
13. Rendezési algoritmusok

Rendezési probléma
Bemenet: Azonos típusú adatok H = {a1, . . . ,an} halmaza, amelyeken értelmezett egy ≤ lineáris rendezési reláció.
(A ≤ rendezési reláció maga is lehet bemeneti paraméter.)
Kimenet: A H halmaz elemeinek egy ≤ rendezéstartó felsorolása, tehát olyan S= 〈b1, . . . ,bn〉 sorozat, amelyre
b1 ≤ b2 ≤ . . .≤ bn, és H = {b1, . . . ,bn}.
Bels ő rendezés. H és S tárolása a főtárban történik.
Küls ő rendezés. Vagy H vagy S tárolása külső (lemezes állományban) tárolón történik.
Helyben rendezés. Ha a meneneti H halmazt és a kimeneti Ssorzatot ugyanaz az adatszerkezet tárolja.

13.1. Kiválasztó rendezés

Elvi algoritmus:

S:= 〈〉;
While H <> /0 Do Begin

x := H minimális eleme;
Tegyük x-et az Ssorozat végére;
Töröljük x-et H-ból;

End

1 mi

HS

i n

1. ábra. A kiválasztó rendezés megvalósítása helyben

Procedure Kivalasztorend(Var T:Tomb);
Var

i,j,mi : Integer; E : Elemtip;
Begin

For i := 1 To N-1 Do Begin
{S=T[1..i-1], H=T[i..N]}
mi := i;
For j := i+1 To Tmeret Do

If T[j].kulcs < T[mi].kulcs Then
mi := j;

{T[mi]=Min(H)}
E := T[i]; T[i] := T[mi]; T[mi] := E;
{T[mi] S végére; T[mi] törlése H-ból}

End
End (* Kivalasztorend *);

1

A KIVALASZTOREND futási idejének elemzése
Jelölje T(n) a végrehajtott elemi művelet számát, ha |H|=n

n−1

∑
i=1

(5+n− i) ≤ T(n)≤
n−1

∑
i=1

(5+2(n− i))

5(n−1)+
n−1

∑
i=1

i ≤ T(n)≤ 5(n−1)+2
n−1

∑
i=1

i

5(n−1)+
n(n−1)

2
≤ T(n)≤ (n−1)(5+n)

Tl j (n) = Ta(n) = Tlr (n) = Θ(n2)

13.2. Beszúró rendezés

Elvi algoritmus:

S:= 〈〉; {üres output sorozat létesítés}
While H <> /0 Do Begin

x := H egy tetszőleges eleme;
Szúrjuk be x-et az Ssorozatba;
Töröljük x-et H-ból;

End

1

HS

i nj

2. ábra. A beszúró rendezés megvalósítása helyben

Procedure Beszurorend (Var T:Tomb;K:RendRelTip);
Var

i,j : Integer; E : Elemtip;
Begin

For i := 2 To N Do Begin
{S=T[1..i-1], H=[i..N]}
E := T[i]; j := i-1;
While (j>0)And K(E,T[j]) Do Begin

T[j+1] := T[j]; Dec(j)
End {while};
{S[1.. j]≤ E < S[j +1..i−1] }
T[j+1] := E;

End {for}
End (* BeszuroRend *);

2

A BESZUROREND futási idejének elemzése
Legjobb eset: az input rendezett:
Tl j (n) = ∑n

i=25 = 5(n−1) = O(n)
Legroszabb eset: az input fordítottan rendezett, ekkor a a While ciklus magja i−1-szer hajtódik végre, tehát

Tlr (n) =
n

∑
i=2

(i−1) =
n−1

∑
i=1

i = n(n−1)
2 = O(n2)

Átlagos eset:
rang(S,x) := |{ j : S[j] > x}|
rang(S,T[i]) lehetséges értékei:
0,1, · · · , i−1 azonos 1

i valószínűséggel.
Tehát a while ciklusmag végrehajtási számának átlágos (várható) értéke:

1
i
(0+1+ · · · i−1) =

1
i
(i−1)i

2
=

1
2
(i−1)

Tehát

Ta(n) =
n

∑
i=2

1
2
(i−1) =

1
2

n−1

∑
i=1

i =
1
2

n(n−1)
2

= O(n2)

