
Algoritmizálás

Horváth Gyula
Szegedi Tudományegyetem

Természettudományi és Informatikai Kar
horvath@inf.u-szeged.hu

3. Rekurzió

3.1. Feladat: Sorbaállítások száma
Hány féleképpen lehet sorbaállítani az osztály tanulóit?
Bemenet: a tanulók n száma.
Kimenet: ahány félekeppen az n tanuló sorbaállítható.

Megoldás
Jelölje P(n) a megoldás értékét n tanuló esetén. A Tanulókat az 1, . . . ,n számokkal azonosítjuk.
P(1) = 1
Visszavezés kisebb méretű, ugyanilyen probléma megoldására.
Tekitsük azokat a sorbaállításokat, amelyek esetén az n-edik tanuló a sorban az első helyen áll, és jelöljük ezek számát S(1,n)-el.
Általában, jelölje S(i,n) azon sorbaállítások számát, ahol az n sorszámú tanuló a sorban az i-edik helyen áll. Tehát

P(n) = S(1,n)+ S(2,n)+ · · ·+ S(n,n)

Nyilvánvaló, hogy S(1,n) megegyezik n− 1 tanuló összes lehetséges sorbaállításának számával, tehát S(1,n) = P(n− 1). Ál-
talában, azon sorbaállítások száma, ahol az n-edik tanuló a i-edik helyen áll, P(n−1). Tehát, ha n > 1, akkor

P(n) = n∗P(n−1)

P(n) = n∗ (n−1)∗ · · · ∗2∗1

1 P : = 1 ;
2 f o r i :=2 to n do
3 P:=PΛn ;

3.2. Feladat: Zsebpénz
n Euro zsebpénzt kaptunk. Minden nap veszünk pontosan egy dolgot a következők közül (zárójelben az ár szerepel) perec (1 Eu),
fagylalt (2 Eu), csoki (2 Eu).
Számítsuk ki, hogy hányféleképpen költhetjük el a zsebpénzünket!

Megoldás
Jelölje K(n) az n Eu lehetséges elköltéseinek a számát. A következő összefüggések állnak fenn:
• K(1) = 1 (csak egy perecet vehetünk)

• K(2) = 3 (vagy két perecet, vagy egy csokit, vagy egy fagyit vehetünk)

• K(n) = K(n−1)+ 2K(n−2) ha n≥ 3, (első alkalommal perecet, csokit vagy fagylaltot vehetünk).

A következő algoritmus adja meg a K(n) függvényt:

1

1 f u n c t i o n K(n : i n t e g e r) : i n t 6 4 ;
2 begin
3 i f n=1 then
4 K:=1
5 e l s e i f n=2 then
6 K:=3
7 e l s e
8 K:=K(n−1)+2ΛK(n−2);
9 end {K} ;

3.3. A rekurzió gyökerei:Peano axiómák
1. 0 ∈ N (A 0 természetes szám)

2. S(x) 6= 0 (A 0 nem rákövetkezője egyetlen természetes számnak sem)

3. S(x) = S(y)⇒ x = y

4. Ha M ⊆ N és 0 ∈M és ∀x(x ∈M⇒ S(x) ∈M) akkor M = N (Indukció axióma)

5. x + 0 = x

6. x + S(y) = S(x + y)

Az S(0) = 1 jelölést használva, x + 1 = x + S(0) = S(x + 0) = S(x)
Az 5. és 5. axiómák egy rekurzív algoritmust adnak az 1-es számrendszerbeli összeadásra.
Az a + b összeg kiszámításának (rekurzív) algoritmusa:
Vegyünk a darab kavicsot a bal kezünkbe, b darab kavicsot a jobb kezünkbe.
Ha a jobb kezünk üres, akkor az eredmény a bal kezünkben van (5. axióma).
Egyébként, (b = S(b) = b + 1 valamely b-ra)

tegyünk félre 1 kavicsot a jobb kezünkből

adjuk össze (ezen algoritmussal) a két kezünkben lévő kavicsokat

tegyük a bal kezünkbe az 1 félretett kavicsot

A szorzás rekurzív megadása

x ·0 = 0

x ·S(y) = x + x · y

3.4. Feladat: Eldöntendő, kinek van több birkája
Két szomszédos gazda vitatkozik, hogy kinek van több birkája. Adjunk algoritmust a vita eldöntésére!

