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Abstract
Sine-wave speech (SWS) is a three-tone replica of speech, con-
ventionally created by matching each constituent sinusoid in
amplitude and frequency with the corresponding vocal tract res-
onance (formant). We propose an alternative technique where
we take a high-quality multicomponent sinusoidal representa-
tion and decimate this model so that there are only three com-
ponents per frame. In contrast to SWS, the resulting signal con-
tains only components that were present in the original signal.
Consequently it preserves the harmonic fine structure of voiced
speech. Perceptual studies indicate that this signal is judged
more natural and intelligible than SWS. Furthermore, its tonal
artifacts can mostly be eliminated by the introduction of only a
few additional components, which leads to an intriguing specu-
lation about grouping issues.

1. Introduction
Among the numerous perceptual experiments with spectrally
reduced speech, probably the most perplexing is sine-wave
speech (SWS) [1]. In SWS experiments a sum of three time-
varying sinusoids is generated, each of them mimicking in
amplitude and frequency the corresponding speech formants.
When asked to listen ‘in speech mode’, many subjects are
able to transcribe SWS surprisingly well. Unprepared listen-
ers, however, report hearing only chirps, whistles or computer
bleeps. An obvious explanation is that the sine waves of SWS
are not necessarily harmonic and thus do not have a common
fundamental, which is, perceptually, a very important charac-
teristic of natural (voiced) speech. In this paper we examine
methods for creating stimuli that are similar to SWS in the
sense that they also consist of only a couple of sinusoids at a
time, but these components preserve harmonicity. Moreover,
because these algorithms are based on spectral reduction, the re-
sulting signals consist solely of frequency components that were
present in the original signal. We expected these representations
to sound more natural than SWS, and we expected increased in-
telligibility because harmonicity is an important grouping cue
as well.

2. Sine-Wave Speech
All the SWS signals used in this study were generated with the
Praat software [2] running the SWS script of Chris Darwin [3].
This algorithm estimates the formant frequencies using LPC.
Formant amplitudes are then picked from a wideband FFT spec-
trum. Finally, these frame-by-frame estimates are smoothed to
get continuous curves and remove certain types of artifacts. The
narrowband spectrum and the SWS replica of a speech excerpt
are shown in Fig. 1a (ORIG) and 1b (SWS). Clearly, the main
differences between natural and SWS speech are that:
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SWS lacks the fine structure of (voiced) speech, that is,
the modulation of the envelope by the pitch, which man-
ifests itself as horizontal lines on the narrowband spec-
trogram. Moreover, the three sinusoid curves of SWS
do not correspond to any of the real frequency compo-
nents of natural speech and in general are not harmonic,
so they do not have a common fundamental.

The peaks of SWS do not resemble natural speech for-
mants as the latter, in sharp contrast to the former, have
a broadband structure.

In SWS the slow changes characteristic of formants are
present in the signal components themselves, while in
natural speech formants are present only implicitly as
changes in the spectral envelope. Thus while the conti-
nuity of the SWS components may be helpful in tracking
them, it is also highly unnatural at the same time.

oal was to create alternatives to SWS that also consist of
couple of sinusoids at a given time, but these sinusoids

rve the original harmonic structure of natural (voiced)
h. The first technique we tried reintroduces pitch har-
s into SWS, while the other two methods sought to select
r harmonics from the original signal spectrum itself.

3. SWS with Harmonics Reinserted
rst idea was to modify the original SWS algorithm so
e sinusoidal frequencies are always rounded to the near-

teger multiple of the pitch. Implementing this, of course,
ed a pitch estimation of the original signal. It was per-
d with a conventional autocorrelation-based routine with
tch of unvoiced frames set to the pitch of the last frame
as judged voiced. Finally, the resulting pitch curve was

thed with a simple 1-pole filter.
he resulting sinusoidal tracks are shown in Figure 1d
S). Notice that the continuity of the components is no

r preserved, but the spectrum is now composed of short
nic tracks. However, the spectral envelope of this signal
same as that for the original SWS.

. Sinusoidal Models with Decimated
Components

o its algorithmic constraints SWS is clearly a very weak
l of the spectral envelope, so the above ‘harmonic inser-
technique will introduce spectral components that were
esent in the original signal. An obvious alternative is to
rom a model that already represents speech as a combina-
f time-varying sinusoids. Then experiments with spectral
tion can be performed by decimating the model compo-
.



