You are here
Markov Models
This project is about image segmentation algorithms using a Markovian approach. The main contribution is a new hierarchical MRF model and a Multi-Temperature Annealing (MTA) algorithm proposed for the energy minimization of the model. The convergence of the MTA algorithm has been proved towards a global optimum in the most general case, where each clique may have its own local temperature schedule.
|
The main contribution of this project is the implementation of a Markovian image segmentation model on a new chip, called CNN (Cellular Neural Networks), which is capable to do the task in real time.
|
The goal of this project is to propose a method which is able to segment a color image without any human intervention. The only input is the observed image, all other parameters are estimated during the segmentation process. The algorithm finds the most likely number of classes, their associated model parameters and generates a segmentation of the image by classifying the pixels into these classes.
|
The human visual system is not treating different features sequentially. Instead, multiple cues are perceived simultaneously and then they are integrated by our visual system in order to explain the observations. Therefore different image features has to be handled in a parallel fashion. In this project, we attempt to develop such a model in a Markovian framework.
|
A multi-layer binary Markov random field model for extracting an unknown number of possibly touching or overlapping near-circular objects.
|