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ABSTRACT
Probably the most well-known solution to automated test case min-
imization is the minimizing Delta Debugging algorithm (DDMIN).
It is widely used because it “just works” on any kind of input. In
this paper, we focus on the fixed-point iteration of DDMIN (named
DDMIN*), more specifically whether it can improve on the result
of the original algorithm. We present a carefully crafted example
where the output of DDMIN could be reduced further, and iterating
the algorithm finds a new, smaller local optimum. Then, we evaluate
the idea on a publicly available test suite. We have found that the
output of DDMIN* was usually smaller than the output of DDMIN.
Using characters as units of reduction, the output became smaller
by 67.94% on average, and in the best case, fixed-point iteration
could improve as much as 89.68% on the output size of the original
algorithm.
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• Software and its engineering→ Software testing and debug-
ging.
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1 INTRODUCTION
Automation is finding its ways nowadays in several fields of soft-
ware engineering. The earliest automation approaches were prob-
ably related to testing: executing test suites, generating new test
cases, and – when a test case fails – locating the fault in the soft-
ware or finding the minimal part of the test case that induced the
fault. Automated test case minimization has already seen several
decades of work. One of the most well-known solution is Zeller and
Hildebrandt’s minimizing Delta Debugging algorithm (DDMIN)
[9]. Although it is already more than twenty years old, it is still
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widely used because it “just works” on any kind of input. Since
its introduction, there have been many approaches that tried to
work better by being more “clever” – and they succeeded. HDD [5],
Perses [7], ReduKtor [6], etc. could all reduce test cases faster than
DDMIN or produce smaller output, but they typically needed some
extra information about the structure of the test case, usually a
grammar. This need for a grammar can act as an obstacle for some
users of test case reducers: a grammar may not be readily available,
and writing (or maintaining) it may not be a practical option. In
such cases, the structure-unaware nature of the good-old DDMIN
comes in very handy.

This is why we have investigated whether it was possible to
make DDMIN itself work “better”. Improving DDMIN is not an
easy task, as it has already been proven that its result is 1-minimal
(see Section 2). However, 1-minimality is not a global optimum,
which signals that there may be some room for improvement. The
question we sought the answer to was whether it was possible to
make DDMIN look for and find another (and even better) 1-minimal
result once a local optimum was found. A natural idea was to
investigate whether it made sense to apply DDMIN multiple times,
i.e., whether it could give smaller and smaller 1-minimal results
after each iteration. Thus, we wanted to see whether iterating
DDMIN until a fixed-point works in theory and in practice. This
paper elaborates on the above idea in more detail and presents
experimental results of its application1.

The rest of the paper is organized as follows: First, Section 2
gives a short overview of Delta Debugging to make this paper self-
contained. Then, in Section 3, we show a motivational example
where DDMIN can be improved upon, and describe the fixed-point
iteration of DDMIN. In Section 4, we present the results of an
experiment conducted on real test cases. In Section 5, we discuss
related work, and finally, in Section 6, we conclude our paper and
set directions for future research.

2 BACKGROUND
The minimizing Delta Debugging algorithm (DDMIN) [9] is a sys-
tematic iterative approach for reducing arbitrary input while keep-
ing a predefined property invariant. The input is split into atomic
units and represented as a set of them. First, this set of units is split
into two roughly equal-sized subsets and both parts are investi-
gated about whether they still have the predefined property of the
initial input. If the property is kept in any of the subsets, then the
reduction step is considered successful and a new iteration starts
with that subset, otherwise, the granularity is refined by doubling

1Although the idea seems to be natural, or even trivial, interestingly, no work known
to us has discussed it previously. The original works of Zeller and Hildebrandt do
point out various improvement possibilities of DDMIN, but fixed-point iteration is not
among them.
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the splitting. The subsets of the new splitting are investigated again,
as well as their complements, i.e., it is checked whether keeping
or removing any of the subsets leads to a smaller, yet interesting
test case. Again, if any of the investigated subsets (or their com-
plements) keeps the property in question, it will be used as the
input for the next iteration, otherwise, the granularity is increased.
The iteration continues until the granularity reaches the unit level,
when it is proven to have found a so-called 1-minimal result, a local
minimum where the removal of any unit from the set would cause
the loss of the interesting property.