A < (lineáris) rendezési reláció rekurzív megadása

0 < S(x)

¬(x < 0)

S(x) < S(x)⇔ x < y

2

3.5. Feladat: Partíciószám
Definíció. Az n természetes szám egy partíciója olyan π = 〈a1, · · · ,ak〉 sorozat, amelyre:
• a1 ≥ a2 ≥ ·· · ≥ ak > 0
• ∑

k
i=1 ai = n

(ai a π partíció része.) Jelölje P(n) n összes partíciójának számát.
Probléma: Partíciószám
Bemenet: n
Kimenet: n partícióinak száma, P(n)
Megoldás
Jelölje P2(n,k) n azon partícióinak számát, amelyben minden rész ≤ k.
Összefüggések:

1. P2(1,k) = 1, P2(n,1) = 1

2. P2(n,n) = 1 + P2(n,n−1)

3. P2(n,k) = P2(n,n) ha n < k

4. P2(n,k) = P2(n,k−1)+ P2(n− k,k) ha k < n
A megoldás: P(n) = P2(n,n)

1 f u n c t i o n P (n : i n t e g e r) : i n t 6 4 ;
2 f u n c t i o n P2 (n , k : i n t e g e r) : i n t 6 4 ;
3 begin
4 i f (n=1) or (k=1) then
5 P2 :=1
6 e l s e i f k>=n then
7 P2:=1+P2 (n , n−1)
8 e l s e
9 P2 := P2 (n , k−1)+P2 (n−k , k) ;

10 end { P2 } ;
11 begin
12 P:= P2 (n , n) ;
13 end {P} ;

Rekurziós fa fogalma. Olyan fa, amelynek minden pontja egy eljáráshívást jelent adott aktuális paraméterekre, úgy, hogy a pont
fiai megfelelnek azoknak az eljáráshívásoknak, amelyek végrehajtódnak az aktuális paraméterek esetén.

Rekurzív algoritmus helyességének bizonyítása
I. Terminálás bizonyítása
Bebizonyítandó, hogy minden eljáráshívás végrehajtása véges lépésben befejeződik. (Az eljárás terminál.)
Terminálás bizonyítása megállási feltétellel.
Megállási feltétel
Legyen P(x1, . . . ,xn) n-paraméteres rekurzív eljárás.
A M(x1, . . . ,xn) kifejezés megállási feltétele a P rekurzív eljárásnak, ha

1. M(a1, . . . ,an)≥ 0 minden megengedett a1, . . . ,an aktuális paraméterre.

2. Ha M(a1, . . . ,an) = 0 akkor nincs rekurzív hívás P(a1, . . . ,an) végrehajtásakor.

3. Ha van rekurzív hívás P(a1, . . . ,an) végrehajtásakor valamely b1, . . . ,bn paraméterekre,
akkor M(b1, . . . ,bn) < M(a1, . . . ,an)

Állítás: M(n,k) = (n−1)× (k−1) megállási feltétel P2-re.
II. Helyesség bizonyítása

1. Alaplépés. Annak bizonyítása, hogy az eljárás helyes eredményt számít ki, ha az aktuális paraméterek esetén nincs rekurzív
hívás.

2. Rekurzív lépés. Feltéve, hogy minden rekurzív hívás helyes eredményt ad, annak bizonyítása, hogy a rekurzív hívások által
adott értékekből az eljárás helyes eredményt számít ki.

3

5,5

5,4

1,4 15,3

2,3

2,1 1

5,2

5,1 1

3,1 1

3,2

1,2 1

+

+

+

+

+1

1. ábra. A P2(5,5) eljáráshívás rekurziós fája

3.6. Feladat: Hanoi tornyai
A hanoi torony probléma: Három pálca egyikén n korong van a többi üres. A korongok nagyság szerinti sorrendben helyezkednek
el, alul van a legnagyobb. Át akarjuk helyezni a korongokat egy másik pálcára a következő szabályok alapján. Egyszerre csak
egy korong mozgatható. A korong vagy üres pálcára vagy egy nála nagyobb korongra helyezhető. Oldjuk meg a feladatot egy
rekurzív algoritmussal! Határozzuk meg a korongmozgatások számát!