13.3. Kupacrendezés. (Williams, Floyd 1964)

S= (M,R,Adat) adatszerkezet, ahol
M = 1..n, R= {Apa: M → M}
Apa(i) = i div 2, ha i > 1
Az S (fa) adatszerkezet Apa→ f iu kapcsolattal is megadható:

1

2 3

4 5 6 7

8 9 10

3. ábra. Kupac adatszerkezet

Bal(i) := 2i, ha 2i ≤ n
Jobb(i) := 2i +1, ha 2i +1≥ n
Def. S (maximumos) kupac, ha rendezett a ≤-ra nézve.
Általánosan, T = k..l . Ekkor több fából áll az adatszerkezet.
Apa(i) = i div 2, ha i ≥ 2k
Def. Az 〈ak, · · · ,al 〉 sorozat (maximumos) kupac, ha ∀i ∈ k..l ha r = i div 2≥ k akkor ar ≥ ai

3

{ Globális programelemek a KupacRend eljáráshoz :
Const
MaxN = ??? ;{ a maximális tömbméret }

Type
Kulcstip = ??? ;{ a rendezési mező típusa }
Adattip = ??? ;{ az adatmező típusa }
Elemtip = Record

kulcs : Kulcstip;
adat : Adattip

End;
Tomb = Array[1..MaxN] Of Elemtip;

}

Procedure KupacRend(Var T : Tomb; N:Longint);
Var
i : Longint; E : Elemtip;

Procedure Sullyeszt(K,L : Longint);
{Input : T[K+1..L] kupac, Output: T[K..L] kupac }
Var Apa,Fiu : Longint;
Begin{Sullyeszt}

E:=T[K]; Apa:=K; Fiu:=2*Apa;
While (Fiu <= L) Do Begin
If (Fiu < L) And (T[Fiu].kulcs < T[Fiu+1].kulcs) Then
Fiu := Fiu+1;

If E.kulcs >= T[Fiu].kulcs Then
Break

Else Begin
T[Apa] := T[Fiu];
Apa:=Fiu; Fiu:=2*Apa

End
End{while};
T[Apa] := E

End{Sullyeszt};
Begin{KupacRend}
For i := N Div 2 Downto 1 Do Sullyeszt(i, N);{Kupacépít}
For i := N Downto 2 Do Begin

E:=T[i]; T[i]:=T[1]; T[1]:=E;
Sullyeszt(1,i-1)

End{for i};
End{KupacRend};

A kupacépítés futási ideje
Def. h-magaságú telített bináris fa: Fh

F0 =⊥, Fh =
⊙

(Fh−1,Fh−1) ha h > 0
Fh magassága = h
Fh pontjainak száma ∑h−1

0 2k = 2h−1

4

Legyen F n-pontú bináris kupac; |F |= n
Ekkor h(F) az a legkisebb k, amelyre
|Fk| ≥ |F | ⇔ 2k−1≥ n⇔ k≥ lg(n+1)
h = dlg(n+1)e
A kupacépítés során a SULLYESZT annyiszor hajtódik végre, mint ahány különböző nem levél részfája van a felépítendő
n-elemű kupacnak.

4. ábra. Kupac részfái

Jelölje R(n,k) az n-pontú kupac k magasságú részfáinak számát.

R(n,k)≤ 2h−k = 2h

2k = 2h−1

2k−1 ≤ n
2k−1

Mivel SULLYESZT futási ideje legrosszabb esetben azon fa magasságával arányos, amelybe a beszúrás történik, így a
kupacépítés futási idejére a következőt kapjuk:

Tlr (n)≤
h

∑
k=1

R(n,k)O(k)≤

h−1

∑
k=0

n
2kO(k)≤ O(n

∞

∑
k=0

k
2k) =

O(n
1
2

(1− 1
2)2) = O(n2) = O(n)

∞

∑
k=0

xk =
1

1−x
ha|x|< 1

"Mindkét oldalt deriválva":
∞

∑
k=0

kxk =
x

(1−x)2

A K UPACREND futási ideje

Tlr (n)≤ O(n)+
n

∑
k=d n

2e
O(h)≤

O(n)+O(
n

∑
k=1

lg n) =

O(n)+O(n lg n) = O(n lg n)