An input is composed of elementary deltas, denoted as 𝛿𝑖 , and
a set of elementary changes is also called a configuration, usually
denoted by 𝑐 . The outcome of a program execution on a specific
configuration is determined by a testing function, and it can be
either fail (also written as ✗) if the current input produced the
original behavior, pass (also written as ✓) if the test succeeds, or
unresolved (written as ?) if the result is indeterminate. The initial
configuration that triggers the failing outcome is denoted by 𝑐✗. For
the formal definition of Zeller and Hildebrandt’s latest formulation
of DDMIN, the reader is referred to [9].

3 ITERATING DELTA DEBUGGING
The program in Listing 1 is a variant of a classic example of program
slicing [8]. It computes both the sum and the product of the first ten
natural numbers in a single loop. Using slicing terminology, we can
say that we want to compute the (so-called static backward) slice of
this program with respect to the criterion (19, prod), thus creating
a sub-program that does not contain statements that do not con-
tribute to the value of prod at line 19. This can be computed either
by analyzing the control and data dependencies of the program –
which is the classic slicing way – or by following the approach of
observation-based slicing [2] that performs a systematic removal
of code parts based on trial and error, much like what DDMIN does
on its input. Actually, even DDMIN can be applied to such tasks.
The two things that have to be remembered are that in such reduc-
tion scenarios the inputs or test cases are also programs, and the
interesting properties to keep are not program failures (but it is still
an ✗ that represents that the property is kept). So, we reformulate
the classic slicing example as a test case minimization task, where
the program in Listing 1 is the input (the lines being the units) and
the testing function is given as

𝑡𝑒𝑠𝑡 (𝑐) =


✓ if 𝑐 is syntactically incorrect
✓ else if execution of 𝑐 does not terminate
✓ else if execution of 𝑐 does not print prod: 3628800
✗ otherwise.

The gray bars on the right of the program code show the progress
of DDMIN, from left to right. Every set of vertically aligned bars
corresponds to a configuration of the algorithm and shows how
that configuration is split into to subsets. This example shows that
DDMIN could “slice away” the lines of the main function that did
not contribute to the computation of prod. However, the algorithm
could not remove the add function, because when the configuration
contained no call to it anymore (at line 15), the granularity had
already reached line (i.e., unit) level. But add could only be removed
as a whole, not line-by-line, as removing any single line would cause

Listing 1: Example C program that computes the sum and
product of the first ten natural numbers, and the execution
of DDMIN on it while keeping 10! on the output.
1 int add(int a, int b)
2 {
3 return a + b;
4 }
5 int mul(int a, int b)
6 {
7 return a ∗ b;
8 }
9 void main()
10 {
11 int sum = 0;
12 int prod = 1;
13 for (int i = 1; i <= 10; i++)
14 {
15 sum = add(sum, i);
16 prod = mul(prod, i);
17 }
18 printf("sum: %d\n", sum);
19 printf("prod: %d\n", prod);
20 }

Listing 2: The output of DDMIN on the program of Listing 1,
and the re-execution of DDMIN.
1 int add(int a, int b)
2 {
3 return a + b;
4 }
5 int mul(int a, int b)
6 {
7 return a ∗ b;
8 }
9 void main()
10 {
11 int prod = 1;
12 for (int i = 1; i <= 10; i++)
13 {
14 prod = mul(prod, i);
15 }
16 printf("prod: %d\n", prod);
17 }

syntax errors. (Note that this is one of the shortcomings of DDMIN
that HDD and other grammar-based reducers wanted to fix.) So,
DDMIN has produced a 1-minimal result (shown in Listing 2), but it
is clearly not a global minimum. What we can realize when looking
at this result is that we could re-execute DDMIN on this program
with the same testing function as the first time and we may be able
to remove the superfluous add function as well. Again, the gray
bars on the right of the program code show the progress of DDMIN,
and indeed, the subsets of the second configuration aligned well
with the structure of this input and made further reduction possible.
The result of the second execution of DDMIN is given in Listing 3.
This is the global optimum for this example, so further executions
of DDMIN are not visualized.
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Listing 3: The output of DDMIN on the program of Listing 2.
1 int mul(int a, int b)
2 {
3 return a ∗ b;
4 }
5 void main()
6 {
7 int prod = 1;
8 for (int i = 1; i <= 10; i++)
9 {
10 prod = mul(prod, i);
11 }
12 printf("prod: %d\n", prod);
13 }

