<s< fik<s},

tehat § j azokat az Sbeli eseményeket tartalmazza, amelyek a; befejez6dése utan kezd6dhetnek, és befejezédnek a; kezdete
elétt. Valjaban § j azokat az eseményeket tartalmazza, amelyek kompatibilisek mind a;-vel, mind a;-vel, és szintén kompatibilisek
az dsszes olyan eseménnyel, amely nem kés6bb fejez6dik be, mint amikor a; befejezédik, és azokkal, amelyek aj kezdeténél nem
korabban kezdédnek. A teljes probléma kezeléséhez egészitsik ki az eseményhalmazt az ag és an 1 eseményekkel, ahol fg =0,
Sht1 = . Ekkor S= Synt1, és a részproblémak indexeinek tartomanya: 0 <i, j <n-+1.

Még tovabb sz(ikithetjik i és] tartomanyat a kovetkezéképpen. Tegyk fel, hogy az események a befejezésiik szerint monoton
nem-csokkend sorrendbe rendezettek.
fo<fi<fa< - < fy < fngn 1)

Azt allitjuk, hogy S j = 0, valahanyszor i < j. Miért? Tegyiik fel, hogy van olyan a € S j esemény, hogy i > j, azaz a; hatrabb van
a sorrendben, mint a;. Ekkor azt kapnank, hogy fi < s < fx <5 < fj. Tehat fj < f; lenne, ami ellentmond azon feltevésuinknek,
hogy @ hatrabb van a sorrendben, mint a;. Azt kaptuk, hogy feltételezve, hogy az események a befejezésiik szerint monoton
nem-csokkend sorrendbe rendezettek, az S j, 0 <i < j < n+1 részproblémék kozul kell maximalis elemszamu, kolcsonésen
kompatibilis eseményhalmazt kivalasztani, tudva, hogy minden mas § j halmaz ures.

Az esemény-kivalasztasi probléma részprobléma szerkezetének meghatarozasahoz tekintsiink egy nem tres § j részproblé-
mat, 1 és tegyiik fel, hogy valamely ay eleme a megoldasnak, azaz fj < g < fx < Sj. Az ax eseményt hasznalva ket részproblémat
kaphatunk, § k-t (amely azon események halmaza, amelyek a; befejezése utan kezd6dnek, és befejezédnek ax kezdete el6tt) és
& j-t (amely azon események halmaza, amelyek ax befejezése utan kezdédnek, és befejezédnek aj kezdete el6tt). Nyilvanvalo,
hogy S és & j részhalmaza az § j eseményhalmaznak. § j megoldasat megkapjuk, ha az § x és S j megoldasanak egyesite-
séhez hozzavessziik az ax eseményt. Tehat az § j megoldasanak elemszamat kapjuk, ha az § x megoldasanak elemszaméahoz
hozzéadjuk S j megoldasanak elemszamat és még egyet (ax miatt).

Az optimalis részproblémak szerkezet a kdvetkezd lesz. Tegyiik fel, hogy A; j egy optiméalis megoldasa az § j részproblémanak
és ax € Ajj. Ekkor az A x megoldas optiméalis megoldasa kell legyen az § i részproblémanak, és az Ay j megoldas optimalis
megoldasa kell legyen az S j részproblémanak. A szokasos kivagas-beillesztés modszer alkalmazhaté a bizonyitashoz. Ha lenne
olyan Ai/.k megoldasa S x-nak, amely t6bb eseményt tartalmazna, mint A x, akkor A; j-ben A helyett A{ -t véve § j-nek egy
olyan megoldasat kapnank, amely tébb eseményt tartalmazna, mint A j. Mivel feltettiik, hogy A; j optimalis, ezért ellentmondasra
jutottunk. Hasonléan, ha lenne olyan A{q megoldasa S j-nek, amely tobb eseményt tartalmazna, mint Ay j, akkor A; j-ben Ay
helyett A{q-t véve § j-nek egy olyan megoldasat kapnank, amely tébb eseményt tartalmazna, mint A .

Most az optimalis részproblémak szerkezet felhasznalasaval megmutatjuk, hogy az eredeti probléma optimalis megoldasa fe-
lépithet6 a részproblémak optimélis megoldasaibdl. Lattuk, hogy egy nem dres § j részprobléma minden megoldasa tartalmaz
valamely ax eseményt, és minden optimélis megoldas tartalmazza az § i és S j részproblémak optimalis megoldasat. Tehat felé-
pithetiink egy maximalis elemszamu, kdlcsondsen kompatibilis eseményeket tartalmazé megoldasat az § j részproblémanak agy,
hogy két részproblémara bontjuk (a § k és S j részproblémak maximalis elemszami megoldas megkeresésével), a megkeressiik
két részprobléma maximalis elemszamu, kolcsdndsen kompatibilis események tartalmazo A; k és Ay j megoldasat, aztan az alabbi
formaban megalkotjuk a kdlcsdndsen kompatibilis eseményekbdl allé A; j maximalis elemszamu megoldast.

A=A kU {ac UA. 2

Az eredeti probléma optimalis megoldasat S n+1 megoldasa adja.

Rekurziv megoldas

A dinamikus programozéasi megoldas kifejlesztésének méasodik Iépéseként rekurziv médon definidljuk az optimalis megoldas érté-
két. Az esemény-kivalasztasi probléma esetén legyen c[i, j| az §,j részprobléma maximalis elemszama, kélcsondsen kompatibilis
eseményeket tartalmazé részhalmaz elemszama. Az tudjuk, hogy cli, j] =0,ha § j =0, és cfi, j] =0, hai > j.

Tekintslink egy S j nem ures részhalmazt. Amint lattuk, ha ax benne van az § j egy maximalis elemszamd, kélcséndsen kom-
patibilis eseményeket tartalmaz6 részhalmazaban, akkor az § ik és S j részproblémak egy maximalis elemszamu, kélcsénosen
kompatibilis eseményeket tartalmazé részhalmazait hasznalhatjuk. A 2. egyenléséget felhasznalva kapjuk a kovetkez6 rekurziv
Osszefliggést.

cli, j] = cli,k +clk, j] + 1.

Ez a rekurziv egyenlet feltételezi, hogy ismerjik a k értéket, de ez nem gy van. Osszesen j —i — 1 lehetséges értéket vehet fel
k, nevezetesen K=1i+1,...,] — 1. Mivel §j a maximélis elemszami részhalmaza valamelyik k-ra el6all, ezért ellenérizziik az
osszes lehetséges értékre, hogy a legjobbat kivalasszuk. Tehat cli, j] teljes rekurziv alakja a kévetkezg lesz.

0 haSJ =0
cli,j] = irp&g{c[i,k} +clk, j]+1} ha§;#0. 3)
AES |

1Az S.,j halmazra néha azt mondjuk, hogy részprobléma és nem események halmaza. A szévegkornyezetbdl mindig vilagos lesz, hogy ha § j-re hivatkozunk,
akkor mint események halmazat értjiik, avagy egy részproblémat, amelynek a bemenete ez a halmaz.