Megoldás
Legyen a hanoi eljárás egy olyan algoritmus, amelynek három argumentuma van, az első argumentum azt adja meg, hogy hány
korongot helyezünk át, a második megadja, hogy melyik toronyról a harmadik, hogy melyik toronyra. Ekkor az eljárás az
(n,1,2) argumentummal megoldja a feladatot. Amennyiben i−1 korongot már át tudunk helyezni, i korongot a következőképpen
helyezhetünk át. Elsőként i− 1 korongot áthelyezünk az oszlopról egy másik oszlopra. Utána az i-edik korongot rárakjuk a
kimaradó üres oszlopra. Végül ezen korong tetejére felrakjuk az i− 1 korongot. Ezt a rekurziót írja le a következő eljárás (a
megengedett lépést a mozgat függvény írja le, az argumentumai, hogy honnan hova)

1 procedure mozgat (ro l , ra : I n t e g e r) ;
2 begin { mozgat }
3 w r i t e l n (ro l , ’ −> ’ , ra) ;
4 end { mozgat } ;
5
6 procedure hanoi (n , ro l , ra : i n t e g e r) ;
7 begin { hanoi }
8 i f (n=1) then
9 mozgat (ro l , ra)

10 e l s e begin
11 hanoi (n−1, ro l , 6−ro l−ra) ;
12 mozgat (ro l , ra) ;
13 hanoi (n−1, 6−ro l−ra , ra) ;
14 end
15 end { hanoi } ;

Lépések száma: Az i-edik korong átrakásához kétszer kell i−1 korongot áthelyezni és egy további mozgatás szükséges. Tehát
T (i)-vel jelölve az i korong átrakásához szükséges mozgatások számát a T (i) = 2T (i− 1) + 1 rekurzív összefüggés áll fenn.
T (1) = 1, így T (2) = 3, T (3) = 7. Azt sejthetjük, hogy T (i) = 2i−1, amely egyenlőség teljes indukcióval egyszerűen igazolható.

4

3.7. Feladat: Pénzválás
Bemenet: P = {p1, ..., pn} pozitív egészek halmaza, és E pozitív egész szám.
Eldöntendő, hogy van-e olyan S⊆ P, hogy ∑p∈S = E.
Megjegyzés: A pénzek tetszőleges címletek lehetnek, nem csak a szokásos 1, 2, 5 10, 20, stb., és minden pénz csak egyszer
használható a felváltásban.

Megoldás
A megoldás szerkezetének elemzése.
Tegyük fel, hogy

E = pi1 + . . .+ pik , i1 < .. . < ik

egy megoldása a feladatnak. Ekkor
E− pik = pi1 + . . .+ pik−1

megoldása lesz annak a feladatnak, amelynek bemenete a felváltandó E − pik érték, és a felváltáshoz legfeljebb a első ik − 1
(p1, . . . , pik−1) pénzeket használhatjuk.
Részproblémákra bontás.
Bontsuk részproblémákra a kiindulási problémát: Minden (X , i)(1 ≤ X ≤ E,1 ≤ i ≤ N) számpárra vegyük azt a részproblémát,
hogy az X érték felváltható-e legfeljebb az első p1, . . . , pi pénzzel. Jelölje V (X , i) az (X , i) részprobléma megoldását, ami logikai
érték; V (X , i) = Igaz, ha az X összeg előállítható legfeljebb az első i pénzzel, egyébként Hamis.
Összefüggések a részproblémák és megoldásaik között.
Nyilvánvaló, hogy az alábbi összefüggések teljesülnek a részproblémák megoldásaira:
1. V (X , i) = (X = pi), ha i = 1
2. V (X , i) = V (X , i−1)∨ (X > pi)∧V (X− pi, i−1) ha i > 1

Rekurzív megoldás.
Mivel a megoldás kifejezhető egy V(X,i) logikai értékű függvénnyel, ezért a felírt összefüggések alapján azonnal tudunk adni egy
rekurzív függvényeljárást, amely a pénzváltás probléma megoldását adja.

1 f u n c t i o n V(X, i : i n t e g e r)
2 / / G l o b á l i s : P
3 begin
4 V:= (X==P [i]) or
5 (i >1) and (V(X, i −1) or (X>P [i]) and V(X−P [i] , i −1)) ;
6 end {V} ;

Ez a megoldás azonban igen lassú, legrosszabb esetben a futási idő Ω(2n).