Now, motivated by this example, we can formalize the intuition
that DDMIN could be executed multiple times. Since it cannot be
told a priori how many executions are needed for a given input, we
propose to iterate DDMIN until a fixed point is reached. We will
denote the fixed-point iteration of DDMIN as DDMIN* – following
the notation used for HDD and HDD* [5] – and define it as follows:

𝑑𝑑𝑚𝑖𝑛∗ (𝑐✗) =
{
𝑐′✗ if 𝑐✗ = 𝑐′✗
𝑑𝑑𝑚𝑖𝑛∗ (𝑐′✗) otherwise

where 𝑐′✗ = 𝑑𝑑𝑚𝑖𝑛(𝑐✗) .

Note that although the asterisk notation is the same for the
two algorithms and even its meaning is identical in both cases,
i.e., fixed-point iteration, its purpose is fundamentally different for
HDD and DDMIN. A single execution of HDD has no minimality
guarantees, only HDD* produces so-called 1-tree-minimal results.
However, even a single execution of DDMIN is guaranteed to give
a 1-minimal result. The purpose of iterating it further is to find an
even better 1-minimum.

4 EXPERIMENTAL RESULTS
To see how DDMIN* performs on real-life test cases, we have taken
the test cases of the JerryScript Reduction Test Suite (JRTS)2 and
minimized them with both DDMIN and DDMIN*. For the experi-
ment, we have used the Picire tool3, an open-source Python imple-
mentation of DDMIN, and prototyped DDMIN* into it to evaluate
its effects. The Picire framework is highly parametrizable, which
we made use of: in the experiments, the “reduce to subset” step
of DDMIN was disabled, the complement tests were performed
in backward syntactic order, and the content-based caching was
enabled.

Table 1 presents the results of reducing the test cases with char-
acters as the unit of reduction. For each test case, the first group of
values shows the properties of the inputs: the name and the size
expressed in the unit of reduction. Then, the second group is the
baseline data, i.e., those measured using the traditional DDMIN
algorithm: the number of testing steps needed to accomplish the

2https://github.com/vincedani/jrts
3https://github.com/renatahodovan/picire

reduction, and the size of the output. The last group of values con-
tains the data collected during the executions of the fixed-point
iterated algorithm (DDMIN*) on the test cases. In addition to the
absolute numbers, we also give the changes relative to the baseline
data. Plus, the number of iterations necessary to reach the fixed
point is also shown.

If an input is not optimal (i.e., it could be reduced somehow),
then at least two iterations of DDMIN* are expected: whenever an
iteration manages to reduce the configuration, there will be a next
iteration that tries to continue the reduction. Only if the configura-
tion cannot be reduced further in an iteration, will the algorithm
halt. The iteration counts in Table 1 support this expectation. The
highest number was 15 (for test case jerry-3479), and the lowest
was 3 (also signaling that DDMIN* could always further reduce the
result of DDMIN).

For all of the test cases, DDMIN* produced significantly smaller
results than DDMIN. The output configuration got smaller by a
minimum of 9.82% (in the case of jerry-3536) and by a maximum of
89.68% (for jerry-3437), and the average improvement was 67.94%.
The cost of these improvements was an increased number of test
executions, in the range of 15.82% and 337.17%, 111.41% being the
average. Let us highlight the experiment of the jerry-3479 test
case, which shows some impressive results. In that case, the input
contained 5,201 characters, and DDMIN could reduce it to 2,383
characters, which is 45.81% of the input. However, the 15 iterations
of DDMIN* could reduce it further to 433 characters, which is only
8.69% of the input size.

Based on the data and observations above, we can conclude
from the experiments: 1) iterating DDMIN until a fixed-point was
reached had a positive effect on the size of the result in general; 2)
with character-based reduction, all inputs of the test suite could be
reduced further with DDMIN*, the average and maximum config-
uration size improvements being 67.94% and 89.68%, respectively;
and 3) these smaller 1-minimal results came at a cost of more testing
steps: the reduction required 111.41% more steps on average than
the baseline DDMIN.

