Aggregation Operators and Hypothesis Space Reductions in Speech Recognition

Gábor Gosztolya, András Kocsor

In this paper we deal with the heuristic exploration of general hypothesis spaces arising both in the HMM and segment-based approaches of speech recognition. The generated hypothesis space is a tree where we assign costs to its nodes. The tree and the costs are both generated in a top-down way where we have node extension rules and aggregation operators for the cost calculation. We introduce a special set of mean aggregation operators suitable for speech recognition tasks. Then we discuss the efficiency of some heuristic search methods like the Viterbi beam search, multi-stack decoding algorithm, and some improvements using these aggregation operators. The tests showed that this technique could significantly speed up the recognition process. The run-times we obtained were 2 times faster than the basic multi-stack decoding method, and 4 times faster than the Viterbi beam search method.

 
ody>