A dinamikus programozasi megoldas atalakitasa moh6 megoldasséa

Ezen a ponton egyszer(i gyakorlati feladat lehetne tablazat-kitoltés, dinamikus programozasi algoritmus megirasa a 3. rekurzioés
képlet alapjan. Valoban, a

8.1. tétel. Tekintsiink egy § j nem Ures részproblémat, és legyen am a legkisebb befejezési ideji esemény § j-ben.
fm=min{fc:a €S ;}.
Ekkor
1. ay eleme § j valamely maximalis elemszamu, kélcsénésen kompatibilis eseményekbél all6 részhalmazanak.
2. Az § mrészprobléma (res, tehat any, valasztasaval legfeljebb az Sy, j nem ires.

Bizonyitas. El6sz6r a masodik részt bizonyitjuk, mert az egyszer(ibb. Tegyiik fel, hogy § m nem ures, tehat van olyan ax esemény,
hogy fi < s < fk < sn < fn. Mivel ax eleme S, j-nek, és befejezési ideje kisebb, mint an-é, ami ellentmond an, valasztasanak.
Tehat azt kaptuk, hogy § m Ures.

Az els6 rész bizonyitasahoz tegyik fel, hogy Aj j egy maximalis elemszamu, kélcsdndsen kompatibilis eseményekbdl allo
részhalmaza § j-nek, és tekintsiik § j elemeinek a befejezési idejik szerinti monoton nem-csokkend felsorolasat. Legyen ay
az els6 ebben a felsorolasban. Ha ax = am, akkor készen vagyunk, mert megmutattuk, hogy am eleme § j valamely maximalis
elemszamu, kolcsondsen kompatibilis eseményeket tartalmazé részhalmazanak. Ha ay # am, akkor tekintsik az A,’J =A;—-
{a} U{am} részhalmazt. Az A,-’ﬂj-beli események diszjunktak, mert A ; elemei diszjunktak, és ax az legkorabban befejez&d6
esemény A j-ben, tovabba fy, < fi. Mivel AI’J ugyanannyi esemeényt tartalmaz, mint A; j, ezért A,’J is egy maximdlis elemszamu,
kolcsondsen kompatibilis eseményeket tartalmazé részhalmaza § j-nek, amely tartalmazza am-et. |

Miért fontos az 1. tétel? Emlékeztetiink a dinamikus programozasra, amely szerint az optimalis részproblémak szerkezetét
az befolyasolja, hogy hany részproblématdl fligg az eredeti probléma, és hany valasztast kell végezni, hogy meghatarozzuk,
melyik részproblémat kell felhasznalni. A dinamikus programozasi megoldasunkban két részproblémat hasznalunk az optimalis
megoldashoz, és j-i-1 valasztast kell tenni az § j részprobléma megoldasahoz. Az 1. tétel jelentdsen csokkenti mindkét értéket.
Csak egy részprobléma kell az optiméalis megoldashoz (a masik biztosan lres), és § j megoldasa soran csak egy valasztast kell
nézni, ami az § j legkorabban befejez6d6 eseménye. Szerencsére kdnnyen meg tudjuk hatarozni ezt az eseményt.

Azon tdl, hogy csokkentette a részproblémak és a valasztasok szamat, az 1. tétel mas elénnyel is jar. Minden részproblémat
felulrél-lefelé haladé médon meg tudunk oldani, ellentétben a tipikus dinamikus programozasi médszerrel, ahol alulrél-felfelé kell
haladni. Az § j részprobléma megoldasat Ugy kapjuk, vesszilk § j legkorabban befejez6d6 a, eseményét, és hozzavesszik az
S, j részprobléma egy optimalis megoldasahoz. Mivel tudjuk, hogy am vélasztasaval Sy j optimalis megoldasa biztosan része §
egy optiméalis megoldasanak, ezért nem kell megoldani Sy j-t, § j megoldasa el6tt. § j -t gy oldhatjuk meg, hogy kivalasztjuk a
legkorabban befejez6d6 am eseményt § j-bdl, és aztan megoldjuk Sy j -t.

Jegyezzilk meg azt is, hogy van séma a megoldand6 részproblémakra. Az eredeti probléma az S= Sn1. Tegyik fel, hogy
az am, eseményt valasztottuk, amely a legkorabban befejez6d6 eseménye Sni1-nek. (Mivel az események befejezési idejik
szerint monoton nem-csokkend sorrendbe rendezettek, és fo = 0, igy my = 1.) A kdvetkezd részproblémank Sy, ni1 lesz. Tegyuk
fel, hogy am,-t valasztottuk Sy, ny1-b6l, amely a legkorabban befejez6d6 eseménye. (Nem feltétlendl teljesil, hogy mp = 2.)
A kovetkezd részproblémank Sy, ny1 lesz. Ezt folytatva latjuk, hogy minden részproblémank Sy ni1 alakd lesz, valamely my
esemény-sorszamra. Mas széval, minden részproblémat a legkésébb befejez6d6 esemény, és egy masik esemény sorszama
hataroz meg, ahol az utébbi részproblémardl-részproblémara valtozik.

A vélasztand6 eseményre is van sémank. Mivel mindig Sy nt1 -nek a legkorabban befejez6d6 eseményét valasztjuk, igy a
részproblémakhoz kivalasztott események sorozata a befejezési id6 szerint szigordan monoton névekvd lesz. Tovabba, minden
eseményt csak egyszer kell vizsgalni, a befejezési idejiik szerint monoton nem-cstkkend sorrendben.

Egy részprobléma megoldasahoz mindig azt az a,, eseményt valasztjuk ki, amely a legkorabban befejezédik, és legdlisan

beoszthat6. Tehat a valasztds ;mohd” abban az értelemben, hogy intuitive a legnagyobb lehetéséget hagyja a fennmaradt
események beosztasara. Tehat az a moho valasztas, amely maximalizalja a beosztasra fennmaradt id6t.

Rekurziv moho algoritmus

Miutan lattuk, hogyan adhatunk dinamikus programozasi megoldas, amely felulrgl-lefelé haladé médszer, itt az ideje, hogy megad-
junk egy tisztan mohd, alulrdl felfelé haladé médszeri algoritmust. A REKURZIV-ESEMENY-KIVALASZTO eljaras kozvetleniil kaphato
rekurziv megoldasa a problémanak. Ennek bemend paraméterei az események kezdd és befejezé idGpontjait tartalmazo s és f
tomb, tovabba a megoldandd S ni1 részprobléméat meghatarozé i és n sorszam. (Az n paraméter az utolsé a, esemény indexe,
és nem az n+ 1 fiktiv esemény, amely szintén eleme a részprobléméanak.) Az eljaras S 1 egy maximalis elemszama, kdlcséno-
sen kompatibilis eseményeket tartalmazé részhalmazat adja eredményiil. Feltételezziik, hogy az n bemeneti esemény befejezési

id6 szerint monoton nem-csokkené sorrendbe rendezett az 1. képletnek megfeleléen. Ha a rendezettség nem teljesiilne, akkor
O(nlogn) id6ben rendezhetjiik 6ket. A kiindulasi probléma megoldasat a REKURZIV-ESEMENY-KIVALASZTO(S, f,0,n) eljarashivas
adja.

