
2. Rekurzió

Egy objektum definícióját rekurzívnak nevezünk, ha a definíció tartalmazza a definiálandó objektumot.
Egy P eljárást (vagy függvényt) rekurzívnak nevezünk, ha P utasításrészében előfordul magának a P eljárásnak a hívása.

2.1. Partíciószám

Definíció. Az n természetes szám egy partíciója olyan π = 〈a1, · · · ,ak〉 sorozat, amelyre:
• a1 ≥ a2 ≥ ·· · ≥ ak > 0
• ∑k

i=1ai = n
(ai a π partíció része.) Jelölje P(n) n összes partíciójának számát.
Probléma: Partíciószám
Bemenet: n
Kimenet: n partícióinak száma, P(n)
Megoldás
Jelölje P2(n,k) n azon partícióinak számát, amelyben minden rész ≤ k.
Összefüggések:

1. P2(1,k) = 1, P2(n,1) = 1

2. P2(n,n) = 1+P2(n,n−1)

3. P2(n,k) = P2(n,n) ha n < k

4. P2(n,k) = P2(n,k−1)+P2(n−k,k) ha k < n

A megoldás: P(n) = P2(n,n)

public class Particio{
public static long P(int n){

return P2(n,n);
}
private static long P2(int n, int k){

if (k==1 || n==1)
return 1;

if (k>=n)
return P2(n,n-1)+1;

return P2(n, k-1)+P2(n-k, k);
}

}

Rekurziós fa fogalma. Olyan fa, amelynek minden pontja egy eljáráshívást jelent adott aktuális paraméterekre, úgy, hogy a pont
fiai megfelelnek azoknak az eljáráshívásoknak, amelyek végrehajtódnak az aktuális paraméterek esetén.
Futási id ő elemzése
Legyen E(n,k) a P2(n,k) eljáráshívás hatására végrehajtott eljárásutasítások száma.

Állítás. P2(n,k)≤ E(n,k)≤ 2P2(n,k)−1.
⇒ P(n)≤ E(n,n)≤ 2P(n,n)−1.
Tehát a P(n) eljáráshívás futási ideje Θ(P(n))
Biz .
1. P2(n,k)≤ E(n,k)
a. Ha n = 1 vagy k = 1 : P2(n,k) = 1 = E(n,k)
b. P2(n,n) = 1+P2(n,n−1)≤ 1+E(n,n−1) = E(n,n)
c. n > k: P2(n,k) = P2(n,k−1)+P2(n−k,k)≤ E(n,k−1)+E(n−k,k)
= E(n,k)−1 < E(n,k)
2. E(n,k)≤ 2P2(n,k)−1.
a. Ha n = 1 vagy k = 1 : E(n,k) = 1,P2(n,k) = 1,2∗1−1 = 1
b. E(n,n) = 1+E(n,n−1)≤ 1+2P2(n,n−1)−1 = 2[P2(n,n)−1]
= 2P2(n,n)−2 < 2P2(n,n)−1

1

5,5

5,4

1,4 1
5,3

2,3

2,1 1

5,2

5,1 1

3,1 1

3,2

1,2 1

+

+

+

+

+1

1. ábra. A P2(5,5) eljáráshívás rekurziós fája

c. n > k: E(n,k) = 1+E(n,k−1)+E(n−k,k)
≤ 1+2P2(n,k−1)−1+2P2(n−k,k)−1 = 2[P2(n,k−1)+P2(n−k,k)]−1
= 2P2(n,k)−1
Állítás. P(n) = Ω(2

√
n)

Biz. Tekintsük az összes olyan 〈a1, · · · ,ak〉 sorozatot, ahol
√

n≥ a1 és a1 > a2 > .. . > ak. Ezek száma pontosan 2b
√

nc,
mivel minden ilyen sorozat egyértelműen megadható 〈bb√nc, . . . ,b1〉 bitvektorral, ahol bx = 1 akkor és csak akkor, ha x eleme a
sorozatnak.
Mivel k≤

√
n, így ∑k

i=1ai ≤
√

n
√

n≤ n. Minden ilyen sorozathoz adjunk hozzá a végén annyi 1-est, hogy a számok összege n
legyen, tehát n egy partícióját kapjuk. Ha két kiindulási sorozat különböző volt, akkor a kiegészítéssel különböző partíciót kapunk.
Tehát n partícióinak száma ≥ 2b

√
nc

Következmény. A P algoritmus futási ideje Ω(2
√

n).
Megjegyzés.
1. Az is bizonyítható, hogy P(n) futási ideje O(2

√
n).

2. Nem ismert P(n) kiszámítására zárt formula, de közelítő igen, az u.n. Hardy-Ramanujan formula:

P(n)∼ 1
4
√

3n
e

π
3

√
6n

2.2. Rekurzív algoritmus helyességének bizonyítása

I. Terminálás bizonyítása
Bebizonyítandó, hogy minden eljáráshívás végrehajtása véges lépésben befejeződik. (Az eljárás terminál.)
Terminálás bizonyítása megállási feltétellel.
Megállási feltétel
Legyen P(x1, . . . ,xn) n-paraméteres rekurzív eljárás.
A M(x1, . . . ,xn) kifejezés megállási feltétele a P rekurzív eljárásnak, ha

1. M(a1, . . . ,an)≥ 0 minden megengedett a1, . . . ,an aktuális paraméterre.

2. Ha M(a1, . . . ,an) = 0 akkor nincs rekurzív hívás P(a1, . . . ,an) végrehajtásakor.

3. Ha van rekurzív hívás P(a1, . . . ,an) végrehajtásakor valamely b1, . . . ,bn paraméterekre,
akkor M(b1, . . . ,bn) < M(a1, . . . ,an)

2

Állítás: M(n,k) = (n−1)× (k−1) megállási feltétel P2-re.
II. Helyesség bizonyítása

1. Alaplépés. Annak bizonyítása, hogy az eljárás helyes eredményt számít ki, ha az aktuális paraméterek esetén nincs rekurzív
hívás.