5

13.4. A gyorsrendezés (Hoare, 1962)

Elvi algoritmus:
Legyen FELOSZT(H,Hb,x,H j) olyan művelet, amelyre teljesül a következő kimenetti feltétel:

x∈ Pre(H)∧Hb = {y : x 6= y∈ Pre(H)∧y≤ x}∧H j = {y : y∈ Pre(H)∧x < y}

Tehát Pre(H) = Hb∪{x}∪H j

Ezért a következő oszd-meg-és-uralkodj elvű algoritmus a rendezési feladat helyes megoldását adja.

Rendez(H:Halmaz):Sorozat;
Var

x : Elemtip; Sb, Sj :Sorozat; Hb, H j :Halmaz;
Begin {Rendez}

If |H| ≤ 1 Then Begin
S:= H
Return(S)

End ;
Feloszt(H,Hb,x,H j) ; {megosztás}
Sb := Rendez(Hb); {uralkodás}
Sj := Rendez(H j);
S:= Sb〈x〉Sj ; {összerakás}
Return(S);

End {Rendez};

A Feloszt algoritmus:
Feloszt(H:Halmaz;Var Hb,H j :Halmaz; x:Elemtip);

Begin {Feloszt}
x felosztó elem választás;
Hb := /0; H j := /0;
For y∈ H Do

{Invariáns: Max(Hb)≤ x < Min(H j)}
If y≤ x∧y 6= x Then

Hb := Hb +{y}
Else

H j := H j +{y}
{H = Hb∪H j }

End {Feloszt};

Megjegyzés: lehet Hb = /0 vagy H j = /0

Megvalósítás: helyben, tömbbel
Feloszt Lomuto-féle megvalósítása

6

2 8 3 5 4617

bal jobb

ji

ji

2

2

2

2

2

2

2

8

8 7

8 7 1 3 5 6 4

j

j

j

j

j

7 4

4

4

4

4

4

4

3 6

3 5 61

51

i

i

1 7 8 3 5 6

1

1

12

1 3 78 5 6

3

3

3

8 7 65

8 5 6

i

i

i

i

867 5

7

i

5. ábra. A FELOSZT eljárás működése.

Function Feloszt(bal, jobb : Longint):Longint ;
{H = T[bal.. jobb]}
Var x,E : Elemtip;

i,j : Longint;
Begin {Feloszt}

x:= T[jobb];
i:=bal-1;
For j:=bal To jobb-1 Do

{Invariáns:Hb = T[bal..i],H j = T[i +1.. j −1]}
If T[j]≤ x Then Begin

i:=i+1;
E:=T[i]; T[i]:=T[j]; T[j]:=E;

End ;
i:=i+1;
E:=T[i]; T[i]:=T[jobb]; T[jobb]:=E;
Feloszt:=i;

{Hb = T[bal..i−1],H j = T[i +1.. jobb]}
End {Feloszt};

Procedure GYORSREND(Var T:Tomb);
Procedure Rendez(bal,bobb : Longint);
Var f : Longint;

7

Begin {Rendez}
f:= Feloszt(bal, jobb);
If bal<f-1 Then

Rendez(bal, f-1);
If f+1<jobb Then

Rendez(f+1, jobb)
End {Rendez};

Begin
Rendez(1, N)

End ; {GyorsRend}

13.4.1. A gyorsrendezés hatékonysága

Legrosszabb eset

Tlr (n) = max
0≤q≤n−1

(Tlr (q)+Tlr (n−q−1))+Θ(n)

Tlr (n) ≤ max
0≤q≤n−1

(cq2 +c(n−q−1)2)+Θ(n)

= c· max
0≤q≤n−1

(q2 +(n−q−1)2)+Θ(n)

A q2+(n−q−1)2 kifejezés maximumát a 0≤q≤n−1 intervallum valamelyik végpontjában veszi fel, ezért max0≤q≤n−1(q2+
(n−q−1)2)≤ (n−1)2 = n2−2n+1. Tehát

Tlr (n) ≤ cn2−c(2n−1)+Θ(n)
≤ cn2

Tehát Tlr (n) = O(n2).
Legjobb eset
Ha minden FELOSZT felezi az intervallumot (a felosztandó halmazt). Ekkor minden szinten cn a FELOSZT futási ideje,
és dlgne szint léven, a teljes futási idő:

Tl j (n) = O(n lgn)

Átlagos eset

13.1. lemma. Legyen X a GYORSREND eljárás végrehajtása során a FELOSZT által végrehajtott összehasonlítások
száma n elemű bemenetre. Ekkor GYORSREND teljes futási ideje O(n+X).