REKURZIV-ESEMENY-KIVALASZTO(S, f,i,n)

1 m—i+1

2 while m<néssy< fj D> § nt1 elsé valaszthaté eseményét keressiik
3 do m«—m—+1

4 ifm<j

5 thenreturn {am}U REKURZIV-ESEMENY-KIVALASZTO(S, f,m,n)

6 thenreturn O

[S|

““““‘Umc‘
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1. dbra. A REKURZIV-ESEMENY-KIVALASZTO algoritmus miikddése a korabban megadott 11 eseményre. Egy rekurziv hivas soran
vizsgalt események két horizontalis vonal kézott lathatéak. A fiktiv ag esemény befejezési ideje 0, az els6 REKURZIV-ESEMENY-
KIVALASZTO(S, f,0,11) eljarashivaskor az a; esemény valasztodik ki. A mar korabban kivalasztott események satirozottak, az
éppen vizsgalt esemény pedig fehér. Ha egy esemény kezdd idépontja elbb van, mint a legutoljara bevalasztott esemény befejez6
idépontja (a kozottik meghudzott nyil balra mutat), akkor azt elvetjuk. Egyébként (ha a nyil egyenesen felfelé, vagy jobbra mutat)
bevalasztjuk. Az utolsé REKURZIV-ESEMENY-KIVALASZTO(S, f,11 11) rekurziv hivas a 0 értékkel tér vissza. Az eredményl kapjuk
a kivalasztott események {ai, a4, ag,a11} halmazat.

Az 1. abra mutatja az algoritmus altal végzett miiveleteket. A REKURZIV-ESEMENY-KIVALASZTO(S, f,m,n) egy adott meghi-
vasakor a 2-3. sorokban a while ciklus megkeresi az § 1 elsé valaszthatdé eseményét. A ciklus sorban az a11,@42,...,8n

eseményeket vizsgalja, amig meg nem talélja az els6 olyan ay, eseményt, amely kompatibilis aj-vel, azaz sy, > fj teljesil. Ha a
ciklus gy ér véget, hogy talalt ilyen eseményt, akkor az eljarashivassal befejez6dik az 5. sorban végrehajtott return utasitassal,
ami visszaadja az {am} és a REKURZIV-ESEMENY-KIVALASZTO(S, f,m,n) rekurziv hivas altal visszaadott halmazok egyesitését.
Az utdbbi halmaz az Syny1 részprobléma megoldasa. A ciklus Ggy is terminalhat, hogy a m > n feltétel teljesil, amikor is nincs
olyan esemény, amely kompatibilis lenne S-vel. Ebben az esetben § n11 = 0, és az eljaras az 0 értéket adja vissza a 6. sorban.

Feltéve, hogy az események befejezési idejuk szerint monoton nem-csokkenden rendezettek, a REKURZIV-ESEMENY-KIVALASZTO(S, f,0,n)
eljarashivas futasi ideje ©(n). Ezt a kovetkezdképpen lathatjuk be. A rekurziv hivasokban minden eseményt pontosan egyszer
vizsgalunk a while ciklus feltételvizsgalatakor a 2. sorban. Pontosabban, az ax eseményt az utolsé olyan hivas vizsgalja, amelyre
i<k

Iterativ mohé algoritmus

A rekurziv eljarasunkat egyszer(ien atalakithatjuk iterativ algoritmussa. A REKURZIV-ESEMENY-KIVALASZTO eljards majdnem jobb-
rekurziv, dnmagat hivo rekurziv hivassal végzédik, amit kdvet egy egyesités mivelet. Jobb-rekurziv eljaras atalakitasa itera-
tivva altalaban egyszeri feladat, valéjaban tébb programozasi nyelv forditdprogramja ezt automatikusan elvégzi. Amint latjuk, a
REKURZIV-ESEMENY-KIVALASZTO eljaras minden § ny1 részprobléméara miikodik, tehat azokra, amelyek a legnagyobb befejezésii
eseményeket tartalmazzak.

A MOHO-ESEMENY-KIVALASZTO eljaras egy iterativ valtozata a REKURZIV-ESEMENY-KIVALASZTO eljarasnak. Ez ismét felté-
telezi, hogy a bemeneti események befejezési idejik szerint monoton nem-csokkend sorrendbe rendezettek. Az eljaras az A
valtozoban gydijti 6ssze a kivalasztott eseményeket, és ezt adja eredményiil a végén.

MOHO-ESEMENY-KIVALASZTO(S, f)

1 n« hossz|[s|

2 A—{a}
3i<1

4 for m«2to n
5 doif sp> fj

6 then A — AU {an}
7 i«<—m
8 return A

Az eljaras a kovetkezoképpen miikodik. Az i valtozé tartalmazza az A-ba legutoljara bevalasztott esemény indexét, aminek az
8; esemény felel meg a rekurziv valtozatban. Mivel az eseményeket befejezési idejiik szerinti monoton nem-csdkkend sorrendben
vizsgaljuk, ezért f; mindig a legnagyobb befejezési idejli esemény az A halmazban. Tehat

fi = max{ fy : ax € A} . 4)

Az 2-3. sorban kivalasztjuk az a; eseményt, elokészitve ezzel az A halmazt, hogy egyedll az a; eseményt tartalmazza, az i
valtozo pedig ezen esemény sorszamat veszi fel kezdetben. A for ciklus a 4-7. sorokban megkeresi a legkorabban befejez6d6
eseményt az § ny1 halmazban. A ciklus egymas utan vizsgalja az am eseményeket, és hozzaadja az A halmazhoz, ha kompatibilis
az 0sszes A-beli eseménnyel. Annak ellendrzése, hogy am kompatibilis az 6sszes A-ban 1év6 eseménnyel, a 4. egyenléség
miatt elegendd azt ellendrizni (5. sor), hogy az Sy kezdd idépont nem korabbi, mint az A-ba legutoljara bevalasztott esemény f;
befejez6 idGpontja. Ha az ay, esemény kompatibilis, akkor a 6-7. sorokban hozzavessziik am-et A-hoz, és i felveszi az m értéket.
A MOHO-ESEMENY-KIVALASZTO(S, f) eljarashivas pontosan azt a halmazt adja, mint a REKURZIV-ESEMENY-KIVALASZTO(S, f,0,n)
hivas.