5

3.8. Feladat: Járdakövezés
Számítsuk ki, hogy hányféleképpen lehet egy 3×n egység méretű járdát kikövezni 1×2 méretű lapokkal!
Megoldás

2. ábra.

Jelölje A(n) a megoldás értékét 3×n egység méretű járda esetén.
Az első oszlop középső négyzete háromféleképpen fedhető le.

Az egyes esetek csak az alábbi módon folytathatók:

3. ábra. 1. eset

4. ábra. 2. eset

Jelölje B(n) azt, hogy hányféleképpen fedhető le egy 3× n egység méretű járda, amelynek a bal alsó sarka már le van fedve.
Szimmetria miatt a jobb felső sarok lefedettsége esetén is B(n)-féle lefedés van.

A(n) =

 0 ha n = 1
3 ha n = 2
A(n−2)+ 2B(n−1) ha n > 2

(1)

B(n) =

 1 ha n = 1
0 ha n = 2
A(n−1)+ B(n−2) ha n > 2

(2)

6

5. ábra. 3. eset

6. ábra. Az 1. eset csak így folytatható

7. ábra. A 2. eset csak így folytatható

8. ábra. A 3. eset csak így folytatható

9. ábra. Az 1. eset csak így folytatható

10. ábra. Az 2. eset csak így folytatható

7

1 program jarda ;
2 f u n c t i o n B(n : i n t e g e r) : l o n g i n t ; forward ;
3 f u n c t i o n A(n : i n t e g e r) : l o n g i n t ;
4 begin
5 i f (n=1) then
6 A := 0
7 e l s e i f (n=2) then
8 A := 3
9 e l s e

10 A := A(n−2)+2ΛB(n−1);
11 end {A} ;
12
13 f u n c t i o n B(n : i n t e g e r) : l o n g i n t ;
14 begin
15 i f (n=1) then
16 B := 1
17 e l s e i f (n=2) then
18 B := 0
19 e l s e
20 B := A(n−1)+B(n−2);
21 end {B} ;
22 begin
23 w r i t e l n (A(3 2)) ;
24 end .

B(1)

41

A(2)

B(1) A(2) B(3) A(2) B(1)

B(3)

+2*

+2*

+2*

3

3 3

3

31

1

1

4 4

4

11

1511 B(5)

A(4)

A(4)

A(6)

B(3)

A(2)

+

+

+ + +

+ +

+ +

++

A(2)

11. ábra. Rekurziós fa

3.9. Feladat: Ördöglakat kinyitása
Az ördöglakat fém gyűrűkből összeállított szerkezet. Minden gyűrűnek van szára, amelyet körbefog a sorrendben következő
gyűrű. Zárt állapotban a szárakat körbefogja egy fémből készült hurok. Az a cél, hogy a lakatot kinyissuk, azaz a hurkot
eltávolítsuk.
A gyűrűket balról-jobbra 1-től n-ig sorszámozzuk. Minden lépésben egy gyűrű vehető le, vagy tehető fel az alábbi két szabály
betartásával.
1. Az első gyűrű bármikor levehető, illetve felrakható.
2. Minden i > 1 sorszámú gyűrű akkor és csak akkor vehető le, illetve tehető fel, ha az i− 1-edik gyűrű fent van, és minden
i−1-nél kisebb sorszámú gyűrű lent van. A lakat akkor van kinyitva, ha minden gyűrű lent van.
Írjon olyan rekurzív eljárást, amely megadja lépések olyan sorozatát, amely kinyitja a lakatot!

Megoldás
Részproblémákra bontás:

MindLe(m) Leveszi az első m gyűrűt (tetszőleges sorrendben), a többit változatlanul hagyja.

8

Le(i) Leveszi az i. gyűrűt, minden j > i sorszámút változatlanul hagy. (A j < i sorszámúak helyzete akármilyen lehet a művelet
után.)

Fel(i) Felteszi az i. gyűrűt, minden j > i sorszámút változatlanul hagy. (A j < i sorszámúak helyzete akármilyen lehet a művelet
után.)