Célunk X átlagos (várható) értékének kiszámítása.
Legyen a T bemeneti tömb elemei rendezetten z1,z2, . . . ,zn, tehát zi az i-edik legkisebb eleme a bemenetnek. Defini-
áljuk a Zi j = {zi ,zi+1, . . . ,zj} halmazokat, tehát a rendezésben zi és zj közötti elemek halmaza.

8

Az algoritmus mikor hasonlítja össze zi és zj elemeket?
Vegyük észre, hogy bármely két elem legfeljebb egyszer hasonlítódik össze,mert a felsztó elem nem szerepel a fel-
bontásban keletkező Hb és H j halmazokban, amelyere rekurzív hívás történik. Jelölje ezen összehasonlítások számát
Xi, j .

X =
n−1

∑
i=1

n

∑
j=i+1

Xi j .

Az összehasonlítások E(X) átlagos számára kapjuk:

E(X) = E(
n−1

∑
i=1

n

∑
j=i+1

Xi j)

=
n−1

∑
i=1

n

∑
j=i+1

E(Xi j)

=
n−1

∑
i=1

n

∑
j=i+1

Pr{zi összehasonlít zj} (1)

zi és zj összehasonlítására akkor és csak akkor lkerül sor, ha az első felosztó elem a Zi j halmazból vagy zi , vagy zj .
Mivel a Zi j halmaznak j − i +1 eleme van, és minden elem egyforma valószínűséggel lehet a felosztó elem, ezért

Pr{zi összehasonlít zj} = Pr{zi vagy zj első felosztó elem Zi j -ből}
= Pr{zi első felosztó elem Zi j -ből}

+Pr{zj első felosztó elem Zi j -ből}

=
1

j − i +1
+

1
j − i +1

=
2

j − i +1
(2)

E(X) =
n−1

∑
i=1

n

∑
j=i+1

2
j − i +1

=
n−1

∑
i=1

n−i

∑
k=1

2
k+1

<
n−1

∑
i=1

n

∑
k=1

2
k

=
n−1

∑
i=1

O(lgn)

= O(nlgn) (3)

Tehát GYORSREND átklagos futási ideje
Ta(n) = O(n lgn)

A gyorsrendezés véletlenített változata.

9

Function VeletlenFeloszt(bal, jobb : Longint):Longint ;
Var E : Elemtip;

i : Longint;
Begin {VeletlenFeloszt}

i:=Random(jobb-bal+1)+1;
E:=T[i]; T[i]:=T[jobb]; T[jobb]:=E;
VeletlenFeloszt:=Feloszt(bal,jobb);

End {VeletlenFeloszt};

A Hoare-féle felsosztás.

{ Globalis objektumok a GyorsRend eljarashoz :
Const
MaxN = ??? ;(* a tömb indextipusa = 1..MaxN *)

Type
Kulcstip = ??? ;(* a rendezési mező típusa *)
Adattip = ??? ;(* az adatmező típusa *)
Elemtip = Record

kulcs : Kulcstip;
adat : Adattip

End;
Tomb = Array[1..N] Of Elemtip;

Procedure BeszuroRend(Var T : Tomb); {\$I...}
}
Procedure GyorsRend(Var T : Tomb; N:Longint);

Function HoareFeloszt(Bal,Jobb : Longint): Longint;
Var

Fe,E : Elemtip;
i,j : Longint;

Begin
Fe := T[(Bal+Jobb) Div 2];
i := Bal-1; j := Jobb+1;
While True Do Begin
Repeat
Inc(i)

Until (T[i].kulcs >= Fe.kulcs);
Repeat
Dec(j)

Until (Fe.kulcs >= T[j.kulcs]);
If i < j Then Begin
E := T[i]; T[i] := T[j]; T[j] := E;