5 RELATEDWORK
One of the first works on automated test case reduction is Delta
Debugging by Zeller and Hildebrandt, minimizing inputs of arbi-
trary format [9]. Gharachorlu and Sumner [4] proposed a modified
version of DDMIN, the One Pass Delta Debugging (OPDD), that
skips the “reduce to complement” steps, and showed that it can
also achieve 1-minimal results with linear complexity (if certain
circumstances are met).

Artho investigated Delta Debugging in his “Iterative Delta De-
bugging” study [1]. However, despite the similarities between the
titles, the two studies are unrelated. It used the Delta Debugging
algorithm (not DDMIN) to find the failure-inducing changes in the
version history. He raised the issue that DD is only applicable if
the version that passes a test is known, which may not be the case
for newly discovered defects.

The cost of the generality of DDMIN is a lowered performance
on inputs that have strict formatting rules, because many format-
breaking incorrect test cases are generated and evaluated during
the reduction process. To overcome this problem, Miserghi and Su
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Table 1: Results with Character Granularity

Test Case DDMIN DDMIN*

Name Chars Steps Chars Iters Steps Chars

jerry-3299 1,767 4,959 542 12 13,287 +167.94% 130 -76.01%
jerry-3361 1,953 2,276 427 12 9,950 +337.17% 175 -59.02%
jerry-3376 6,626 15,008 1,216 9 31,602 +110.57% 306 -74.84%
jerry-3408 2,681 4,869 557 7 9,707 +99.36% 178 -68.04%
jerry-3431 1,065 2,228 207 6 3,120 +40.04% 58 -71.98%
jerry-3433 961 588 74 4 681 +15.82% 14 -81.08%
jerry-3437 6,597 11,764 1,017 6 15,982 +35.86% 105 -89.68%
jerry-3479 5,201 17,391 2,383 15 66,097 +280.06% 452 -81.03%
jerry-3483 492 388 42 4 516 +32.99% 17 -59.52%
jerry-3506 3,760 5,797 658 8 12,322 +112.56% 192 -70.82%
jerry-3523 3,928 8,666 832 6 15,542 +79.34% 206 -75.24%
jerry-3534 1,927 3,407 378 6 6,512 +91.14% 128 -66.14%
jerry-3536 829 1,119 163 3 1,628 +45.49% 147 -9.82%

proposed to use information about the input format encoded in
grammars, i.e., converting test cases into a tree representation [5],
and apply delta debugging to the levels of the tree, called Hier-
archical Delta Debugging. This approach helped to remove parts
of the input that aligned with its syntactic unit boundaries. As a
further improvement, they proposed the fixed-point iteration of
HDD, denoted as HDD*: HDD is repeatedly applied until it fails to
remove further elements from the tree producing a 1-tree-minimal
result. Motivated by their results, we could formalize the fixed-point
iteration of DDMIN, called DDMIN*.

An analogy between test case reduction and program slicing
was recognized by Binkley et al. [3]. They have also recognized
that a single iteration of their Observation-Based Slicing (ORBS)
algorithm does not guarantee 1-minimality, since certain lines be-
come removable only after other lines have been deleted. Therefore,
they iterated the body of the algorithm as long as the previous
iteration deleted some lines from the input. The approach is similar
to DDMIN’s, however, they have not tried to start the algorithm
over to find another, more optimal 1-minimal result.

6 SUMMARY
In this work, we have investigated whether the fixed-point iteration
of DDMIN – denoted as DDMIN* – improves the effectiveness of
the algorithm. We have presented an example input where DDMIN*
improved the found local minimum, then we evaluated the idea
on a publicly available test suite. We have found that the output
of DDMIN* was usually smaller than the output of DDMIN. Us-
ing characters as units of reduction, the output became smaller
by 67.94% on average. In the best case, fixed-point iteration could
improve as much as 89.68% on the output size of the original algo-
rithm. The cost of the smaller results is an increase in the number
of testing steps.

As for future work, we have plans to continue this topic of re-
search. We wish to conduct experiments with line based granularity,
and with HDD as it uses DDMIN on the levels of its internal tree
representation, and investigate whether utilizing the fixed-point

iteration on the levels could improve the overall output of HDD*.
Furthermore, we would like to explore additional optimization pos-
sibilities to improve the DDMIN*.
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