2. Rekurzid

Egy objektum definiciéjat rekurzivnak neveziink, ha a definicié tartalmazza a definialand6 objektumot.
Egy P eljarast (vagy fuggvényt) rekurzivnak neveziink, ha P utasitasrészében el6fordul maganak a P eljarasnak a hivasa.

2.1. Particibszam

Definici6. Az ntermészetes szam egy partici6ja olyan TT= (ay,-- - ,8x) sorozat, amelyre:
e y>Hp>-->x>0
e Siia=n

(& a Ttparticio része.) Jeldlie P(n) n 6sszes particiéjanak szamat.
Probléma: Particioszam

Bemenet: n
Kimenet: n particidinak szama, P(n)
Megoldas
Jelolie P2(n,k) n azon particidinak szamat, amelyben minden rész < k.
Osszefiiggések:
1. P2(L,k)=1,P2(n,1)=1
2. P2(n,n) =1+P2(n,n—1)
3. P2(n,k) =P2(n,n) han<k

4. P2(n,k) = P2(n,k—1)+P2(n—k,k) hak<n
A megoldas: P(n) = P2(n,n)

public class Particiof
public static long P (int n) {
return P2 (n,n);
}
private static long P2 (int n, int k) {
if (k==1 || n==1)
return 1;
if (k>=n)
return P2 (n,n-1)+1;
return P2 (n, k-1)+P2(n-k, k);

}

Rekurzids fa fogalma. Olyan fa, amelynek minden pontja egy eljarashivast jelent adott aktudlis paraméterekre, ugy, hogy a pont
fiai megfelelnek azoknak az eljarashivasoknak, amelyek végrehajtédnak az aktudlis paraméterek esetén.

Futasi id 6 elemzése

Legyen E(n,k) a P2(n,K) eljarashivas hatasara végrehajtott eljarasutasitasok szama.

Allitas. P2(n,k) < E(n,k) <2P2(n,k) — 1.
= P(n) <E(n,n) <2P(n,n) — 1.
Tehat a P(n) eljarashivas futasi ideje ©(P(n))
Biz.
1. P2(n,k) < E(n,k)
a.Han=1lvagy k=1:P2(n,k) =1=E(n,k)
b. P2(n,n) =1+ P2(n,n—1) <1+E(n,n—1) = E(n,n)
c. n> k P2(n,k) = P2(n,k—1) + P2(n—k,k) <E(n,k—1)+E(n—k,k)
=E(n,k) —1 < E(n,k)
2. E(n,k) <2P2(n,k) — 1.
a.Han=1lvagyk=1:E(nk) =1,P2(n,k) =1,2x1-1=1
b. E(n,n)=1+E(n,n—1) <1+4+2P2(n,n—1)—1=2[P2(n,n) — 1]
=2P2(n,n) —2 < 2P2(n,n) — 1

? "
SN

14 |1

+

'

5,1 1 + 2

31 |1 1,2 1

1. abra. A P2(5,5) eljarashivas rekurzids faja

c.n>k E(n,k) =1+E(n,k—1)+E(n—kK)

<1+2P2(nk—1) —142P2(n—k,k) —1 = 2[P2(n,k— 1)+ P2(n—k, k)] — 1
=2P2(n,k) —1

Aliitas. P(n) = Q(2vM)

Biz. Tekintsilk az 6sszes olyan (ai,--- ,ax) sorozatot, ahol \/n > aj és a; > a» > ... > a. Ezek szama pontosan 2l
mivel minden ilyen sorozat egyértelm(ien megadhaté <btﬁj ,-..,b1) bitvektorral, ahol by = 1 akkor és csak akkor, ha X eleme a
sorozatnak.

Mivel k < \/n, igy z!‘:la,- < /ny/n < n. Minden ilyen sorozathoz adjunk hozza a végén annyi 1-est, hogy a szamok ¢sszege n
legyen, tehat n egy particidjat kapjuk. Ha két kiindulasi sorozat kiilonb6z6 volt, akkor a kiegészitéssel killénb6zd particiot kapunk.
Tehat n particiéinak szama > 2Lvn]

Kovetkezmény. A P algoritmus futasi ideje Q(ZVﬁ).

Megjegyzés.

1. Az is bizonyithat6, hogy P(n) futasi ideje O(2v™).

2. Nem ismert P(n) kiszamitasara zart formula, de kozelitd igen, az u.n. Hardy-Ramanujan formula:

P(n) ~ 4\}§ne§m

2.2. Rekurziv algoritmus helyességének bizonyitasa

I. Terminalas bizonyitasa

Bebizonyitandd, hogy minden eljarashivas végrehajtasa véges Iépésben befejezédik. (Az eljaras terminal.)
Terminalas bizonyitasa megallasi feltétellel.

Megallasi feltétel

Legyen P(x1,...,X,) n-paraméteres rekurziv eljaras.

AM(xg,...,%n) kifejezés megallasi feltétele a P rekurziv eljarasnak, ha

1. M(ay,...,a,) > 0 minden megengedett ay, ..., a, aktualis paraméterre.
2. HaM(ay,...,an) = 0 akkor nincs rekurziv hivas P(ay, ..., a,) végrehajtasakor.