A MOHO-ESEMENY-KIVALASZTO algoritmus, csakdgy, mint a REKURZIV-ESEMENY-KIVALASZTO ©(n) idében megoldja n beme-
neti eseményre a feladatot, feltéve, hogy az események kezdetben a befejezési idejik szerint monoton nem-csodkkend sorrendben
vannak.

public int[] Kivalaszto(int[] s, int[] £f){
int n=s.length;
int vege=£f[0];
int k=0;
int[] Beoszt=new int[n];
Beoszt [0]=0;

for (int i=1; i<n; i++){
if (vege<=s[i]){
Beoszt [++k]=1i;
vege=£f[i];

return Beoszt;

A moho stratégia elemei

A mohdé algoritmus ugy alkotja meg a probléma optimalis megoldasat, hogy vélasztasok sorozatéat hajtja végre. Az algoritmus soran
minden dontési pontban azt az esetet valasztja, amely az adott pillanatban optimalisnak latszik. Ez a heurisztikus stratégia nem
mindig ad optimalis megoldast, azonban néha igen, mint azt lattuk az esemény-kivalasztasi probléma esetén. Ebben a szakaszban
a mohd stratégia néhany altalanos tulajdonsagat fogjuk megvizsgalni.

Az a modszer, amit kdvettlink moho algoritmus kifejlesztésére, egy kicsit bonyolultabb az altalanos esetnél. A kévetkezd
|épések sorozatan mentiink keresztiil.

1. A probléma optimalis szerkezetének meghatarozasa.
2. Rekurziv megoldas kifejlesztése.

3. Annak bizonyitasa, hogy minden rekurziv [épésben az egyik optimalis valasztas a moho valasztas. Tehat mindig biztonsagos
a moho valasztas.

4. Annak igazolasa, hogy a moho vélasztas olyan részproblémakat eredményez, amelyek kozil legfeljebb az egyik nem Ures.
5. A moho stratégiat megval@sito rekurziv algoritmus kifejlesztése.
6. A rekurziv algoritmus atalakitasa iterativ algoritmussa.

Ezen lépéseken keresztilhaladva lattuk a moho algoritmus dinamikus programozasi alatdmasztasat. A gyakorlatban azonban
altalaban egyszer(sitjik a fenti Iépéseket moho algoritmus tervezésekor. A részproblémak kifejlesztésekor arra figyeliink, hogy
a moho valasztas egyetlen részproblémat eredményezzen, amelynek optimalis megoldasat kell megadni. Példaul az esemény-
kivalasztasi feladatnal el6szor olyan S j részproblémékat hataroztunk meg, ahol i és j is valtozo6 érték lehetett. Ezutan rajottiink,
hogy ha mindig moho valasztast végziink, akkor redukélhatjuk a részproblémakat § n, 1 alakdakra.

Masképpen kifejezve, az optimalis részproblémak szerkezetét a moho valasztas figyelembevételével alakithattuk ki. Tehat
elhagyhattuk a masodik indexet, és az § = {ax € S: fj < 5} alaku részprobléméakhoz jutottunk. Ezutan bebizonyithattuk, hogy
a moho vélasztas (az elsé befejez6d6 a,, esemény S§-ben), kombinalva Sy, egy optimalis megoldasaval, az eredeti § probléma
optimalis megoldasat adja. Altalanosabban, moho algoritmus tervezését az alabbi lépések végrehajtasaval végezziik.

1. Fogalmazzuk meg az optimalizaciés feladatot gy, hogy minden egyes valasztas hatasara egy megoldandé részprobléma
keletkezzék.

2. Bizonyitsuk be, hogy mindig van olyan optimalis megoldasa az eredeti probléméanak, amely tartalmazza a moho valasztéast,
tehét a moho vélasztads mindig biztonsagos.

3. Mutassuk meg, hogy a mohé vélasztassal olyan részprobléma keletkezik, amelynek egy optiméalis megoldasiahoz hozzavéve
a moh0 valasztast, az eredeti probléma egy optimalis megoldaséat kapjuk.

Ezt a kdzvetlenebb moédszert alkalmazzuk a fejezet hatralévd részében. Mindazonaltal, minden mohé algoritmushoz majdnem
mindig van bonyolultabb dinamikus programozéasi megoldas.

Meg tudjuk-e mondani, hogy adott optimalizacids feladatnak van-e mohé algoritmusud megoldasa? Erre nem tudunk altalanos
véalaszt adni, de a mohé-véalasztasi tulajdonsag és az optimalis részproblémak tulajdonsag két kulcsfontossagu 6sszetevl. Ha meg
tudjuk mutatni, hogy a feladat rendelkezik e két tulajdonsaggal, nagy eséllyel ki tudunk fejleszteni moh6 algoritmusd megoldast.

Moho-vélasztasi tulajdonsag

Az els6 alkotéelem a mohoé-valasztasi tulajdonsag : globalis optimalis megoldas elérhetd lokalis optimum (mohd) valasztasaval.
Més szdéval, amikor arrél dontiink, hogy melyik valasztast tegylk, azt valasztjuk, amelyik az adott pillanatban a legjobbnak t(inik,
nem tor6dve a részprobléméak megoldasaival. Ez az a pont, ahol a moho stratégia kulonbozik a dinamikus programozastol. Di-
namikus programozas esetén minden Iépésben valasztast hajtunk végre, de a valasztas fligghet a részproblémak megoldasatol.
Kovetkezésképpen, a dinamikus programozasi médszerrel a problémat alulrél-felfelé haladé moédon oldjuk meg, egyszeribbtél
Osszetettebb részproblémak felé haladva. A moh6 algoritmus soran az adott pillanatban legjobbnak t(in6 valasztast hajtjuk végre,
barmi is legyen az, és azutan oldjuk meg a valasztas hatasara fellépd részproblémat. A mohd algoritmus soran végrehajtott valasz-
tas figghet az addig elvégzett valasztasoktdl, de nem fligghet késdbbi valasztasoktdl, vagy részproblémak megoldasatél. Tehat
ellentétben a dinamikus programozassal, amely a részproblémakat alulrél-felfelé haladva oldja meg, a mohd stratégia altalaban
felulrél-lefelé halad, egymas utan végrehajtva moho valasztasokat, amellyel a problémat sorra kisebb méretiire redukalja.

Természetesen bizonyitanunk kell, hogy a Iépésenkénti mohd valasztasokkal globalisan optimélis megoldashoz jutunk, és ez
az ami leleményességet igényel. Tipikusan, mint az 1. tétel esetén, a bizonyitas részproblémék globalis optimalis megoldasét
vizsgélja. Megmutatja, hogy az optimalis megoldas moédosithaté Ggy, hogy az a mohé valasztast tartalmazza, és hogy ez a
véalasztas redukalja a problémat hasonlé, de kisebb méret(i részproblémara.

A moho-valasztasi tulajdonsag gyakran hatékonysagot eredményez a részprobléma véalasztasaval. Példaul az esemény-
kivalasztasi feladatnal, feltételezve, hogy az események befejezési idejik szerint monoton nem-csdkkend sorrendbe rendezet-
tek, minden eseményt csak egyszer kell vizsgalni. Gyakran az a helyzet, hogy a bemeneti adatokat alkalmasan el6-feldolgozva,
vagy alkalmas adatszerkezetet hasznalva (ami gyakran prioritasi sor), a mohé valasztas gyorsan elvégezhetd, és ezaltal hatékony
algoritmust kapunk.