(A) ORIG

(C) FULL

(E) OCT

(G) SBS

Figure 1: Sinusoidal components of the test stimuli. ORIG: narrowband sp
FULL: Sinusoidal representation with all components retained; HSWS: Sine-
based on octave dominance with the lowest filters fused; OCT0: Reduction ba
SBS: Reduction using the SBS model with 3 components kept; SBS5: Reducti

4.1. The Sinusoidal Model

The ‘Deterministic Plus Stochastic’ (also known as ‘Harmonic
Plus Noise’) Model represents sound signals as a sum of time-
varying sinusoids with a stochastic or ‘noise’ component added
[4, 5]. The simplest algorithm for the estimation of the model
parameters consists of the following steps:

• A wideband spectrogram is calculated. Presuming that
the harmonics have been resolved, an initial estimate on
the number of sinusoidal components, their amplitude,
frequency and phase may be obtained by peak-picking.

• The frame-based estimates are refined by tracking the
peak trajectories. This helps ensure the coherence of the
component parameters across frames. The result are a
set of sinusoid tracks that ‘come alive’, continue for a
number of frames, and then die.

• The residue signal is regarded as inharmonic noise and
is usually modelled by means of filtered white noise.

In our experiments we simplified two points of the model.
Firstly, to preserve the similarity to SWS, we omitted the noise
component. We found that this introduced no serious arti-
facts because the model did very well in describing unvoiced
phones with very short inharmonic tracks. Secondly, we ig-
nored the original phases and took care only to keep the compo-
nent phases coherent across frame boundaries. Like McAulay
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ectrogram of a speech excerpt; SWS: Sine-wave speech;
wave speech with reinserted harmonics; OCT: Reduction
sed on octave dominance with no restriction on the filters;
on using the SBS model with 5 components kept.

uatieri [5] we found that although ”the resulting speech
erceived as being different in quality from the original
h ... it was very intelligible and free of artifacts”. Thus
certained that the artifacts arising in the experiments were

spectral reduction and not any inadequacy of the model
(for the sinusoidal spectrum see Fig. 1c (FULL)).

Spectral Reduction Based on Octave Dominance

ntly, SWS and the simplified sinusoidal model are very
r. The only difference is that SWS is restricted to three
uous components. With the goal of creating harmonic

ls we have already had to abandon continuity, so all that
ns for us is to constrain the model so that it only has three
sinusoids at a time. This of course requires proper strate-

or selecting the phonetically most important components.
o perform something analogous to formant extraction in
we tried out several metrics in order to select those com-
ts that are ‘locally dominant’. Defining ‘locality’ using
l bands would have led to too many components, so we
d wider bands. There is psychoacoustic evidence that
h features are distributed over spectral bands as wide as
ctave [6]. In vowel perception, formant integration over
Bark wide bands has been observed [7]. Thus we cen-
octave-wide rectangular windows on each frequency bin,
given bin was retained only if it had the highest amplitude



in the given window. Because these octave-wide filters resolve
the first 1-4 harmonics, the filter bandwidth was restricted to
a minimum of 400 Hz. With this modification we found that
the algorithm preserves 2-4 components per frame in general,
and so is comparable to SWS as regards data reduction. Fig-
ures 1e (OCT) and 1f (OCT0) show what remained of the origi-
nal spectrum using this technique, with and without the 400 Hz
minimum bandwidth restriction.

4.3. Spectral Reduction with the In-Synchrony-Bands
Spectrum

Although the octave bandwidth of the previous approach was
based on psychoacoustic observations, the technique itself is
rather ad hoc. We looked for alternatives that are more firmly
established in psychoacoustics or neurophysiology - something
like a (simple) auditory model. The In-Synchrony-Bands-
Spectrum (SBS) model of Ghitza was found to be relevant to
our experiments [8]. In this scheme the sound signal is decom-
posed via an auditory filter bank, and each filter votes on the
strongest or ‘dominant’ component in its output signal. Spec-
tral reduction can then be easily performed by retaining only
those components whose ‘dominance counter’ is above some
threshold.