3. Havan rekurziv hivas P(ay, ..., an) végrehajtasakor valamely by, ..., b, paraméterekre,
akkor M(by,...,by) < M(ay,...,an)

Allitas: M(n,k) = (n—1) x (k— 1) megallasi feltétel P2-re.
1. Helyesség bizonyitasa

1. Alaplépés. Annak bizonyitasa, hogy az eljaras helyes eredményt szamit ki, ha az aktuélis paraméterek esetén nincs rekurziv
hivas.

2. Rekurziv 1épés. Feltéve, hogy minden rekurziv hivas helyes eredményt ad, annak bizonyitdsa, hogy a rekurziv hivasok altal
adott értékekbdl az eljaras helyes eredményt szamit ki.

Altalanos (szimultan) rekurzié fogalma
A {Py,...,Py} eljarasrendszer rekurziv, ha a hivasi grafiaban van kor.

2.3. Postfix konverzio

Aritmetikai kifejezés szokasos irasmddja, hogy a mveleti jel az argumentumok kozétt all. Ezt az irdsmodot infix jeldlésnek is
nevezzik. Mivel a multiplikativ mliveletek (szorzas * és osztas /) prioritasa magasabb, mint az additiv (+, —) miveleteké, ezért
zarojelezni kell.
Pl. (a+b)x(c—d)+a

Lukasiewic lengyel logikatudés vette el6szor észre, hogy ha a miiveleti jeleket az argumentumok utan irjuk, akkor nincs sziikség
zardjelekre. Ezért ezt az irasmodot forditott lengyel jeldlésnek, vagy postfix alaknak hivjuk.
Jeldlie @(K) a K kifejezés postfix alakjat.
PL. ¢((a+b)*(c—d)+a)=ab+cd—=a+
Probléma : Postfix konverzié
Bemenet : K aritmetikai kifejezés infix jelolésben.
Kimenet : K postfix alakja.
A szabdlyos aritmetikai kifejezések megadhatdk a kdvetkez6 (rekurziv) szintaxis diagramokkal (Az egyszerliség kedvéért az elemi
kifejezések csak egybetlis azonositok lehetnek).
Tehat minden kifejezés vagy egy tag, vagy tagok additiv mUveleti jelekkel elvalasztott sorozata. Minden kifejezés egyértelmiien

Kifejezes

1 Tag -

Tenyezo

(— Kifejezes) —1—

Azonosito

Azonosito

2. abra. Kifejezés szintaxis diagramjai

felbonthato
K=t @11 ... Bmtmy1 alakban, ahol &; € {4, —} ést; tag. Ekkor (a balrél-jobbra szabaly szerint)

@(K) = o(t1) @lt2) D1 Ptm1) Dm.

Minden tag vagy egy tényezd, vagy tényez6k multiplikativ miveleti jellel elvalasztott sorozata. Minden tag egyértelmien fel-
bonthato
T=t1 ®1t2... ®mtms1 alakban, ahol ®; € {x,/} ést; tényezd. Ekkor (a balrél-jobbra szabaly szerint)
oT) = @(t2) P(t2) ®1... P(tmr1) Om.

Minden tényezd vagy zardjelbe tett kifejezés; (K) és @((K)) = @(K), vagy azonosité; a és @(a) = a.
Tehat a konverzié algoritmusat megalkothatjuk Ugy, hogy minden szintaktikus egységhez (Kifejezés, Tag, Tényezd, Azonositd)
egy eljarast adunk, amely balrél jobbra haladva az aktudlis karaktertél elolvassa és konvertalja a neki megfelel6 (legsz(ikebb)
karaktersorozatot.
A megvalésitas algoritmusa nem feltételezi, hogy a bemenet szabalyos kifejezés, hibas kifejezés esetén jelzi az elsd hiba helyét.

public class Postfix({
private static boolean Jo=true;
private static String S;
private static int i=0;
private static char Jel;
private static String Postform;

private static void Kovdel () {
Jel=S.charAt (1i);
it++;

public static void Kifejezes() {

char M;

Tag();

while (Jo && Jel=='+' || Jel=='-"){
M=Jel;
Kovdel () ;
Tag ()
Postform=Postform+M;

}

private static void Tag() {

char M;

Tenyezo();

while (Jo && Jel=='*' || Jel=='/"){
M=Jel;
KovJel () ;
Tenyezo();
Postform=Postform+M;

}
private static void Tenyezo () {
if ("a'<=Jel && Jel<="z"){
Postform=Postform+Jel;

KovJel () ;
lelse if (Jel=='("){
KovJel () ;

Kifejezes();
if (Jo && Jel==")")

KovJel ();
else
Jo=false;
}else
Jo=false;

}

public static String postfix(String K) {
S=K+’.’;
KovJel () ;
Postform="";
Kifejezes();
return Postform;

public static void main (String[] args) {
System.out.println(postfix ("a+b* (a-b)/ (x+y)"));

}

Az eljarasrendszer hivasi grafja.

Kifejezes

¢

Tag —Tenyezo —= Azonosito

3. dbra. Az eljarasok hivasi grafja