Optimalis részproblémék tulajdonsag

Egy probléma teljesiti az optimalis részproblémak tulajdonsagot , ha az optimalis megoldas felépithet6 a részproblémak optima-
lis megoldasabdl. Ez az alkotéelem kulcsfontossagu mind a dinamikus programozas, mind a mohé stratégia alkalmazhatésaganak
megéllapitasanal. Az optimalis részproblémakra példaként emlékeztetiink arra, ahogy megmutattuk, hogy ha § j egy optimalis
megoldasa tartalmazza az ax eseményt, akkor az szilkségképpen tartalmazza Sk és S j egy optimélis megoldasat. Ezen opti-
maélis szerkezet alapjan, ha tudjuk, hogy melyik ax eseményt kell valasztani, akkor § j egy optiméalis megoldasa megalkothat6 a,
tovabba § k és S j egy optimalis megoldasabél. Az optimalis részproblémak ezen tulajdonsagat észre véve meg tudtuk adni a 3.
rekurziv egyenletet, ami az optimalis megoldas értékét adja meg.

Altalaban sokkal kézvetlenebb alkalmazasat hasznaljuk az optimalis részproblémak tulajdonsagnak mohé algoritmus kifejlesz-
tése soran. Mint mar emlitettik, szerencsénk van, amikor feltételezziik, hogy az eredeti probléma mohé véalasztasa megfeleld
részproblémat eredményez. Csak azt kell belatni, hogy a részprobléma optimalis megoldasa, kombinalva a mar elvégzett mohd
vélasztassal, az eredeti probléma optimalis megoldaséat adja. Ez a séma implicit médon hasznal részproblémak szerinti indukciot
annak bizonyitasara, hogy minden lépésben mohé valasztast végezve optimélis megoldast kapunk.

Moh¢ stratégia vagy dinamikus programozas

Mivel az optimalis részproblémak tulajdonségot kihasznaljuk mind a mohé, mind a dinamikus programozasi stratégiaknal, el6for-
dulhat, hogy dinamikus programozasi megoldast prébalunk adni akkor, amikor moh6 megoldas is célravezetd lenne, és forditva,
tévesen mohdé megoldassal prébalkozunk akkor, amikor valéjaban dinamikus programozasi médszert kellene alkalmazni. A finom
kilonbségek illusztralasara tekintsiik a kdvetkezd klasszikus optimalizalasi probléma két valtozatat.

A 0-1 hatizsak feladat a kovetkez6t jelenti. Adott n darab targy, az i-edik targy hasznalati értéke v, a sulya pedig w;, ahol Vv
és W; egész szamok. Kivalasztando a targyaknak olyan részhalmaza, amelyek hasznalati értékének 6sszege a lehetd legnagyobb,
de a sulyuk 6sszege nem nagyobb, mint a hatizsak W kapacitasa, amely egész szam. Mely targyakat rakjuk a hatizsakba? (Ezt
a problémat azért nevezzik 0-1 héatizsak feladatnak, mert minden targyat vagy bevalasztunk, vagy elhagyunk, nem tehetjik meg,
hogy egy targy toredékét, vagy tdbbszordsét valasztjuk.)

A toredékes hatizsak feladat csak abban kiilonbozik az el6z6t6l, hogy a targyak téredéke is valaszthatd, nem kell 0-1 binaris
vélasztast tenni. Ugy tekinthetjiik, hogy 0-1 hatizsak feladat esetén a targyak arany témbok, mig a téredékes hatizsak feladatnal
aranyporbdl merithetiink.

Mindkét hatizsak feladat teljesiti az optimalis részproblémak tulajdonségot. A 0-1 feladat esetén tekintsiink egy olyan valasztast,
amely a legnagyobb hasznalati értéket adja, de a targyak dsszstlya nem haladja meg a W értéket. Ha kivessziik a j-edik targyak a
hatizsakbal, akkor a bennmaradt targyak hasznalati értéke a legnagyobb lesz azon feltétel mellett, hogy az ésszsuly nem nagyobb,
mint W —wj, és n— 1 targybdl valaszthatunk, kizarva az eredeti targyak kozil a j-ediket. A toredékes hatizsak feladatnal ha egy

a b c d e f
Gyakorisag (ezrekben) 45 13 12 16 9 5
Fix hossz(kédszo 000 001 010 011 100 101
Véltoz6 hosszu kédszé 0 101 100 111 1101 1100

2. abra. Karakter kodolasi probléma. Az adatallomany 100 000 karakterbdl all, és csak az a—f karakterek fordulnak el az
allomanyban a feltlintetett gyakorisagokkal. Ha minden karaktert 3 bites kédszéval kédolunk, akkor 300 000 bitre van sziikség. Az
abran lathato véaltoz6 hosszu kddszavakat hasznélva az &llomanyt 224 000 bittel kddolhatjuk.

optimalis valasztasbol kivesziink a j targybdl w mennyiséget, akkor a megmaradt valasztas optimalis lesz arra az esetre, amikor
legfeliebb W — w 6sszsUlyt érhetlink el és a j-edik targybdl legfeliebb wj — w mennyiséget vélaszthatunk.

Bar a két feladat hasonld, a téredékes hatizsak feladat megoldhaté mohd stratégiaval, a 0-1 feladat azonban nem. A téredékes
feladat megoldasahoz el6bb szamitsuk ki minden targyra a Vi /w; hasznélati érték per suly hanyadost. A moho stratégiat kovetve
el6szor a legnagyobb hanyadosu targybdl valasztunk amennyit csak lehet. Ha elfogyott, de még nem telt meg a hatizsak, akkor a
kovetkez6 legnagyobb hanyadosu targybdl valasztunk amennyit csak lehet, és igy tovabb, amig a hatizsak meg nem telik. Mivel
a targyakat az érték per stly hanyados szerint kell rendeznie, a mohd algoritmus futasi ideje O(nlgn) lesz. Annak bemutatasara,
hogy a moho stratégia nem miikodik a 0-1 hatizsak feladatra, tekintsiik a kbvetkezd esetet.

i1 2 3
w [10 20 30
vi | 60 100 120

Harom targyunk van, és a hatizsak mérete 50 egységnyi. Az 1. targy sulya 10, haszndlati értéke 60, a 2. targy sulya 20,
hasznalati értéke 100, a 3. targy sulya 30, hasznalati értéke pedig 120 egység. Tehat az 1. targy érték per suly hanyadosa 6, a 2.
targyé 2, a 3. targyé pedig 4. igy a mohd stratégia el8szér az 1. targyat valasztana. Azonban az optimalis megoldasban a 2. és a
3. targy szerepel, kihagyva az 1. targyat. Mindkét valasztas, amelyben az 1. targy szerepel nem optimalis.