End Else Begin
Feloszt:=j;
Exit

10

End;
End{while};

End (* HoareFeloszt *);

Procedure Rendez(bal,jobb : Longint);
Var

f : Longint;
Begin

f := HoareFeloszt(bal, jobb);
If bal+10 < f Then
Rendez(bal, f);

If f+10 < jobb Then
Rendez(f+1, jobb)

End (* Rendez *);

Begin(* GyorsRend *)
Rendez(1, N);
Beszurorend(T)

End (* GyorsRend *);

13.5. Általános rendezési algoritmusok lr. esetének alsó korlátja

Döntési fa modell

>

>

><=

>

>

1:2

1,2,3 1:3

2:3 1:3

2:3

<=

<=

<=

<=

<1,3,2>

< >

<3,1,2> <2,3,1> <3,2,1>

<2,1,3>

6. ábra. Döntési fa

13.2. tétel. Minden n elemet rendező döntési fa magassága Ω(nlogn).

Bizonyítás. A fa leveleinek száma ≥ n!, tehát ha a fa magassága h, akkor 2h−1 ≥ n!
h−1≥ lg(n!)≥ lg((n

e)
n) = n lg n−n lg e= Ω(n lg n) �

Minden általános rendezési algoritmusra:

Tlr (n) = Ω(n lg n)

11

13.6. Lineáris idejű rendezési algoritmusok

Számláló rendezés

{ Globális programelemek a SzamlaloRend eljáráshoz :
Const
N = ??? ;(* a tomb indextipusa = 1..N *)
M = ??? ;(* a kulcstipus: 0..M *)

Type
Kulcstip = 0..M ;(* a rendezesi mezo kulcstipusa *)
Adattip = ??? ;(* az adatmezo tipusa *)
Elemtip = Record

kulcs : Kulcstip;
adat : Adattip

End;
Tomb = Array[1..N] Of Elemtip;

}

Procedure SzamlaloRend(Var T,T1 : Tomb);
Var
i,j : Longint;
S: Array[0..M] Of Longint;

Begin
For i := 0 To M Do S[i]:= 0;
For i := 1 To N Do Inc(S[T[i].kulcs]);
For i := 1 To M Do S[i]:= S[i-1]+S[i];

(* S[i]=|{j| T[j] <= i}| *)
For i := N DownTo 1 Do

Begin
j := T[i].kulcs;
T1[S[j]]:= T[i];
Dec(S[j]);

End
End (* SzamlaloRend *);

A SZAMLALOREND algoritmus futási ideje Θ(M +N)
Stabilnak nevezzük az olyan rendezési algoritmust, amely megőrzi az azonos kulcsú elemek sorrendjét.
Állítás. A SZAMLALOREND algoritmus stabil rendezés.

Radix (számjegyes) rendezés
Példa:

329 720 720 329
457 436 329 436
657 457 436 457
839 657 839 657

12

436 329 457 720
720 839 657 839

Bemenet: H={a1, . . . ,an}, az elemek típusa

Type
KulcsTip=Array[1..d] of Char {String};
Adattip =???;
Elemtip=Record Adat:Adattip; Kulcs:Kulcstip End;

A rendezési reláció a lexikografikus rendezés:
X =< x1, . . . ,xd >,Y =< y1, . . . ,yd >

Def. X < Z (lexikografikusan), ha (∃i)(1≤ i ≤ d)((xi < yi)∧ (∀ j < i)(x j = y j))

Elv:

For i:=d DownTo 1 Do
H Stabil rendezése a kulcs i-edik jegye szerint;

0

1

2

3

4

5

6

7

8

9

720

436

457

329 839

657

7. ábra. Adatszerkezet a radix rendezéshez.

{ Globalis programelemek a RadixRen eljarashoz: Type
Elemtip = Record (* a rendezendo adatok tipusa *)

kulcs : String[???];
adat : ???