2. Rekurzív lépés. Feltéve, hogy minden rekurzív hívás helyes eredményt ad, annak bizonyítása, hogy a rekurzív hívások által
adott értékekből az eljárás helyes eredményt számít ki.

Általános (szimultán) rekurzió fogalma
A {P1, . . . ,Pn} eljárásrendszer rekurzív, ha a hívási gráfjában van kör.

2.3. Postfix konverzió

Aritmetikai kifejezés szokásos írásmódja, hogy a műveleti jel az argumentumok között áll. Ezt az írásmódot infix jelölésnek is
nevezzük. Mivel a multiplikatív műveletek (szorzás ∗ és osztás /) prioritása magasabb, mint az additív (+,−) műveleteké, ezért
zárójelezni kell.
Pl. (a+b)∗ (c−d)+a.

Lukasiewic lengyel logikatudós vette először észre, hogy ha a műveleti jeleket az argumentumok után írjuk, akkor nincs szükség
zárójelekre. Ezért ezt az írásmódot fordított lengyel jelölésnek, vagy postfix alaknak hívjuk.
Jelölje φ(K) a K kifejezés postfix alakját.
Pl. φ((a+b)∗ (c−d)+a) = ab+cd−∗a+
Probléma : Postfix konverzió
Bemenet : K aritmetikai kifejezés infix jelölésben.
Kimenet : K postfix alakja.
A szabályos aritmetikai kifejezések megadhatók a következő (rekurzív) szintaxis diagramokkal (Az egyszerűség kedvéért az elemi
kifejezések csak egybetűs azonosítok lehetnek).
Tehát minden kifejezés vagy egy tag, vagy tagok additív műveleti jelekkel elválasztott sorozata. Minden kifejezés egyértelműen

Tag

+

Kifejezes

Tenyezo

Kifejezes

Azonosito

()

*
/

Tag

Tenyezo

Azonosito
a .. z

A .. Z

−

2. ábra. Kifejezés szintaxis diagramjai

felbontható
K = t1 ⊕1 t2 . . .⊕m tm+1 alakban, ahol ⊕i ∈ {+,−} és ti tag. Ekkor (a balról-jobbra szabály szerint)
φ(K) = φ(t1)φ(t2) ⊕1 . . .φ(tm+1)⊕m.

3

Minden tag vagy egy tényező, vagy tényezők multiplikatív műveleti jellel elválasztott sorozata. Minden tag egyértelműen fel-
bontható
T = t1 ⊗1 t2 . . .⊗m tm+1 alakban, ahol ⊗i ∈ {∗,/} és ti tényező. Ekkor (a balról-jobbra szabály szerint)
φ(T) = φ(t1)φ(t2) ⊗1 . . .φ(tm+1)⊗m.

Minden tényező vagy zárójelbe tett kifejezés; (K) és φ((K)) = φ(K), vagy azonosító; a és φ(a) = a.
Tehát a konverzió algoritmusát megalkothatjuk úgy, hogy minden szintaktikus egységhez (Kifejezés, Tag, Tényező, Azonosító)
egy eljárást adunk, amely balról jobbra haladva az aktuális karaktertől elolvassa és konvertálja a neki megfelelő (legszűkebb)
karaktersorozatot.
A megvalósítás algoritmusa nem feltételezi, hogy a bemenet szabályos kifejezés, hibás kifejezés esetén jelzi az első hiba helyét.

public class Postfix{
private static boolean Jo=true;
private static String S;
private static int i=0;
private static char Jel;
private static String Postform;

private static void KovJel(){
Jel=S.charAt(i);
i++;

}

public static void Kifejezes(){
char M;
Tag();
while (Jo && Jel==’+’ || Jel==’-’){

M=Jel;
KovJel();
Tag();
Postform=Postform+M;

}
}

private static void Tag(){
char M;
Tenyezo();
while (Jo && Jel==’*’ || Jel==’/’){

M=Jel;
KovJel();
Tenyezo();
Postform=Postform+M;

}
}
private static void Tenyezo(){

if (’a’<=Jel && Jel<=’z’){
Postform=Postform+Jel;
KovJel();

}else if (Jel==’(’){
KovJel();
Kifejezes();
if (Jo && Jel==’)’)

KovJel();
else

Jo=false;
}else

Jo=false;

4

}

public static String postfix(String K){
S=K+’.’;
KovJel();
Postform="";
Kifejezes();
return Postform;

}

public static void main (String[] args) {
System.out.println(postfix("a+b*(a-b)/(x+y)"));
}

}

Az eljárásrendszer hívási gráfja.

Kifejezes

TenyezoTag Azonosito

3. ábra. Az eljárások hívási gráfja

5