A megfeleld téredékes feladatra azonban a moh6 stratégia, amely el6szér az 1. targyat valasztja, optimdlis megoldast ad. A
0-1 feladat esetén az 1. targy valasztasa nem vezet optimalis megoldashoz, mert ezutan nem tudjuk telerakni a hatizsakot, és
az Uresen maradt rész csokkenti a hatizsak lehetséges érték per suly hanyadost. A 0-1 feladatnal amikor egy targy bevalasz-
tasarol dontink, akkor elébb 6ssze kell hasonlitani annak a két részproblémanak a megoldasat, amely a targy bevalasztasaval,
illetve kihagyaséaval adodik. Az igy megfogalmazott probléma sok, egymast atfedd részproblémat eredményez, ami a dinamikus
programozast fémijelzi. Valdéban, a 0-1 feladat megoldhat6 dinamikus programozasi modszerrel.

Huffman-kod

A Huffman-kéd széles korben hasznalt és nagyon hatékony médszer adatallomanyok tomoritésére. Az elérhetd megtakaritas
20%-t6l 90%-ig terjedhet, a témoritend6é adatallomany sajatossagainak fliggvényében. A kédolandé adatallomanyt karaktersoro-
zatnak tekintjuk. A Huffman féle moho algoritmus egy tablazatot hasznal az egyes karakterek el6fordulasi gyakorisagara, hogy
meghatérozza, hogyan lehet a karaktereket optimalisan &dbrazolni binaris jelsorozattal.

Tegyuk fel, hogy egy 100 000 karaktert tartalmazé adatalloméanyt akarunk toméritetten tarolni. Tudjuk, hogy az egyes karakterek
el6fordulasi gyakorisaga megfelel a 2. abran lathaté tablazatnak. Vagyis, hat kiilénbz6 karakter fordul el az allomanyban, és az
a karakter 45 000-szer fordul el az allomanyban.

Sokféleképpen abrazolhat6 egy ilyen tipust informéacié halmaz. Mi binaris karakterkdd (vagy roviden kod) tervezésének
probléméjat vizsgdljuk, amikor is minden karaktert egy binaris jelsorozattal abrazolunk. Ha fix hosszu kédot haszndlunk, akkor
3 bitre van sziikség a hatféle karakter kodolasara: a= 000b=001...,f =101 Ez a modszer 300 000 bitet igényel a teljes
allomany kodolasara. Csinalhatjuk jobban is? A valtozé hosszu kéd alkalmazasa tekintélyes megtakaritast eredményez, ha
gyakori karaktereknek rovid, ritkan el6éfordulé karaktereknek hosszabb kédszavat feleltetiink meg. A 2. abra egy ilyen kédolast
mutat: itt az egybites O kdd az a karaktert abrazolja, a négybites 1100kdd pedig az f karakter kodja. Ez a kddolas

(45-14+13-3+12-3+416-34+9-4+5-4)-1000= 224000

bitet igényel az allomany tarolasara, ami hozzavetbleg 25% megtakaritast eredményez. Valéjaban ez optimalis kddolast jelent,
mint majd latni fogjuk.

8.2. Prefix-kdédok

A tovabbiakban csak olyan kédszavakat tekintiink, amelyekre igaz, hogy egyik sem kezd6szelete a masiknak. Az ilyen kédolast
prefix-kédnak nevezzilk. 2 Megmutathaté (bar mi ezt nem tesszilk meg), hogy karakterkéddal elérheté optimalis adattdmorités
mindig megadhat6 prefix-koddal is, igy az altalanossag megszoritasa nélkiil elegendd prefix-kddokat tekinteni.

A prefix-kédok elénydsek, mert egyszer(sitik a kédolast (tomoritést) és a dekddolast. A kédolas minden binaris karakterkodra
egyszer(i: csak egymas utan kell irni az egyes karakterek binaris kédjat. Példaul a 3. abran adott valtozé hosszu karakterkdd
esetén az abc harom karaktert tartalmazé allomany kédja 0-101- 100= 0101100 ahol a " pont az egymasutan iras mivelet
(konkatenécio) jele.

A dekddolas is meglehetésen egyszerii prefix-kdd esetén. Mivel nincs olyan kddsz6, amely kezddszelete lenne egy masiknak,
igy egyértelm(i, hogy a kédolt allomany melyik kédszéval kezd6dik. Egyszerlien megallapitjuk, hogy a kédolt allomany melyik
kodszéval kezdédik, aztan helyettesitjik ezt azzal a karakterrel, amelynek ez a kédja, és ezt az eljarast addig végezziik, amig a
kédolt allomanyon végig nem értlink. A példankat tekintve, a 00101110Jelsorozat egyértelmlen bonthat6 fel a 0-0-101-1101
kddszavak sorozatara, tehat a dekddolas az aabesorozatot eredményezi.

A dekdédolési eljarashoz sziikség van a prefix-kdd olyan alkalmas abrazolasara, amely lehet6vé teszi, hogy a kddszot kdnnyen
azonositani tudjuk. Az olyan binaris fa, amelynek levelei a kddolando karakterek, egy ilyen alkalmas abrazolas. Ekkor egy karakter
kodjat a fa gyokerétél az adott karakterig vezetd Gt abrazolja, a 0 azt jelenti, hogy balra megyiink, az 1 pedig, hogy jobbra megytink
az (ton a faban. A 3. abra a példankban szerepl6 két kddot abrazolja. Vegyik észre, hogy ezek a fak nem binaris kereséfak, a
levelek nem rendezetten talalhaték, a belsd cslcsok pedig nem tartalmaznak karakter kulcsokat. Egy adatallomany optimalis

1

86 14

58 28 14
1 0 1 1

a|45/| b |13|| c |12||d |16||e |g ||f |5

3. abra. A 2. abran adott kédolasokhoz tartozé binaris fak. Minden levél cimkeként tartalmazza a a kédolandé karaktert és annak
el6fordulasi gyakorisagat. A bels6 cslcsok az adott gyoker(részfaban talalhaté gyakorisagok 6sszegét tartalmazzak. A fix hosszu
kdédhoz tartozo fa; a=000,..., f =101

kodjat mindig teljes binaris fa

abrazolja, tehat olyan fa, amelyben minden nem levél cslicsnak két gyereke van. A példankban szerepl6 fix hosszu kéd nem
optimalis, mert a 3. abran lathaté faja nem teljes binaris fa: van olyan kdédszd, amely 10 -lal kezdédik, de nincs olyan, amely 11
-gyel kezd6dne. Mivel a tovabbiakban szoritkozhatunk teljes binaris fakra, azt mondhatjuk, hogy ha C az az abécé, amelynek
elemei a kddolandd karakterek, akkor az optimalis prefix-kod fajanak pontosan |C| levele és pontosan |C| — 1 belsd csticsa van.

Ha adott egy prefix-kéd T faja, akkor egyszer(i kiszadmitani, hogy az adatallomany kédolasahoz hany bit sziikséges. A C abécé
minden c karakterére jeldlje f(c) a ¢ karakter el6fordulasi gyakorisagat az allomanyban, dr(c) pedig jeldlje a c-t tartalmazo levél
mélységét a T faban. Vegyuk észre, hogy dr(C) megegyezik a € karakter kddjanak hosszaval. A kédolashoz sziikséges bitek
szama ekkor

B(T) = ;f(c)dT(C) ®)

és ezt az értéket a T fa koltségének nevezziik.