13

End;
Lanc = ^Cella;
Cella = Record

Elem: Elemtip;
Csat: Lanc

End;

}

Procedure RadixRend(Var L : Lanc);
Var
T : Array[Char] Of Record

Eleje,Vege:Lanc;
End;

C : Char; E : Lanc;
i, Maxhossz : Word;

Begin
Maxhossz := 0; E:=L;(* a maximalis szohossz meghatarozasa *)
While E <> Nil Do
Begin

If Length(E^.Elem.kulcs) > Maxhossz Then
Maxhossz := Length(E^.Elem.kulcs);

E:= E^.Csat
End;

For C := Chr(0) To Chr(255) Do (* ures reszlistak letrehozasa *)
Begin

New(T[C].Vege); T[C].Eleje:= T[C].Vege;
End;

For i := Maxhossz Downto 1 Do
Begin

While L <> Nil Do (* szavak szetosztasa a reszlistakra, *)
Begin (* az i-edik betu szereint *)
E:= L; L:= L^.Csat;
If i <= Length(E^.Elem.kulcs) Then
C := E^.Elem.kulcs[i]

Else
C := ’ ’;

T[C].Vege^.Csat:= E;
T[C].Vege:= E;

End;
L:= Nil;
For C := Chr(255) DownTo Chr(0) Do
Begin (* a reszlistak osszekapcsolasa *)
T[C].Vege^.Csat:= L; L:= T[C].Eleje^.Csat;
T[C].Vege:=T[C].Eleje;

End

14

End
End (* RadixRend *);

Vödrös rendezés
Tegyük fel, hogy a rendezendő H = {a1, . . . ,an} halmaz elemeinek kulcsai a [0,1) intervallumba eső valós számok
(Real). Vegyünk m db vödröt, V[0], . . . ,V[m−1] és osszuk szét a rendezendő halmaz elemeit a vödrökbe úgy, hogy
az ai elem a bai .kulcs∗mc sorszámú vödörbe kerüljön. Majd rendezzük az egy vödörbe került elemeket, és a vödrök
sorszáma szerinti növekvő sorrenben füzzük össze a rendezett részsorozatokat.

.78

.17

.39

.26

.72

.94

.21

.12

.23

.68

T V

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

.12 .17

.21 .23 .26

.39

.68

.72 .78

.94

8. ábra. Példa vödrös rendezésre

{ Globális programelemek a VodrosRend eljáráshoz :
Const
N = ??? ;(* a tömb indextipusa = 1..N *)
Type
Kulcstip = Real ;(* a rendezési mező kulcstípusa *)
Adattip = ??? ;(* az adatmező típusa *)
Elemtip = Record

kulcs : Kulcstip;
adat : Adattip End;

Tomb = Array[1..N] Of Elemtip; }
Procedure VodrosRend(Var T,T1 : Tomb);
Const
M=N; {a vödrök száma}

Type
Lanc=^Cella;
Cella=Record

index: Word;
Csat: Lanc

End;

15

Var
E: Elemtip;
V:Array[0..M-1] Of Lanc;
i,j,k : Word; p,q,Uj: Lanc;

Begin{VodrosRend}
For i := 0 To M-1 Do V[i]:= Nil;
For i := 1 To N Do Begin {az elemek szétosztása vödrökbe}

j:= Trunc(T[i].kulcs*M);
New(Uj); Uj^.index:= i;
Uj^.csat:= V[j]; V[j]:= Uj;

End;
i:= 1; {a vödrökben lévő elemek összefűzése és}
For j := 0 To M-1 Do Begin{rendezése beszúro rendezéssel}

p:= V[j];
While p <> Nil Do Begin
E:= T[p^.index];
k:= i-1;
While (k>0) And (T1[k].kulcs > E.kulcs) Do Begin
T1[k+1]:= T1[k]; Dec(k);

End;
T1[k+1]:= E; q:= p;
p:= p^.Csat; Dispose(q);
Inc(i);

End{while p};
End{for i};
End;{VodrosRend}

A VODROSREND futási idejének elemzése.
Legrosszabb eset
Ez akkor következik be, ha minden elem egy vödörbe kerül, és mivel a vödröket beszúrú endezéssel rendezzük, ami-
nem a legrosszabb esete O(n), így Tlr (n) = O(n2).
Legjobb eset eset
Ez akkor következik be, ha minden elem külön vödörbe kerül, így Tl j (n) = O(n).
Átlagos eset eset
Ta(n) = Θ(n)>

16