1 program ordog lakat ;
2 c o n s t
3 maxN=32;
4 var
5 l a k a t : array [1 . . maxN] of boolean ;
6 i , n : i n t e g e r ;
7 procedure Le (i : i n t e g e r) forward ;
8 procedure Fe l (i : i n t e g e r) forward ;

9 procedure MindLe (m : i n t e g e r) ;
10 var i : i n t e g e r ;
11 begin
12 f o r i :=m downto 1 do
13 i f l a k a t [i] then Le (i) ;
14 end {MindLe} ;
15
16 procedure Le (i : i n t e g e r) ;
17 begin
18 i f (i >1) and not l a k a t [i −1] then
19 Fel (i −1);
20 i f (i >2) then MindLe (i −2);
21 l a k a t [i] : = f a l s e ;
22 w r i t e l n (i , ’ . Le ’) ;
23 end { Le } ;
24
25 procedure Fe l (i : i n t e g e r) ;
26 begin
27 i f (i >1) and not l a k a t [i −1] then
28 Fel (i −1);
29 i f (i >2) then MindLe (i −2);
30 l a k a t [i] : = true ;
31 w r i t e l n (i , ’ . Fe l ’) ;
32 end { Fe l } ;
33
34 begin
35 n : = 5 ;
36 f o r i :=1 to n do l a k a t [i] : = true ;
37 MindLe (n) ;
38 end .

3.10. Rekurzív görbék

3.11. Feladat: Hópihe görbe rajzolás
Görbe leírása Lindenmayer rendszerrel
Mag=F++F++F,
F => F-F++F-F,
alfa=0,
delta=120 fok

Megvalósítás teknőc grafikával
Teknőc állapota:

9

12. ábra. 1. rendű hópihe

10

13. ábra. 2. rendű hópihe

11

14. ábra. 5. rendű hópihe.

12

tartózkodási helye : (x,y) koordinátáju pont a síkon

irány : a vízszintes egyenessel bezárt α szög

elmozdulás mértéke : d (konstans)

elfordulás szöge : δ (konstans)

Műveletek:

• E : előremegy az adott irányítással d távolságot

• + (B): balra fodul δ szöggel

• - (J): jobbra fodul δ szöggel

1 program Hopihe ;
2 uses PSteknoc ;
3 / / Mag=F++F++F ,
4 / / F => F−F++F−F ,
5 / / a l f a =0 ,
6 / / d e l t a =120 fok
7 procedure F (n : i n t e g e r) ;
8 begin
9 i f n=1 then

10 E
11 e l s e begin
12 F (n−1); J ; F (n−1);B;B; F (n−1); J ; F (n−1);
13 end ;
14 end ;
15 procedure Mag(n : i n t e g e r) ;
16 begin
17 F (n) ; B;B; F (n) ; B;B; F (n) ;
18 end ;
19 begin
20 kezd (1 0 0 , 2 0 0 , 0 , 5 , Pi / 3 , ’ hopihe . ps ’) ;
21 Mag (5) ;
22 zar ;
23 end .

1 u n i t PSTeknoc ;
2 i n t e r f a c e
3 c o n s t
4 / / A4−es lapméret p o s t c r i p t pontokban , 1 pt =25 ,4 /72 (= 0 , 3 5 2 8)mm
5 maxX=595;
6 maxY=842;
7 procedure kezd (x0 , y0 , a l f a 0 , d0 , d e l t a 0 : double ; fnev : s t r i n g) ;
8 procedure E;
9 procedure J ;

10 procedure B;
11 procedure zar ;
12 procedure M;
13 procedure V;
14 procedure t o l l S z i n (r , g , b : s i n g l e) ;

15 implementat ion
16 c o n s t
17 Pi2=2ΛPi ;
18 Vmax=10000;
19 var

13

20 x , y , a l f a , d , d e l t a : double ;
21 p s f : t e x t ;
22 Vt : array [1 . . Vmax] o f double ;
23 Vm: i n t e g e r ;
24
25 procedure kezd (x0 , y0 , a l f a 0 , d0 , d e l t a 0 : double ; fnev : s t r i n g) ;
26 begin
27 x := x0 ; y := y0 ; a l f a := a l f a 0 ;
28 d:= d0 ; d e l t a := d e l t a 0 ;
29 Vm: = 0 ;
30 a s s i g n (psf , fnev) ; r e w r i t e (p s f) ;
31 w r i t e l n (psf , ’%!PS−Adobe−2.0 ’) ;
32 w r i t e l n (psf , ’ 0 . 5 s e t l i n e w i d t h ’) ;
33 w r i t e l n (psf , x : 8 : 3 , ’ ’ , y : 8 : 3 , ’ moveto ’) ;
34 end { kezd } ;