2A prefix-mentes” elnevezés helyesebb lenne, de a ,prefix-k6d” ltalanosan hasznélt az irodalomban.

25 30

c 12 b|13] (14 4116

f |5 el 9

4. abra. Az optimalis prefix-kodhoz tartozo fa; a=0,b=101,...,f =110Q

8.3. Huffman-kdd szerkesztése

Huffman talalta ki azt a mohé algoritmust, amely optimalis prefix-kddot készit, amit Huffman-kédnak nevezink. A 2. szakasz
megallapitasait figyelembe véve az algoritmus helyességének bizonyitasa a mohd-valasztasi és az optimalis részproblémak tulaj-
donsagon alapszik. Ahelyett, hogy a kéd kifejlesztése el6tt bebizonyitanank e két tulajdonséag teljesiilését, el6szor a kddot adjuk
meg. Ezt azért tesszik, hogy vilagosan lassuk, az algoritmus hogyan hasznélja a moho valasztast.

A kovetkez6, pszeudokdd formajaban adott algoritmusban feltételezziik, hogy C a karakterek n elemi halmaza, és minden
c € C karakterhez adott annak f[c| gyakorisdga. Az algoritmus alulrél-felfelé haladva épiti fel azt a T fat, amely az optimalis kéd
faja. Az algoritmus gy indul, hogy kezdetben |C| szamu cslcs van, amelyek mindegyike levél, majd |C| — 1 sz&mU ,6sszevonas”
végrehajtasaval alakitja ki a végsé fat. Az f-szerint kulcsolt Q prioritasi sort hasznaljuk az 6sszevonandd két legkisebb gya-
korisagu elem azonositasara. Két elem dsszevonasanak eredménye egy Uj elem, amelynek gyakorisaga a két dsszevont elem
gyakorisaganak 6sszege.

HurFmaN(C)

3fori+1ton—1

4 do (] zcsucs létesitése

5 bal[Z] «+ X «+ KIVESz-MIN(Q)
6 jobb[Z] « y + KivEsz-MIN(Q)
7 flZ « f[x]+ fy]

8 BESzUR(Q,2)

9 return KIVESz-MIN(Q)

Az algoritmus megvalésitasa

A Huffman-kdd faja n+n— 1= 2n— 1 pontot tartalmazo rendezett binaris fa. Azonositsuk a fa pontjaitaz {1,...,2n— 1} szadmokkal.
A fat adjuk meg azzal az

Apa: {1,...2n—-1} - Z

10

fuggvénnyel, amelyre
—j haibalfia j -nek
Apai) =<] hai jobb fia j -nek
0 haiagyokér
Tehat az Apa(i) fuggvényérték eldjelével kodoljuk, hogy i bal, avagy jobb fia apjanak.

public class HuffmanKod{

private static class KulcsPar implements Comparable<KulcsPar> {
public float kulcs;
public int adat;
public int compareTo (KulcsPar z) {
return kulcs < z.kulcs ? -1: kulcs > z.kulcs ? 1: O;

}

public static String[] Huffman (float[] F)({
int n=F.length;
int[] Apa=new int[2*n];
PriSor<KulcsPar> S = new PriSorT<KulcsPar>(n);
for (int i=0; i<n; i++){
KulcsPar p=new KulcsPar();
p.kulcs=F[i];
p.adat=i;
S.SorBa(p);

KulcsPar x ,vy, z;

int gyoker=n-1;

for (int i=1; i<n; i++){
x=S.SorBol () ;
y=S.SorBol ();
gyoker++;
Apa[x.adat]=-gyoker;
Apa[y.adat]=gyoker;
z=new KulcsPar();
z.kulcs=x.kulcs+ty.kulcs;
z.adat=gyoker;
S.SorBa(z);

}

String[] Kodok=new String[n];
for (int i=0; i<n; i++){
String kod="";
int j=i;
while (j!=gyoker) {
if (Apa[j]<0)
kod='0"+kod;
else
kod="1"+kod;
j=Math.abs (Apa[Jj]);
}
Kodok [1]=kod;
}

return Kodok;

11

A példankban szerepl6é adatokra a Huffman algoritmus a 5. abran lathat6 médon mikodik. Mivel hat kédoland6 karakter van,
a sor mérete kezdetben n = 6 és 5 dsszevonasi lépés szilkséges a fa felépitéséhez. A végén kapott fa megfelel az optimalis
prefix-kédnak. Minden karakter kédja a gyokértdl a megfelel6 levélig vezetd ton 1évé élek cimkéinek sorozata.

Az algoritmusban a 2. sor inicializalja a Q prioritasi sort a C-beli karakterekkel. A 3-8. sorokban adott ciklus ismétl6déen
kivalasztja a Q sorbdl az x és y két legkisebb gyakorisagu cslcsot és beteszi a sorba azt a z (jj cslicsot, amely X és y 6sszevonasat
abrazolja. A zUj csucs gyakorisaga X és Yy gyakorisaganak 6sszege lesz, amit a 7. sorban szamitunk ki. A z csucs bal gyereke X,
jobb gyereke pedig az y csucs lesz. (ltt a sorrend nem Iényeges, barmely cslcs bal és jobb gyereke felcserélhetd, kiilonbozd, de
azonos koltség(i fat eredményezve.) n— 1 szamu 6sszevonas végrehajtdsa utan a sorban egy cslcs marad (a kodfa gyokere), az
algoritmus a 9. sor végrehajtasaval ezt adja eredményiil.

A Huffman algoritmus idéigényének elemzésénél feltételezziik, hogy a felhasznalt prioritasi sor absztrakt adattipust agy val6-
sitjuk meg, hogy a SORBoL és SORBA miiveletek futasi ideje O(lgn). A 3-8. sorokban adott ciklus pontosan (n— 1) -szer hajtddik
végre, és mivel a prioritasi sor minden mivelete O(lgn) id6t igényel, a ciklus teljes futasi ideje O(nlgn). Tehat a HUFFMAN
algoritmus futasi ideje O(n Ign) minden n karaktert tartalmazé C halmazra.

@ [115] [e[s] [c[22 [o]3] [d]se] [afas]) [c[12 (14)
0 1

©

[a]4s]

0 1
]

(e)

5. dbra. A Huffman algoritmus Iépései a 2. abran szerepl6 gyakorisagokra. Minden részébra a sor aktudlis tartalméat gyakorisag
szerint ndvekvden. A leveleket téglalapok jeldlik. A belsé csucsokat kor jeldli, amelyekben a cslics két gyereke gyakorisdganak
0sszege van. Minden karakter kddszava az a jelsorozat, amelyet Ugy kapunk, hogy a gyokértdl a karaktert tartalmazé levélig
vezetd Uton az élek cimkéit egymas utan frjuk. (a) A kezdeti allapot n = 6 csuccsal. (b) - (e) A kozbulsé allapotok. (f) A fa az
eljaras végén.