Ghitza himself observed that he could get very good quality
speech with only 10 components [8]. The low bit-rate speech
coder of Wan et al is built on the same technique and retains
only 8 spectral lines per frame [9]. Even with these dramatic re-
ductions both authors reported very good intelligibility along
with some tonal artifacts. However, to be comparable with
SWS, we had to go one step further and restrict the number
of components to just 3. The resulting spectrum can be seen in
Fig. 1g (SBS). We found both the spectrum and the synthesized
speech very similar to the result of the octave dominance tech-
nique. Furthermore, with 5 components we got a result very
similar to the octave dominance method with no restriction on
the filters (see Fig. 1h (SBS5)).

5. Listening Tests
The main conclusion about sine-wave speech is that speech in-
telligibility and quality are not necessarily related. With this
in mind, we designed separate listening tests to judge the in-
telligibility and naturalness of our stimuli. In addition, a third
experiment was carried out to assess whether the signals were
speech-like or not. The test subjects were university students,
all unfamiliar with SWS and speech perception experiments in
general. The test sentence was chosen quasi-randomly from the
first large Hungarian speech corpus [10]. This means that we
took the first sentence that was relatively short, of good quality
and contained no hesitation or other kind of pronunciation error.
From the sentence chosen six stimuli were generated, namely
sine-wave speech (SWS), sine-wave speech with reinserted har-
monics (HSWS), a spectrally reduced sentence based on octave
dominance (OCT0), the same with filter bandwith restricted to
at least 400 Hz (OCT), and a spectrally reduced sentence using
SBS with 3 (SBS) and 5 (SBS5) components preserved.

In Experiment (A), 8-8 test persons listened to each stimu-
lus. They were told nothing about the stimulus and were asked
to identify what they heard. Our aim was to see whether they
found the stimulus speech-like or not.

In Experiment (B) subjects were told that they were going
to hear a sentence that had undergone some kind of special dis-
tortion, and they were asked to transcribe the sentence as pre-
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as they could. 12-12 subjects listened to each stimulus
ey were allowed 4 listenings, with the requirement that
ut down a guess after each of them.
inally, in Experiment (C) subjects had to assess the natu-
s of the stimuli. To aid their judgement, we included the
al sentence in the test, and subjects were asked to listen
h possible pair of the seven stimuli. They had to assign

pair to a scale with the following categories: ‘much less
l’, ‘considerably less natural’, ‘somewhat less natural’,
ar’, ‘somewhat more natural’, ‘considerably more natu-
much more natural’. These scores were quantified by the
s 1/7, 1/5, 1/3, 1, 3, 5, 7, respectively. The pairwise scores
then averaged to obtain a triangular comparison matrix. It
onverted into a full matrix by inserting 1s into the diagonal
lling the lower triangle with the reciprocals of the upper
le elements (exploiting the antisymmetry of the pairwise
n).

6. Results
1 summarizes how unprepared listeners identified the

li. As can be seen, the harmonic stimuli behaved no bet-
an SWS. Only a small fraction of the subjects realized
ey had to do with speech, their typical replies being ‘re-
speech’, or ‘fast-forward speech’. The most common

however was ‘science-fiction sounds’. On the other hand,
ed out that the two stimuli with the additional compo-
(OCT0 and SBS5) were always and undoubtedly judged
speech (most subjects in fact immediately recognized and
ribed the sentence as well).

able 1: Number of speech-related guesses (out of 8).

SWS HSWS OCT SBS OCT0 SBS5
2 4 3 3 8 8

able 2 shows the average number of syllables correctly
nized after 1, 2, 3 and 4 listenings, respectively. Appar-
harmonicity did not help improve the intelligibility of
The two spectral reduction techniques did significantly

, but were still far from perfect. The increasing number
s with more listenings clearly shows that, similar to SWS,
re highly unnatural and require severe adaptation. How-
somewhat surprisingly, the additional components were
h to render them perfectly intelligible. Practically no
nition error was made with OCT0 and SBS5.

e 2: Average number of recognized syllables (out of 13).

stenings SWS HSWS OCT SBS OCT0 SBS5
1 0.00 0.33 0.00 0.41 12.83 13.00
2 0.33 0.33 2.41 5.00 13.00 13.00
3 1.08 0.76 3.75 6.25 13.00 13.00
4 1.41 1.16 4.50 7.00 13.00 13.00

astly, Table 3 shows the average pairwise comparison ma-
btained in the naturalness quality tests. The matrix was
ated using the Analytic Hierarchy Process (AHP) tech-
, which is a general tool for multiple criteria decision mak-
oblems [11]. The output of the method is a weighted pref-
e list w1, ..., wn associated with the alternatives. It is the
vector corresponding to the largest eigenvalue of the pair-



Table 3: The average comparison matrix.