35 procedure E;
36 begin
37 x := x + d Λ cos (a l f a) ;
38 y := y + d Λ s i n (a l f a) ;
39 w r i t e l n (psf , x : 8 : 3 , ’ ’ , y : 8 : 3 , ’ l i n e t o ’) ;
40 end ;
41 procedure J ;
42 begin
43 a l f a := a l f a−d e l t a ;
44 i f (a l f a <0) then a l f a := a l f a +Pi2 ;
45 end ;
46 procedure B;
47 begin
48 a l f a := a l f a + d e l t a ;
49 i f (a l f a >Pi2) then a l f a := a l f a−Pi2 ;
50 end ;
51 procedure zar ;
52 begin
53 w r i t e l n (psf , ’ s t r o k e ’) ;
54 c l o s e (p s f)
55 end { zar } ;
56
57 procedure M;
58 begin
59 i n c (Vm) ; Vt [Vm] : = a l f a ;
60 i n c (Vm) ; Vt [Vm] : = y ;
61 i n c (Vm) ; Vt [Vm] : = x ;
62 end ;
63 procedure V;
64 begin
65 x := Vt [Vm] ; dec (Vm) ;
66 y := Vt [Vm] ; dec (Vm) ;
67 a l f a := Vt [Vm] ; dec (Vm) ;
68 w r i t e l n (psf , x : 8 : 3 , ’ ’ , y : 8 : 3 , ’ moveto ’) ;
69 end ;
70 procedure t o l l S z i n (r , g , b : s i n g l e) ;
71 begin
72 w r i t e l n (psf , r : 8 : 3 , ’ ’ , g : 8 : 3 , b : 8 : 3 , ’ s e t r g b c o l o r ’) ;
73 end ;

14

3.12. Feladat: Hilbert-görbe rajzolás

15. ábra. 1. rendű Hilbert-görbe

1 program H i l b e r t ;
2 uses PSteknoc ;
3 / / X => +YE−XEX−Y+
4 / / Y => −XE+YEY+Y−
5 procedure Y(n : i n t e g e r) forward ;
6 procedure X(n : i n t e g e r) ;
7 begin
8 i f n=0 then e x i t ;
9 B; Y(n−1);E; J ; X(n−1); E; X(n−1); J ; E; Y(n−1); B;

10 end {X} ;
11 procedure Y(n : i n t e g e r) ;
12 begin
13 i f n=0 then e x i t ;
14 J ; X(n−1); E; B; Y(n−1); E; Y(n−1); B; E; X(n−1); J ;
15 end {Y} ;
16
17 procedure Mag(n : i n t e g e r) ;
18 begin
19 X(n) ;
20 end ;
21 var
22 n : i n t e g e r ;
23 h , d : double ;

15

16. ábra. 2. rendű Hilbert-görbe

Hilbert görbe

E

Y Y

X X

EE

1. ábra.

X = +Y E−XEX−EY +
Y = −XE +Y EY +EX−

17. ábra.

16

18. ábra. 7. rendű Hilbert-görbe

17

19. ábra. Mag=F, F => F[+F]F[-F][F], alfa=Pi/2, delta=22.5 fok
18

20. ábra. Mag=F, F => FF-[-F+F+F]+[+F-F-F], alfa=Pi/2, delta=25 fok
19

21. ábra. Mag=F, F => FF, X => F[+X]F[-X]+X, alfa=Pi/2, delta=22.5 fok
20

22. ábra. Mag=X, F => FF, X => F+[[X]-X][-FX]+X, alfa=Pi/2, delta=22.5 fok
21

23. ábra. Bogáncs. Mag=[X]Y, X => [FF-YF+X-F], Y => [FF+XF-Y+F], alfa=Pi/2, delta=Pi/10
22

24. ábra. 12 éves fenyőfa. Mag=SLEEE, S => [+++G][—G]TS, G => +H[-G]L, H => -G[+H]L, T => TL, L => [-EEE][+EEE]E,
alfa=Pi/2, delta=Pi/10

23