A Huffmann algoritmus helyessége

A HUFFMAN moho algoritmus helyességének igazolasahoz megmutatjuk, hogy az optimalis prefix-kdd meghatarozasa teljesiti
a moho-vélasztasi és az optimdlis részproblémak tulajdonsagokat. A kdvetkezd lemma azt bizonyitja, hogy a moho-valasztasi
tulajdonsag teljesdil.

8.2. lemma. Legyen C tetszdleges karakter halmaz, és legyen f[c] a ¢ € C karakter gyakorisaga. Legyen X és Yy a két legkisebb
gyakorisagu karakter C -ben. Ekkor létezik olyan optimalis prefix-kéd, amely esetén az x-hez és y-hoz tartozé kédsz6 hossza
megegyezik, és a két kddszé csak az utolsé bitben kilonbozik.

Bizonyitas. A bizonyitas alapétlete az, hogy vegyiink egy optimalis prefix-kddot abrazold T fat és méodositsuk Ugy, hogy a faban X
és y a két legmélyebben 1év6 testvércsucs legyen. Ha ezt meg tudjuk tenni, akkor a hozzajuk tartoz6 kédszavak valéban azonos
hosszlsaguak lesznek és csak az utolsé bitben kilonbéznek.

12

6. dbra. A 2. lemma bizonyitasanak kulcslépése. Az optimalis prefix-kdd T fajaban b és c a két legmélyebb testvércsucs. Az
X és y az a két levél cslcs, amelyet a Huffman algoritmus els6nek von Gssze. Ezek barhol lehetnek a faban. A b és X cslicsok
felcserélésével kapjuk a T’ fat. Ezutan a c és y cslcsokat felcserélve adodik a T” fa. Mivel egyik lIépés hatasara sem novekszik a
fa koltsége, a kapott T” fa is optimalis lesz.

Legyen a és b a T faban a két legmélyebb testvércsucs. Az altaldnossag megszoritasa nélkil feltehetjik, hogy f[a] < f[b]
és f[x] < fy]. Mivel f[x] < f[y] a két legkisebb gyakorisag, valamint f[a] < f[b] tetsz6leges gyakorisagok, igy azt kapjuk, hogy
fIx] < f[a] és f]y] < f[b]. A 6. abran lathaté modon felcseréljiik a T faban a és X helyét, ezzel kapjuk a T’ fat, majd ebbél a fabol,
felcserélve a b és y cstcsok helyét, kapjuk a T” fat. A (3.) egyenlet szerinta T és a T’ fak koltségének killénbsége

;f c)dr(c ;f c)dr(c

= f{¥dr () + f[a]dr(a) - f[X|dr (x) - fla]dr(a)
= fXdr(x) + f[aldr(a) - f[x|dr(a) — f[a]dr (x)
= (f[a] = f[x)(dr(a) —dr(x))

> 0

B(T) - B(T")

Az egyenl6tlenség azért teljesul, mert f[a] — f[x] és dr(a) — dr(X) nem-negativ. Pontosabban, f[a] — f[X] nem-negativ, mert
X egy legkisebb gyakorisagl karakter, és dr(a) — dr(X) azért nem-negativ, mert a maximalis mélységii a T faban. Hasonl6an
bizonyithat6, hogy b és y felcserélése esetén sem ndvekszik a koltség, igy B(T’) — B(T”) nem-negativ. Tehat B(T”) < B(T),
és mivel T optimalis igy B(T) < B(T"), tehat B(T”) = B(T). Tehat T” olyan optimalis fa, amelyben X és y maximélis mélység(i
testvércsicsok, amibél a lemma allitasa kovetkezik. []

A 2. lemmabol kovetkezik, hogy az optimalis fa felépitése, az altalanossag megszoritasa nélkil, kezdhet6 a moho valasztassal,
azaz a két legkisebb gyakorisagu karakter 6sszevonasaval. Miért tekinthet6 ez moh6 valasztasnak? Azért, mert tekinthetjik a két
Osszevont elem gyakorisaganak 0sszegét egy dsszevonas koltségeként. A HUFFMAN algoritmus az ésszes lehetséges |épések
kdzul mindig azt valasztja, amelyik a legkisebb mértékben jarul hozz4 a kdltséghez.

A kovetkezd lemma azt mutatja, hogy az optimalis prefix-kéd konstrukcija teljesiti az optimalis részproblémak tulajdonsagot.

8.3. lemma. Legyen C tetszbleges abécé, és minden ¢ € C karakter gyakoriséga f[c|. Legyen X és Yy a két legkisebb gyakorisagu
karakter C-ben. Tekintsiik azt a C' abécét, amelyet C-bdl Ugy kapunk, hogy eltavolitiuk az X és y karaktert, majd hozzaadunk
egy Uj z karaktert, tehat C' = C — {x,y} U{z}. Az f gyakorisagok C'-re megegyeznek a C-beli gyakorisagokkal, kivéve z esetét,
amelyre f[Z] = f[x]+ f[y]. Legyen T’ olyan fa, amely optimalis prefix-kddjat abrazolja a C’ abécének. Ekkor az a T fa, amelyet gy
kapunk, hogy a zlevélcsicshoz hozzakapcsoljuk gyerek csucsként x-et és y-t, olyan fa lesz, amely a C &bécé optimalis perix-kodjat
abrazolja.

Bizonyitas. ElG6szér megmutatjuk, hogy a T fa B(T) koltsége kifejezhet6 a T’ fa B(T') koltségével a 5. egyenlet alapjan. Minden
ce C—{x,y} esetén dy(c) = dr/(c), igy f[c]dr(c) = f[c]dt/(C). Mivel dr(X) = dr(y) = dt/(2) + 1, igy azt kapjuk, hogy

fiXdr () + flyldr(y) = (fX+fy)(dr(2)+1)
f[Zdr (2) + (FX + fy)),

amibél az kdvetkezik, hogy

B(T) =B(T') + f[x + f[y].

Indirekt madon bizonyitunk. Tegyiik fel, hogy T nem optimalis prefix-kodfa a C abécére. Ekkor létezik olyan T” kodfa C-re, hogy
B(T") < B(T). Az altaldnossag megszoritasa nélkiil (a 2. lemma alapjan) feltehetjiik, hogy X és y testvérek. Legyen T" az a fa,

13

amelyet T”-b6l Ggy kapunk, hogy eltavolitjuk az X és y cstcsokat, és ezek kozos z sziil6jének gyakorisaga az f[Z] = f[x] + f[y]
érték lesz. Ekkor

BT") = B(T")—f[X—f]
< B(T)—fi¥—f]y
= B(T),

ami ellentmond annak, hogy T’ a C' abécé optimalis prefix-kodjat abrazolja. Tehat T szilkségképpen a C abécé optimalis prefix-
kodjat abrazolja. [|

8.4. tétel. A HUFFMAN eljaras optimalis prefix-kédot allit el6.

Bizonyitas. Az allitas kdzvetlenll kévetkezik a 2. és a 3. lemmakbdl. |

14