ORIG SWS HSWS OCT SBS OCT0 SBS5
ORIG 1.00 0.14 0.17 0.18 0.17 0.32 0.32
SWS 6.99 1.00 1.63 4.03 2.60 4.95 5.20

HSWS 5.65 0.61 1.00 1.15 1.80 4.40 5.00
OCT 5.46 0.24 0.86 1.00 1.05 4.00 3.20
SBS 5.65 0.38 0.55 0.95 1.00 3.95 3.60

OCT0 3.12 0.20 0.22 0.25 0.25 1.00 1.00
SBS5 3.12 0.19 0.20 0.31 0.27 1.00 1.00

wise comparison matrix. In our case this largest eigenvalue was
λmax = 7.2627, which indicates that the subjects voted very
consistently: the usual consistency index (λmax − n)/(n − 1)
gives a rather small value, namely 0.0438. The weight vector
itself is shown in Fig. 2, normalized such that the original sen-
tence equals 100%.

7. Discussion
When asked about their impressions of SWS, many subjects de-
scribe it as if the talker had some terrible laryngeal deformity.
That is, they attribute its oddness to the missing fine structure
of glottal pulses. Hence it was more than reasonable to expect
that adding harmonicity would dramatically increase natural-
ness. Although it indeed did so to a certain extent, its effect was
much smaller than we had expected. Especially disappointing
was the result that the harmonic signals still do not have the
impression of speech on naive listeners. When looking for an
explanation, we quickly realized that all three harmonic signals
suffer from the same type of artifact. Namely, subjects reported
hearing the speech signal being mixed with trains of short whis-
tles. They judge this less unnatural than SWS only because they
consider an additive tonal noise more acceptable than a distor-
tion inherent in the speech production process. These tonal ar-
tifacts seem to be responsible for the diminished intelligibility
of the stimuli as well.

Where do the artifacts come from? Because we did not
insert any extra components in the signal, the only possible
source is that certain components separate out from the speech
complex and form an independent perceptual stream. Probably
the main reason for this is that, to introduce harmonicity, we
had to sacrifice the continuity of the components. Even worse,
both spectral reduction criteria work on a local, per-frame basis,
and ignore the evolution of the component trajectories. Conse-
quently they break the continuity of the tracks and create false
onset and offset cues. The rise of the tonal artifacts thus sup-
ports the view that harmonicity is a weaker grouping cue than
common onset and offset.

The dramatic increase in both quality and intelligibility af-
ter the addition of the extra trajectories (see stimuli OCT0 and
SBS5) can also be explained by grouping processes, because
these trajectories are at very low frequencies and so carry only
minimal phonetic information. However they present a strong
cue for the detection of F0 continuity, and thus greatly help in-
tegrate the sinusoid tracks into one coherent speech stream.

8. Conclusion and Future Work
We found that the sinusoidal plus noise model combined with
component decimation offers a viable alternative to creating
spectrally reduced speech-like stimuli in a way similar to sine-
wave speech. Our experiments showed that these signals
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re 2: Naturalness of the stimuli, relative to the original.

ore intelligible and judged more natural than sine-wave
h. On the other hand, these stimuli have their own special
f artifact, which we suppose to be attributable to the fake
and offset cues introduced via the spectral reduction algo-
s. This is strongly supported by the fact that the addition

e extra components - practically the first two harmonics
atically reduces these artifacts. In future work we plan
duct more experiments on trying to understand what the
conditions are when the coherence of the speech signals
s up and the tonal artifacts arise. We also plan to modify
ectral reduction algorithm so that it will work with whole
tories instead of just frame-based peaks.
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